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ABSTRACT 

Background:  

In the age of big data, linked social and administrative health data in combination with machine 

learning (ML) is being increasingly used to improve prediction in cardiovascular diseases 

(CVD). We aimed to apply ML methods on extensive national-level health and social 

administrative datasets to predict future diabetes complications by ethnicity.  

Methods:  

Five ML models were used to predict CVD events among all people with known diabetes in the 

population of New Zealand, utilizing national-level administrative data at the individual level.  

Results:  

The Xgboost ML model had the best predictive power for predicting CVD events three years 

into the future among the population with diabetes. The optimization procedure also found 

limited improvement in AUC by ethnicity. The results indicated no trade-off between model 

predictive performance and equity gap of prediction by ethnicity. The list of variables of 

importance was different among different models/ethnic groups, for examples: age, deprivation, 

having had a hospitalization event, and the number of years living with diabetes. 

Discussion and conclusions: 

We provide further evidence that ML with administrative health data can be used for meaningful 

future prediction of health outcomes. As such it could be utilized to inform health planning and 

healthcare resource allocation for diabetes management and the prevention of CVD events. Our 

results may suggest limited scope for developing prediction models by ethnic group and that the 
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major ways to reduce inequitable health outcomes is probably via improved delivery of 

prevention and management to those groups with diabetes at highest need. 

 

Keywords: Machine learning; Diabetes complications; Cardiovascular disease; Risk prediction; 

Health and social administrative data;  
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Background  

People living with diabetes have a higher risk for cardiovascular disease (CVD) events than the 

general population.(1) According to the Global Burden of Disease Study 2017, CVD is the 

leading cause of death in the world.(2) Some treatments for CVD can be very expensive and 

cumulatively account for a large proportion of total health system costs.(3, 4) Therefore predicting 

CVD events among people with diabetes is desirable for health system planning. In addition, 

diabetes and CVD events are more prevalent in some ethnic groups than the others,(5, 6) and this 

needs to be taken into account in health outcome prediction. In Aotearoa New Zealand (NZ), 

diabetes and CVD are the leading causes of premature death and disease burden, and are major 

sources of health inequities for Māori, Pasifika, and Asian populations due to socio-economic, 

cultural and health system factors. 

There is strong evidence around the prevention of diabetes complications, such as controlling 

glucose levels, hypertension, dyslipidemia and smoking cessation.(7) However, there are factors 

at a system-level, which compromise the ability to act upon this evidence and care for 

populations, such as socio-economic status, medication costs, and access to healthcare.(8) Health 

inequities in NZ have long been recognized, yet little improvement has been achieved over the 

last 20 years or more.(9) More urgent action and policy interventions beyond the health system 

are needed to reduce health burdens in marginalized populations.(9)    

The NZ Government, similar to the governments in Scandinavian countries, United Kingdom, 

and Australia, holds a large amount of data from patient interactions with the healthcare 

system.(10) This is in addition to extensive other individual data such as census, immigration, and 
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justice data, which can be linked at an individual level. These data are high-dimensional, very 

extensive and impossible to explore by clinicians or health systems decision makers manually. 

Machine learning (ML) method has emerged as a promising new technique to model disease risk 

prediction in an era of large datasets.(11-14) It consists of a large number of alternative methods 

including classification trees, random forest, neural networks, support vector machines, and lasso 

and ridge regression. For studies where the primary goal is to predict the occurrence of an 

outcome, this technique produces a more flexible relationship among the predictor variables and 

the outcome.(11) ML can accommodate non-linear relationships while overcoming the over-fitting 

issues in the traditional regression models.(15-17) In fact, the emerging evidence suggests that ML 

significantly improves accuracy of CVD risk prediction compared to the traditional regression 

models.(8, 15, 17, 18) 

There are a large number of prediction models that have been developed for CVD events among 

people with diabetes in the clinical setting,(8) including both traditional regression and ML 

methods.(1, 19) These models generally utilize rich clinical information or features (eg, body mass 

index, smoking status, biomarkers) extracted from electronic medical records or clinical trials. 

