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Abstract

The intensification of intervention activities against the fatal vector-borne disease
gambiense human African trypanosomiasis (gHAT, sleeping sickness) in the last two
decades has led to a large decline in the number of annually reported cases. However,
while we move closer to achieving the ambitious target of elimination of transmission
(EoT) to humans, pockets of infection remain, and it becomes increasingly important to
quantitatively assess if different regions are on track for elimination, and where
intervention efforts should be focused.

We present a previously developed stochastic mathematical model for gHAT in the
Democratic Republic of Congo (DRC), and show that this same formulation is able to
capture the dynamics of gHAT observed at the health area level (approximately 10,000
people). This analysis was the first time any stochastic gHAT model has been fitted
directly to case data, and allows us to better quantify the uncertainty in our results.
The analysis focuses on utilising a particle filter Markov chain Monte Carlo (MCMC)
methodology to fit the model to the data from 16 health areas of Mosango health zone
in Kwilu province as a case study.

The spatial heterogeneity in cases is reflected in modelling results, where we predict
that under the current intervention strategies, the health area of Kinzamba II, which
has approximately one third of the health zone’s cases, will have the latest expected
year for EoT. We find that fitting the analogous deterministic version of the gHAT
model using MCMC has substantially faster computation times than fitting the
stochastic model using pMCMC, but produces virtually indistinguishable posterior
parameterisation. This suggests that expanding health area fitting, to cover more of the
DRC, should be done with deterministic fits for efficiency, but with stochastic
projections used to capture both the parameter and stochastic variation in case
reporting and elimination year estimations.
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Author summary

Gambiense human African trypanosomiasis (gHAT, sleeping sickness) is a parasitic
infection transmitted by tsetse in sub-Saharan Africa. The distribution of infections is
patchy and highly correlated to the regions where humans and tsetse interact. This
presents the need for mathematical models trained to the particular regions where cases
occur.

We show how a stochastic model for gHAT, which captures chance events
particularly prominent in small populations or with extremely low infection levels, can
be directly calibrated to data from health areas of the Democratic Republic of Congo
(DRC) (regions of approximately 10,000 people). This stochastic model fitting approach
allows us to understand drivers of transmission in different health areas and
subsequently model targeted control interventions within these different health areas.

Results for the health areas within the Mosango health zone show that this
modelling approach corresponds to results for larger scale modelling, but provides
greater detail in the locations where cases occur. By better reflecting the real-world
situation in the model, we aim to achieve improved recommendations in how and where
to focus efforts and achieve elimination of gHAT transmission.

Introduction 1

Mathematical models have an important role in the ability to quantify progress towards 2

or achievement of location elimination of transmission (EoT) of gambiense human 3

African trypanosomiasis (gHAT) [1]. Cases of gHAT – a parasitic infection with a high 4

probability of severe disease and death if left untreated – have greatly declined in the 5

last two decades, predominantly due to ongoing detection and treatment activities in 6

the endemic regions [2, 3]. However, when the target is EoT, it becomes key to estimate 7

the real number of infections, which cannot directly be observed, to understand where 8

transmission is still on-going and hence where continued intervention efforts are most 9

crucial [4]. It is thus necessary to develop fine-scale models, such that the spatial 10

distribution of infections can be estimated across the endemic regions. 11

The current spatial distribution of gHAT cases is highly dependent on several 12

geographic factors, such as the density of the disease vector – tsetse (Glossina spp.) – 13

suitability for the parasite, Trypanosoma brucei gambiense, and the location of human 14

settlements and places of work [5]. These factors mean the distribution of gHAT 15

endemic regions is highly heterogeneous and confined to geographically distinct regions 16

or “foci”, with very few cases detected in areas in between. These foci are typically 17

located in riverine areas of sub-Saharan Africa, where humans and tsetse come into 18

contact [6]. As well as these environmental factors, local availability of gHAT 19

diagnostics and treatment will also impact the spatial infection distribution. There are 20

long timescales of gHAT infection, which have been estimated at approximately three 21

years before the likely death in the absence of treatment [7]. This means that early 22

diagnosis can substantially reduce the likelihood of onward transmission, by reducing 23

the time people spend infectious and hence the possibility that tsetse will take blood 24

meals on infected people, as well as preventing the worst disease and death in patients. 25