However, while these models are important for risk prediction at a clinical level, they are not 

easily deployed at the population level in order to reduce systemic barriers to improve diabetes 

management. In contrast, linked social and administrative health data consists of records 

collected on diagnoses, medications, and demographics generated through the provision of health 

services by governments. These data have become increasingly available to assess population 

health,(10, 20) and they represent a valuable resource for automated analytic approaches to improve 

the efficiency and effectiveness of primary and secondary health prevention efforts.(8)  
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Given this background, the overall aim of this research was to: 1) use ML models to predict 

CVD events over a three-year period for the NZ adult population with diabetes using a broad 

range of routinely collected health and social administrative data; and 2) assess the performance 

of ML models on different ethnic groups in NZ to determine the relevance to reducing health 

inequities.  

 

Methods  

Datasets 

We used linked health and social administrative data from the Stats NZ (SNZ) Integrated Data 

Infrastructure (IDI). This is a research database that links a broad and diverse collection of 

administrative and survey datasets from health, income, benefits and social services, education, 

justice, housing, and communities. All individual data across different datasets were linked 

through a unique identifier code.  

The first dataset was the Census 2013 to identify individuals’ smoking status, language spoken, 

employment status and other demographic information. The second dataset, the diabetes 

complications dataset from the Ministry of Health (MoH chronic condition table), contains 

information about healthcare users in the population cohort who have been diagnosed with one 

or more of eight chronic conditions (eg, coronary heart disease, stroke, diabetes, cancer, and 

gout). We used this dataset to identify people with CVD and diabetes, and other chronic diseases 

in 2013.(21) In order to identify individuals on CVD preventive pharmacotherapy, we used 

pharmaceutical data from 2013, but with no history of a CVD event (ie, individuals that had: (i) 

none of the conditions in the MoH chronic conditions table; or (ii) did have one of these 
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conditions, but who had no prior identified CVD condition). This dataset contains claim and 

payment information from pharmacists for subsidized dispensings. Finally, we used the IDI 

Population Explorer dataset (2013), which has indicators for receipt of social security benefit, 

use of social housing, and major life events (ie, getting divorced/separated when this was 

officially documented) in 2013.(4) Patients or the public were not involved in the design, or 

conduct, or reporting, or dissemination plans of our research. 

Study population 

The whole population of NZ who were in the residential population in 2013, and who had been 

diagnosed with diabetes in Virtual Diabetes Registry in the period of January 2001 to December 

2013 (22) but with no prior CVD, were followed throughout to 2018. In order to identify people 

with diabetes, any CVD complications they had, and their social characteristics, we used the 

International Classification of Diseases (ICD) for identifying diabetes and CVD complication 

events.(3, 23) The definition for CVD was based on the following ICD-10 codes: stroke (I60-I64; 

G45-G46), and coronary heart disease (ICD-10-AM: I20-I25).(22)  

Only people who were in both the Census 2013 and the IDI estimated resident population in 

2013, and had diabetes but did not have diagnosed CVD, were included in the analysis. We also 

further restricted the population to people aged between 30 to 74 years old as per other NZ work 

in CVD risk prediction.(20) All observations with missing age and sex information were excluded 

from the analysis but these were very infrequent. Steps to extract the study population were 

presented in Figure 1. 
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Figure 1. Steps to extract the study population from the linked administrative and health

data 

Outcome 

This included the risks of developing CVD over a three-year period. The dependent variable was

a binary outcome whether a CVD event (either fatal or non-fatal) had or had not occurred for an

individual with diabetes during three-year periods between 1/1/2013-31/12/2015; and 1/1/2016-

31/12/2018. 

Variables 

lth 

as 

an 

-
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The linked health and administrative datasets allow us to examine the individual-level impact of 

not only the health indicators (eg, diabetes, smoking status); but also other demographic 

characteristics (age, sex, ethnicity (self-identified), immigration status); social background 

variables (eg, housing conditions, social security benefits and language spoken); and potential 

stress indicators (via employment). 

In addition, the following conditions were added to the predictor variables: any hospital event 

between 2001 and 2013 for dementia, asthma, chronic kidney disease, and total hospital events 

for any condition. Disease ICD-10 codes were extracted from the MoH Burden of Disease 

Report 2016.(24) These conditions were added to the predictor variable list based on the literature 

for conditions associated with CVD.(25-27) 

Data pre-processing 

The data were randomly divided into 80% training and 20% test. Each individual could only be 

in either training or test data.  