Reductions in the time people spend as infectious, reduce the possibility that tsetse will 26

take blood meals on infected people and cause future transmission [8]. 27

Current gHAT control strategies focus on active and passive screening [9]. Active 28

screening is the use of mobile teams to conduct mass screening of at-risk populations 29

using serological tests, which detect the presence of antibodies to Trypanosoma brucei 30
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gambiense. Positive serological tests are followed up with microscopy for parasitological 31

confirmation, before treatment is provided. The current treatment options for gHAT are 32

not recommended for treatment of non-confirmed individuals [10, 11]. Passive screening 33

is where gHAT cases are detected through self-referral to fixed health facilities and 34

relies on training health staff and availability of diagnostic screening tests to be able to 35

make diagnoses and administer treatment. Additional interventions such as vector 36

control have also been deployed in selected high-prevalence locations to reduce tsetse 37

populations and hence reduce transmission [12], although operational considerations 38

have prevented use of vector control in many endemic foci, especially in the Democratic 39

Republic of Congo (DRC) which is a large country with most (>57%) of the gHAT case 40

burden for 2021 [2]. 41

The fact that gHAT cases are spatially localised and the interventions to reduce case 42

numbers are implemented in specific locations means that there are great benefits to 43

modelling gHAT at small spatial scales. Several previous studies have only modelled 44

gHAT infections in moderate to large populations. For example, health zones of around 45

150,000 people in the DRC [8,13–16], former provinces of the DRC with more than 46

8,000,000 people [17], foci in Guinea of 14,500 people [18], Chad foci of 40,000 47

people [19,20] and foci in Côte d’Ivoire of approximately 300,000 people [21]. These 48

studies fit deterministic models to longitudinal case data, but due to the large 49

populations, there can be large spatial variation within these regions. Some studies have 50

considered modelling individual villages [22,23], but it is infeasible, both 51

computationally and statistically, to fully fit complex models for all separate endemic 52

villages in a country as large as the DRC. 53

Here, we consider modelling gHAT infection for DRC health areas (regions of 54

approximately 10,000 people). This is small enough to capture local variation in 55

transmission and to define operationally-appropriate intervention areas, yet not so small 56

as to be too computationally intensive to implement across the endemic region, or mean 57

there is insufficient data for each location to fit a model. The relatively small 58

population sizes coupled with expected gHAT prevalence of <1% meant we choose to 59

use a stochastic model to capture the full range of possible model outcomes and 60

uncertainty, since the stochastic effects will be relatively larger compared to larger 61

spatial scale studies [24]. A second advantage of stochastic modelling is that it is 62

straightforward to establish at what time in the simulation that elimination of 63

transmission and elimination of infection are achieved, whereas the analogous 64

deterministic model would require us to specific a proxy threshold for elimination [25] – 65

this is most pertinent to our projections forward in time following model calibration. 66

In this manuscript, we use the example health zone of Mosango in Kwliu province, 67

DRC, to fit a stochastic model of gHAT infection to its 16 constituent health areas. 68

This methodology updates the work of Crump et al. [8] and combines tools from 69

Spencer [26], with a particle Markov chain Monte Carlo (pMCMC) fitting 70

procedure [27] to allow for calibration of a stochastic transmission model, rather than 71

relying fitting a deterministic variant without stochastic, event-driven variation. 72

We assess the quality of model fitting for health areas and compare the benefits of 73

directly fitting the stochastic model, to using a deterministic model, or the outputs from 74

a stochastic model with posterior parameterisation derived from deterministic fitting. 75

We also compare fitting the model to health zone data with the aggregation of model 76

fitting for constituent health areas. While the fitting methodology is updated, we ensure 77

the process remains robust, automated, and replicable, such that multiple stochastic 78

health area models can be fitted simultaneously. We propose a computationally efficient 79

method to fit health area models for all analysable health areas in the DRC. 80
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Materials and methods 81

Ethics Approval was granted by the University of Warwick Biomedical and Scientific 82

Research Ethics Committee (application number BSREC 80/21-22) to use the 83

previously collected DRC country HAT data, provided through the framework of the 84

WHO HAT Atlas [3], in this secondary modelling analysis. No new data collection took 85

place within the scope of this modelling study. Full model code can be found at 86

http://doi.org/10.17605/osf.io/6rfwm. 87

Data 88

The World Health Organization (WHO) HAT Atlas data is a record of the globally 89

reported gHAT cases across [2, 3, 28]. For the present study we have used the data in 90

the HAT Atlas from the DRC, which includes the location of each case, the year of 91

detection, and the mode of detection (either active or passive screening). Where active 92

screening for gHAT has occurred, the total number of people that were screened is 93

given, along with a population estimate for the whole settlement. We used available 94

data for the time period of 2000–2020. 95

Using the geolocations (latitude and longitude coordinates) of active screening 96

events or passive detections, we assigned the cases to administrative regions. This 97

includes both health zones (typically about 150,000 people) and health areas (sub-units 98

of the health zones, typically about 10,000 people). For this process we used shape files 99

provided by Nicole Hoff and Cyrus Sinai under a CC-BY licence (current versions can 100

be found at https://data.humdata.org/dataset/drc-health-data) that define the 101

borders between neighbouring health areas. For entries missing geolocations we used the 102

names of villages and health areas to extract the HAT Atlas data, following a similar 103

algorithm to that presented by Crump et al. [8]. Details of the standardised process of 104

translating the HAT Atlas data to our extracted data set of cases by health area, year 105

and screening type for the present study is provided in S1 Text. 106

In this study, we focus on data for the health zone of Mosango (Fig 1). We chose 107

this health zone as a case study since it is located in the relatively high-burden province 108

of Kwilu, has had annual active screening for gHAT infection and the number of cases 109

detected are geographically diverse, but some cases have been detected in each of the 110

health areas within the health zone. This allows us to compare results of previously 111

fitting the health zone to the aggregated results of fitting its constituent health areas 112

here. All health areas have sufficient data to perform a model fit (see S1 Text). 113
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Fig 1. Data for Mosango health areas.
A map of the location of Mosango, in the Kwilu province and Bandundu Sud coordination of the DRC (coordinations
are the large geographic units, similar to provinces, for the organisation of gHAT activities). The map is divided into
health area units, where possible, and health zone units otherwise. The Kwilu province is shown by the thick black border,
the Bandundu coordination is shown in green and Mosango is dark green. Shown in smaller maps to the right are the
distribution of the population (data provided by UCLA), the number of people screened (2000–2020) and the number of active
and passive cases (2000–2020) across the health areas of Mosango (extracted from the WHO HAT Atlas [3]). The largest
number of active and passive cases is 220 and 208 respectively, both in the health area of Kinzamba II. Shape files used to
produce these maps were provided by Nicole Hoff and Cyrus Sinai under a CC-BY licence (current versions can be found at
https://data.humdata.org/dataset/drc-health-data).
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Model 114

Here we describe the previously developed stochastic model (and its analogous 115

deterministic version) and detail the approach we took to perform fitting of this 116

stochastic model to longitudinal data for the first time. 117

Compartmental gHAT model 118

We used a previously developed, compartmental, mechanistic model to represent 119

transmission of the T. b. gambiense between humans and tsetse, as transitions of people 120

and tsetse between infection states (see Fig 2 for an illustration of the latest version 121

published by Crump et al. [8]). A susceptible person (SHi) can be bitten by an infected 122

tsetse to become exposed (EHi) before developing stage 1 (I1Hi) and subsequently stage 123

2 (I2Hi) gHAT infection, if not detected in screening before progression. Treated and 124

recovering people are represented by RHi. Infected people that are not treated are 125

assumed to die and, in the model, are replaced by a new susceptible person, such that 126

we have a closed population. We also include natural births and deaths in all classes. 127