Data subsets by time period and by ethnicity 

We split out datasets into a study dataset with a three-year follow-up from 2013-2015 and a 

validation dataset from 2016-2018.(8) We also created datasets by ethnicity, in particular: the 

whole NZ population with diabetes, Asian population with diabetes, Māori population with 

diabetes and Pasifika population with diabetes. 

Model development and evaluation 

We used ML models, such as logistic regression, decision trees, random forest, neural network, 

and Xgboost to predict CVD complications.(28, 29) Following Zafar et al,(30) two fold-cross 

validations were performed on the training data. Parameter tuning was performed using area 
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under the receiver operating curve (AUC) as an evaluation matrix. Models were coded and 

analyzed in R version 3.3.0. All ML models were trained using the same training datasets and 

tested on the same test datasets to allow comparison of their predictive power. The main 

indicator AUC was used to evaluate the predictive performance of the ML models. 

Model optimization 

ML models were trained to maximize the AUC indicators, either for the whole NZ population 

with diabetes or for a particular ethnic group (eg, Asian) as per Figure 2. The aim was to improve 

model performance for a particular ethnic group in order to understand fairness in disease 

prediction. Our measure is somewhat similar to the group fit measurement employed by 

McGuire et al.(31) However, while these authors used group fit for the total payment ratio 

received for groups by health condition (cancer, heart health, diabetes and mental health), our 

group fit was AUC by ethnicity. Furthermore, McGuire et al. set up a constraint on the group fit 

measurement (ie, the total payment ratio equals one reflecting a balance between budgeted and 

actual health expenditures), but we optimized our group fit level by ethnicity through parameter 

tuning.  

 
Figure 2. Optimization scenarios with different data subsets and evaluation indicators for 

populations with diabetes 
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Results 

Descriptive results: As shown in Table 1, there were approximately 146,000 NZ residents with 

diabetes who were aged 30-74 and with complete data on basic demographic information: age 

and sex. There were less than 0.5% of observations having missing ethnicity data, and less than 

10% missing smoking status data. All observations with missing data other than age and sex 

were included in the analyses and were implicitly treated as missing data. Table 2 presents CVD 

incidence rates among people with diabetes by various predictors, in particular age, sex, 

ethnicity, deprivation decile, smoking status, and employment status. 

 

Table 1: Descriptions of variables included in the analysis in both study and validation 

datasets 

Study variables Study dataset: N (counts of 

observations) (% of the 

observations) 

Validation dataset: N (%) 

Total population aged 30-

74 years with diabetes in 

NZ 

74,600 (100%) 71,000 (100%) 

Female 36,600 (49.1%) 35,300 (49.7%) 

Male 38,000 (50.9%) 35,700 (50.3%) 
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Study variables Study dataset: N (counts of 

observations) (% of the 

observations) 

Validation dataset: N (%) 

Māori 12,800 (17.2%) 12,100 (17.1%) 

Pasifika 8,200 (11%) 7,980 (11.2%) 

Asian 11,600 (15.5%) 11,000 (15.6%) 

NZ European 42,800 (57.5%) 40,700 (57.4%) 

Māori (mixed ethnicity – 

up to three) 

3,220 (4.3%) 3,030 (4.3%) 

Pasifika (mixed ethnicity – 

up to three) 

990 (1.3%) 880 (1.3%) 

Asian (mixed ethnicity – up 

to three 

510 (0.7%) 510 (0.7%) 

NZ European (mixed 

ethnicity – up to three) 

510 (0.7%) 550 (0.8%) 

Mean age (years) 57 57 

Deprivation high* 29,300 (39.3%) 28,000 (39.4%) 

Deprivation medium* 27,800 (37.2%) 26,000 (36.7%) 

Deprivation low*  17,300 (23.3%) 16,800 (23.7%) 
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Study variables Study dataset: N (counts of 

observations) (% of the 

observations) 

Validation dataset: N (%) 

Current smokers 10,500 (14.1%) 9,900 (13.9%) 

Ex-smokers 21,500 (28.9%) 20,500 (28.9%) 

Non-smokers (note: ~7% 

missing smoking status 

data) 

38,700 (52%) 37,000 (52.1%) 

Having a post-graduate 

qualification 

24,900 (33.4%) 24,000 (33.8%) 

In-paid employment 39,500 (53%) 38,600 (54.4%) 

Having gout 8,500 (11.4%) 7,900 (11.2%) 

Having cancer 5,060 (6.8%) 4,830 (6.8%) 

Having traumatic brain 

injury 

1,360 (1.8%) 1,200 (1.7%) 

Notes: *Deprivation low is deprivation deciles 1-3, medium is 4-7, and high is 8-10. 
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Table 2 CVD incidence counts and rates during the three-year follow-up period by 

demographic information in the study population 

Study variables CVD incidence event counts 

(rates) for the study dataset 

CVD incidence event 

counts (rates) for the 

validation dataset 

Total population aged 30-74 

years with diabetes 

3,430 (4.8%) 3,090 (4.56%) 

Female 2,250 (5.9%) 1,980 (5.55%) 

Male 1,190 (3.2%) 1,110 (3.16%) 

Māori 640 (5%) 590 (4.9%) 

Non-Māori  2,790 (4.5%) 2,510 (4.3%) 

Deprivation lowest (two 

deciles 1-2) 

390 (15.5%) 410 (3.7%) 

Deprivation low (3-4) 500 (4.1%) 460 (3.9%) 

Deprivation medium (5-6) 660 (4.8%) 560 (4.4%) 

Deprivation high (7-8) 790 (4.9%) 690 (4.6%) 

Deprivation highest (9-10) 1,090 (5.2%) 970 (4.8%) 

Current smokers 610 (5.8%) 520 (5.2%) 

Not current smokers 2,823 (4.41%) 2,580 (4.22%) 
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Study variables CVD incidence event counts 

(rates) for the study dataset 

CVD incidence event 

counts (rates) for the 

validation dataset 

In-paid employment 1,410 (3.6%) 1,460 (3.8%) 

Not in-paid employment 2,030 (5.8%) 1,640 (5.1%) 

30≤ age <40 (years) 15 (0.5%) 15 (0.5%) 

40≤ age <50 (years) 170 (1.6%) 170 (1.7%) 

50≤ age <60 (years) 510 (3.4%) 460 (3.2%) 

60≤ age <70 (years) 1,180 (4.8%) 1,160 (4.9%) 

70≤ age <80 (years) 1,550 (7.3%) 1,290 (6.5%) 

Notes: The final sample was randomly divided into a study and a validation dataset, by ethnicity.  

 

Table 3 presents model performance by ethnicity across two time periods (2013-2015 and 2016-

2018). Models were trained using data for the whole NZ population aged 30-74 years with 

diabetes in 2013-2015, were optimized for the indicator (AUC) for this population, and were 

predicted by ethnic group. When there was no change in time period (that is training and test 

datasets were in the same period), results suggested that Xgboost models outperformed all other 

ML models in term of preventing future CVD events – based on AUC, across ethnicity and time 

periods. In particular, the average AUC by time period was 0.74 for the whole NZ population 

with diabetes, and similarly for other populations: for 0.74 for the Asian (0.74), Māori (0.76), 
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and Pasifika population (0.73). Compared to the random forest (RF) models, the prediction by 

Xgboost models was improved by 6.4% (0.74 vs 0.70) for the whole NZ population with 

diabetes and 10% (0.73 vs 0.66) for the Pasifika population. 

In term of predicting future CVD events, the RF models were quite similar to the Xgboost model 

for the whole NZ population with diabetes. But both models were slightly worse at predicting 

future events for Māori (absolute AUC gaps: 0.03 for RF and 0.05 for Xgboost, or about 4% and 

7% worse, respectively). Both models seem to perform well for the Asian population in 

predicting future CVD events. 

Table 3 Model performance by ethnicity across two time periods (2013-2015, 2016-2018) 

(Models were trained using data for the whole NZ population with diabetes in 2013-2015, were 

optimized for the indicator (AUC) for this population, and were predicted by ethnic group) 

Models* Model 

prediction 

(AUC) for the 

2013-2015 

period (current 

period) 

Model 

prediction 

(AUC) for the 

2016-2018 

period (future 

period) 

Average 

AUC for both 

time periods 

Absolute AUC 

gaps between 

two time 

periods (<=0 

means at least 

equal prediction) 

Random forest (RF) all 

ethnic groups 0.70 0.70 0.70 0.00 

RF Asian 0.68 0.71 0.70 -0.03 

RF Māori 0.70 0.68 0.69 0.03 

RF Pasifika peoples 0.66 0.68 0.67 -0.02 
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Xgboost all ethnic 

groups 0.74 0.73 0.74 0.01 

Xgboost Asian 0.74 0.76 0.75 -0.01 

Xgboost Māori 0.76 0.71 0.73 0.05 

Xgboost Pasifika 

peoples 0.73 0.71 0.72 0.02 

 