Subscripts i ∈ {1, 4} denote two distinct human risk/behaviour groups in this model, 128

presented as “Model 4” in previous publications [4, 8, 13, 14, 17, 19, 29, 30]. We assume a 129

majority of low-risk people (i = 1) that may participate in active screening, and a 130

minority of high-risk people (i = 4) that both have a larger chance of being infected by 131

tsetse and do not participate in active screening. In this study, we do not consider 132

i = 2, 3 however we retain the same notation (i = 1, 4) to align with other studies which 133

explore additional risk and behaviour groupings [13,19,20]. 134

The proportion of tsetse bites taken on low-risk and high-risk humans (f1 and f4 135

respectively) depend on both the relative availability and the relative abundance of the 136

two risk groups. High-risk humans are assumed to be r times more likely to receive bites. 137

Therefore, f1 =
k1

k1 + rk4
and f4 =

rk4
k1 + rk4

. This model structure has been validated 138

in a model selection exercises [13, 19, 20] and is supported anecdotally since working age 139

males commonly work in the riverine areas, more densely populated by tsetse, and are 140

more likely to be away from the village working when active screening teams visit [31]. 141

Tsetse emerge from a pupal phase PV as susceptible flies SV , but upon taking a 142

blood meal on an infected human, they have a higher probability of being exposed EV 143

and developing infection IV if it is the first meal of their lifetime, with previously fed, 144

yet uninfected, tsetse GV having a lower probability of developing infection when taking 145

an infected blood meal. This phenomenon has been described as the “teneral 146

effect” [32]. For a more realistic extrinsic incubation period we sub-divide the exposed 147

class into three compartments, E1V , E2V , E3V , such that the time a tsetse is exposed is 148

gamma-distributed, rather than exponential. In the present study we assume that blood 149

meals taken on animals other than humans do not contribute to infections, with animal 150

infection not explicitly modelled. We note that an “animal transmission” variant of our 151

model exists [13,16,19,20], however there is strong evidence to suggest animals do not 152

form a maintenance reservoir and, if there is some animal transmission in the DRC, the 153

contribution is relatively small and geographically variable — we would expect it to 154

slow progress towards, but not prevent EoT. We therefore only analyse the “no animal 155

transmission” variant here. 156

We parameterise the model with both fixed values, predominantly biological 157

constants that will not change in different locations, and fitted values for parameters 158

that are location dependent (Table 1). The fitted parameters are for the basic 159

reproduction number (R0), the proportion of the human population classed as low-risk 160
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Fig 2. Compartmental gHAT model.
The purple and blue boxes denote the low-risk and high-risk human infection states, respectively. Low-risk people, who
randomly participate in active screening are given the subscript H1 and high-risk people, who do no participate, have the
subscript H4 (this notation is used to align with previously published versions of this model). Tsetse dynamics are given by
red boxes. A proportion fA = 1− fH of tsetse bites will be taken on non-human animals, but this does not contribute to the
infection dynamics. This figure is adapted from Crump et al. [8] under a CC-BY licence.
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(k1), the relative number of bites tsetse take on high-risk people (r), the diagnostic 161

algorithm specificity in active screening (Spec), the proportion of stage 2 passive cases 162

reported in 1998 (u(1998)), the treatment rate for stage 1 infection from 1998 (ηpostH ), 163

the combined treatment rate and disease-induced death rate from stage 2 infection 164

before 1998 (γpre
H ), the combined treatment rate and disease-induced death rate from 165

stage 2 infection from 1998 (γpost
H ), the post-1998 midpoint year for passive screening 166

improvement (dchange), the relative improvement in the passive stage 1 detection rate 167