Model performance by ethnicity across subsets of data are presented in Table S3. Models were 

trained in 2013-2015, and were predicted by ethnic group in the same time period. There were 

three optimization scenarios as described in Figure 2. Results suggested that using all data (ie, all 

observations for the study population) for training and optimizing all data indicators 

(Optimization A) can improve the prediction compared to using sub-ethnicity data only 

(Optimization C) by 0.05 AUC (7.0%), 0.04 (5.2%), and 0.03 (4.8%) for Asian, Māori and 

Pasifika peoples, respectively, using the Xgboost model. Overall, Xgboost models benefited 

more from using population data than other models. With this current dataset, there were no 

benefits from optimizing ethnicity indicators (eg, building the optimal prediction so that it 

predicts best for Māori). 

Table S4 shows gaps in model performance by ethnicity for the main indicator (AUC), using the 

study dataset in 2013-2015. The Xgboost models performed better in term of equity gaps, with 

an overall prediction improvement of 0.1% on average for sub-ethnic groups compared to the 

whole NZ population. The average improvement for the RF models was -2.3%, that is, the 

prediction for sub-ethnic groups was not as good as for the whole NZ population with diabetes.  
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Table 4 presents a list of variables of importance generated by the RF models. Several main 

traditional risk factors for CVD were picked up (ie, being given higher ranking) by the RF 

models, in particular age, deprivation, and the number of years living with diabetes. Other socio-

economic factors were also rated highly by the RF model, including: geographical area, income, 

deprivation, and occupation.  

 

Table 4 Variables of Importance generated by the random forest model  

Rank  Variable of Importance In a traditional 

regression model (ie, 

the NZ PREDICT 

equation)(1) (Yes/No) 

1 Age Yes 

2 Geographical area (a smallest geographical area in 

NZ with code by regional council, territorial 

authority, ward, and area unit) 

No 

3 Having any hospitalization events No 

4 The number of years living with diabetes Yes 

5 Deprivation level Yes 

6 Having prescribed antiplatelet medicine Yes 

7 Income level No 
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Rank  Variable of Importance In a traditional 

regression model (ie, 

the NZ PREDICT 

equation)(1) (Yes/No) 

8 Having other chronic conditions prior to 2014, 

including cancer, gout, and traumatic brain injury. 

No 

9 Occupation (an occupation level that is not 

classified) 

No 

10 Having prescribed blood pressure lowering 

medicine 

Yes 

 

 

Discussion  

Interpretation of the main results 

Our study demonstrated the feasibility of applying ML methods to administrative health data for 

public health planning, including taking into account fairness in terms of ethnicity. Our best 

model Xgboost can predict the three-year risk of CVD events in those with diabetes with an 

average AUC of 0.74. Our model was trained on test data for the NZ population with diabetes, 

which includes marked diversity by demographic and socio-economic variables. Our modelling 

was also validated in terms of the prediction of future events. The results suggested that the 
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models generally performed slightly better for large groups of population. There seemed to be no 

trade-offs between the overall fit of the ML model and the fairness measurement in our analyses. 

Our models performed reasonably well in comparison to the literature. In particular, the model to 

predict CVD risks among people with diabetes in the NZ setting from the 400,000-person 

primary care cohort study reported C-statistics of 0.73 and 0.69 for women and men, 

respectively.(1) It should be highlighted that our models did not have rich clinical features (eg, 

BMI, SBP) as per the traditional risk prediction models, but was still able to produce comparable 

prediction results. We expected that if these clinical features were incorporated, the performance 

of the models would be improved. Our model’s performance was lower than the one developed 

in Canada(8) (AUC of 0.74 vs 0.79) but this Canadian work had more data points. Of note is that, 

AUC and C-statistics are identical in the case of binary outcome, which is used in this study.(32) 

Similar to the findings by the study in Canada, our variables of importance also picked up socio-

economic factors as important variables in the prediction result.(8) These variables include 

geographical area, income, occupation, and education level. The Canada study indicated that 

socio-demographic factors such as length of stay in Canada for immigrants and ethnic 

concentration in the area of residence, play an important role in model prediction.  