(ηHamp
), the relative improvement in the passive stage 2 detection rate (γHamp

), the 168

speed of improvement in the passive detection rate (dsteep), the overdispersion 169

parameter for active detection (dispact), and the overdispersion parameter for passive 170

detection (disppass). All model parameters are given in Table 1. 171

Several of these parameters (ηpostH , γpost
H , γpre

H , dchange, ηHamp, γHamp
, dsteep) 172

together combine to parameterise the effect of passive screening (where individuals 173

self-present to fixed health facilities for testing). Prior to 1998, there was very limited 174

testing capacity with diagnostics not commonly available in health facilities [41], hence 175

we assume a lower detection rate for stage 2 infection before this year and no detection 176

in stage 1, where symptoms are less severe and less specific to gHAT. From 1998, the 177

introduction of the card agglutination test for trypanosomes (CATT) enabled an 178

increased chance of detection for both stage 1 and stage 2 infections [42]. The continued 179

improvement in availability of diagnostics, including rapid diagnostic tests (RDTs) in 180

the 2010s [43], further improved the passive screening system and therefore the rate of 181

passive detection. Thus, we fully parameterise the rate of leaving stage 1 and stage 2 182

infections in year Y , respectively, as: 183

ηH(Y ) =

{
0, if Y < 1998,

ηpostH

(
1 +

ηHamp

1+exp(−dsteep(Y−dchange))

)
, otherwise.

(1)

184

γH(Y ) =

{
γpre
H , if Y < 1998,

γpost
H

(
1 +

γHamp

1+exp(−dsteep(Y−dchange))

)
, otherwise.

(2)

In addition, active screening, where mobile teams visit endemic villages with the aim 185

of screening as many people as possible for infection, is simulated in the model as an 186

annual event. A random selection of people from the low-risk group NH1, using a 187

hypergeometric probability distribution, are tested for gHAT infected, with diagnostic 188

sensitivity and specificity then applied based on binomial probabilities. We assume the 189

diagnostic algorithm have sensitivity (Sens) of 91% and specificity (Spec) fitted to 190

match data in the study area. The true positives detected by the model are then 191

assumed to be treated and so moved to the recovering class RH1, while false negatives 192

remain undetected. In this study, which focuses on the health zone of Mosango, we 193

additionally assume that post-2015, specificity is 100%. This is because video 194

confirmation of the parasites’ presence has been used in addition to other diagnostic 195

tests in this location [44]. Visualisation of the parasite to confirm a case by more than 196

one person means there is little chance of false positives being recorded. 197

Vector control has been carried out in several areas of the DRC and has been seen to 198

have a large impact on the infection dynamics [12]. Therefore, the model is flexible to 199

include deployment of “tiny targets” used to trap tsetse [30]. However, for the health 200

zone of Mosango in the data period 2000–2020, there has been no tsetse control and this 201

is not included in the model fitting of our simulations. 202

We could choose to simulate this model structure with at least two distinct methods: 203

as a deterministic model of ordinary differential equations (ODEs), or as a stochastic 204
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Table 1. Model parameterisation. Notation, a brief description of the parameter,
either the fixed value used or the prior distribution used in fitting, and a source for the
fixed parameters.

Notation Description Fixed value/Fitted prior∗ Source

NH Total human population size in 2015† Fixed for each location [33]
µH Natural human mortality rate 5.4795× 10−5 days−1 [34]
BH Total human birth rate = µHNH

σH Human incubation rate 0.0833 days−1 [35]
φH Stage 1 to 2 progression rate 0.0019 days−1 [7, 36]
ωH Recovery rate or waning-immunity rate 0.006 days−1 [31]
Sens Active screening diagnostic sensitivity 0.91 [37]
BV Tsetse birth rate (per capita rate of depositing new pupae)‡ 0.0505 days−1 [29]
ξV Rate of pupal development to adult flies 0.037 days −1 [29]
K Pupal carrying capacity§ = 111.09NH [29]

P(pupate) Probability of a pupa surviving to emerge as an adult fly 0.75 [29]
µV Tsetse mortality rate 0.03 days−1 [35]
σV Tsetse incubation rate 0.034 days−1 [38, 39]
α Tsetse bite rate 0.333 days−1 [11]
pV Probability of tsetse infection per single infective bite 0.065 [35]
ε Reduced susceptibility factor for non-teneral flies 0.05 [13]
fH Proportion of blood-meals on humans 0.09 [40]
R0 Basic reproduction number 1 + Exp(10) -
r Relative bites taken on high-risk humans 1 + Γ(3.68, 1.09) -
k1 Proportion of low-risk people B(16.97, 3.23) -