Study strengths and limitations 

This study benefited from NZ having established some of the most comprehensive administrative 

health data holdings in the world, covering nearly the total population due to its universal 

healthcare system and digital government.(10)  
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Our ML models were validated against future time with no significant differences in model 

performance. These results were applied at both the total population level and the ethnic group 

level. 

Nevertheless, this type of study is not currently easy to perform given that data used are held by 

the central government and the current computing infrastructure does not easily facilitate 

developing and running ML models on such large datasets. However, these constraints may ease 

with the expansion in size and speed of computing systems. 

 

Implications for health system 

Administrative health data represent an enabler for automated analytic approaches to improve the 

efficiency and effectiveness of primary and secondary health prevention efforts, and address 

systemic barriers to diabetes care.(8) Our findings suggest that ML can be capitalized to draw 

insights from administrative social and health data to improve health management and improve 

health equity. 

While risk for CVD events among people with diabetes have been better managed in recent 

years, they remain a large burden because the incidence of diabetes continues to grow. Thus, 

there is a need to effectively prevent and manage diabetes complications at not only the 

individual patient level but also system levels. There was no trade-off between prediction 

performance and equity for other indicators; that is we can improve model prediction and reduce 

model performance gaps by ethnicity simultaneously. Furthermore, model training separately by 

ethnicity did not work well, so it appears best to use population data with ethnicity information, 

rather than train separate model for each ethnicity. 
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Even though our aim was to develop a prediction model for deployment at a population level, 

our variables of importance can still be further tested (ie, through a lasso logistic regression) to 

create a checklist to be used in the primary healthcare setting. Linked administrative and health 

databases typically have millions of records spread across multiple datasets making it highly 

challenging to work with. Moreover, predictive patterns inferred by the model at this scale can 

identify new trends or new risk factors at the population level. These variables may not be 

available in clinical prediction models as they generally exclude such types of features and 

mainly focus on health data for each patient. Thus the application of a ML model developed on 

administrative datasets to allocate resources and plan policies at a population level to improve 

diabetes complications outcomes could offer a data-driven approach to addressing health 

disparities.(8) 

 

Future research 

With the improvement in computing power that allows processing a large amount of data, the 

number of features can be expanded to investigate yet unknown CVD risk factors in order to 

target public health or individual-level interventions. The methodology of this study could be 

applicable to other chronic diseases in NZ. 

Future analysis may benefit from better accounting the possibility of misclassification in terms of 

ethnicity, such as the misclassification of Māori as a non-Māori,(33) in order to account for 

equity issues in NZ. 
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Conclusions 

We provide further evidence that ML with administrative health data can be used for meaningful 

future prediction of health outcomes. As such it could be utilized to inform health planning and 

healthcare resource allocation for diabetes management and the prevention of CVD events. 

Importantly, the ML model performance was only slightly different between ethnic groups in the 

NZ context and datasets. This may suggest limited scope for developing prediction models by 

ethnic group and that the major ways to reduce existing inequitable health outcomes is probably 

via improved delivery of prevention and management to those groups with diabetes at highest 

need.  
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APPENDIX 

 

Table S1 Description of socio-demographic and health variables used in the modeling (The 

total population in 2013 before splitting between study and validation samples. The sub-

categories might not add up to 100% due to rounding issues or missing data.) 

 

Variables N  Percentage (%) 

Total study population (people with diabetes) 
 

148,000 
100% 

Ethnicity:   

25,300 

 

17.1% 
        Māori (Indigenous New Zealanders) 

        Non-Māori 122,000 82.9% 

Country of birth: Oceania (including NZ, Australia and 

Pasifika) 

113,000 
76.6% 

Age: mean (in years) 57   

Sex:  75,200 

 
50.9% 

       Male 

       Female 72,600 49.1% 

In paid employment  79,200 53.6% 

Social family status: Spouse/partner 101,000 68.6% 

Tobacco smoking status:  77,000 51.9% 
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Variables N  Percentage (%) 

        Never smoked  

Ex-smoker 42,800 29.0% 

Current smoker 20,700 14.0% 

Official spoken language:  138,000 

 
93.5% 

         English 

Te reo Māori (Māori language) 9,210 6.2% 

Education (from Census): Have a post-graduate qualification 49,600 33.5% 

Potentially stressful life events: Divorced, separated, or 

widowed (as declared in the Census 2013) 

23,600 
15.9% 

Residential property: Own it (as opposed to rental) 82,800 56.1% 
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Table S2 Gaps in model performance by ethnicity for other indicators 

Model Sensitivity 

Specificity 

F
1  

Absolute gaps between ethnic 

group and the whole NZ 

population 

Sensitivity 

Specificity 

F
1 

Random forest (RF) all 

ethnicity 0.58 0.93 0.33 N/A N/A N/A 

RF Asian 0.64 0.97 0.26 10% 4% -21% 

RF Māori 0.53 0.91 0.35 -8% -2% 7% 

RF Pasifika peoples 0.37 0.93 0.17 -35% 0% -50% 

Average RF -11% 0% -21% 

Xgboost all ethnicity 0.29 0.77 0.39 N/A N/A N/A 

Xgboost Asian 0.18 0.77 0.28 -38% 0% -29% 

Xgboost Māori 0.29 0.77 0.39 2% 0% -1% 

Xgboost Pasifika 

peoples 0.23 

   

0.77       0.34 -21% 0% -14% 

Average Xgboost -19% 0% -15% 
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Table S3 Model performance by ethnic group across subsets of data (Models were trained in 

2013-2015 on training data, and were used for prediction by ethnic group in the same time 

period but on separate data) 

Models Averag

e AUC  

across 

subsets  

of data 

Optimization 

A: Models 

were trained 

using the 

whole NZ 

population 

data, and were 

optimized for 

the whole NZ 

population 

indicator 

(AUC)  

Optimization 

B: Models 

were trained 

using the 

whole NZ 

population 

data, and were 

optimized by 

ethnic group’s 

indicator  

Optimization 

C: Models 

were trained 

using data by 

ethnic group, 

and were 

optimized by 

ethnic group’s 

indicator  

Absolute 

gaps in AUC 

between all 

data vs ethnic 

subset data 

Random forest (RF) all 

ethnic groups NA 0.70 NA NA NA 

RF Asian 0.68 0.68 0.69 0.66 0.03 

RF Māori 0.70 0.70 0.70 0.70 0.00 

RF Pasifika peoples 0.65 0.66 0.66 0.63 0.03 

Xgboost all ethnic 

groups NA 0.74 NA NA NA 

Xgboost Asian 0.72 0.74 0.74 0.69 0.05 

Xgboost Māori 0.75 0.76 0.76 0.72 0.04 
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Models Averag

e AUC  

across 

subsets  

of data 

Optimization 

A: Models 

were trained 

using the 

whole NZ 

population 

data, and were 

optimized for 

the whole NZ 

population 

indicator 

(AUC)  

Optimization 

B: Models 

were trained 

using the 

whole NZ 

population 

data, and were 

optimized by 

ethnic group’s 

indicator  

Optimization 

C: Models 

were trained 

using data by 

ethnic group, 

and were 

optimized by 

ethnic group’s 

indicator  

Absolute 

gaps in AUC 

between all 

data vs ethnic 

subset data 

Xgboost Pasifika 

peoples 0.71 0.73 0.71 0.70 0.03 

Average AUC 

RF 0.69 0.68 0.66 0.02 

Xgboost 0.74 0.74 0.70 0.04 

All models 0.71 0.71 0.68 0.03 
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Table S4 Gaps in model performance by ethnic group for the main indicator 

Model AUC Absolute 

AUC gaps 

between 

ethnic group 

and the whole 

NZ 

population 

with diabetes 

Relative AUC 

gaps* between 

ethnic group 

and the whole 

NZ population 

with diabetes 

Random forest (RF) all ethnic 

groups 0.70 

RF Asian 0.68 -0.02 -2.2% 

RF Māori 0.70 0.00 0.4% 

RF Pasifika peoples 0.66 -0.04 -5.1% 

Average RF -0.02 -2.3% 

Weighted average RF -0.01 -2.1% 

Xgboost all ethnic groups 0.74 

Xgboost Asian 0.74 0.00 -0.1% 

Xgboost Māori 0.76 0.02 2.2% 

Xgboost Pasifika peoples 0.73 -0.01 -1.9% 

Average Xgboost 0.00 0.1% 

Weighted average Xgboost 0.00 0.2% 
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*: Compared to the prediction for the whole population, using the same data period (2013-

2015), type of data and performance indicator optimization. 
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