ηpostH Treatment rate from stage 1, 1998 onwards Γ
(
3.54, 5.32× 10−5

)
-

γpost
H Combined treatment and disease-induced death rate from

stage 2, 1998 onwards
Γ(2.45, 0.00192) -

bγpre
H

Relative treatment/death rate from stage 2 factor, pre-1998 B(1, 1) -

Spec Active screening diagnostic specificity 0.998 + (1− 0.998)B(7.23, 2.41) -
u(1998) Proportion of stage 2 cases reported from passive screening

in 1998
B(20, 40) -

dchange Midpoint year for passive improvement 2000 + (2017− 2000)B(5, 6) -
ηHamp

Relative improvement in passive stage 1 detection rate Γ(2.013, 1.049) -
γHamp

Relative improvement in passive stage 2 detection rate Γ(1.001, 5) -
dsteep Speed of improvement in passive screening detection rate Γ(39.57, 0.0270) -
dispact Overdispersion parameter for active detection B(1, 2499) -
disppass Overdispersion parameter for passive detection B(1, 35713) -

∗Priors given by Exp(.), Γ(.) and B(.) are the exponential, gamma (parameterised with shape and scale) and beta distributions, respectively.
†The model is internally scaled such that the population size in all years corresponds to the population in 2015 (outputs are back-transformed to
reflect an assumed annual population growth rate of 3% across the DRC).

‡The value of BV was chosen to maintain constant population size in the absence of vector control interventions.
§The value of K was chosen to reflect the observed bounce back rate.

model using the tau-leaping algorithm. In this study, we focus on the stochastic model 205

variant (which has previously been used for village-level or health-zone-level 206

simulation [23,45]), also making comparisons back to the previously-studied 207

deterministic version [8]. 208

The stochastic tau-leaping model is evaluated using a 5-day time step (see S1 Text) 209

and only considers stochastic events in the human component. The tsetse component is 210

updated at each time step using a Runge–Kutta method to implement a ODE system. 211

This choice is due to the difficulty of modelling tsetse explicitly, since the exact number 212
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of tsetse is unknown in the model; we instead opt to use an effective tsetse density meff, 213

which is equal to the product of the vector-to-host ratio and the probability of human 214

infection per single infective bite. We non-dimensionalise the vector equations by scaling 215

by NH/NV , the ratio of human and vector population sizes, such that the effective 216

probability of human infection per single infective tsetse bite (meff) is defined as 217

pHNV /NH , where pH is the vector-to-human transmission probability. The tsetse ODE 218

simulations will result in a good approximation to a full stochastic simulation, since the 219

tsetse dynamics occur on faster timescales to humans and their larger population size 220

mean the stochastic effects will be relatively smaller [23]. 221

The full model is described by the events table and ODEs in Table 2.

Table 2. Full model equations. Events table for the stochastic tau-leaping model for
humans and deterministic ODEs for the tsetse dynamics.

Humans



Event description Transition Rate

Exposure to infection SHi → SHi − 1, EHi → EHi + 1 αmefffi
SHi

NHi
IV

Progression to stage 1 EHi → EHi − 1, I1Hi → I1Hi + 1 σHEHi

Progression to stage 2 I1Hi → I1Hi − 1, I2Hi → I2Hi + 1 φHI1Hi

Treatment from stage 1 I1Hi → I1Hi − 1, RHi → RHi + 1 ηH(Y )I1Hi

Treatment or death from stage 2 I2Hi → I2Hi − 1, RHi → RHi + 1 γH(Y )I2Hi

Recovery after treatment RHi → RHi − 1, SHi → SHi + 1 ωHRHi

Natural birth/death from exposed EHi → EHi − 1, SHi → SHi + 1 µHEHi

Natural birth/death from stage 1 I1Hi → 11Hi − 1, SHi → SHi + 1 µHI1Hi

Natural birth/death from stage 2 I2Hi → I2Hi − 1, SHi → SHi + 1 µHI2Hi

Natural birth/death from recovering RHi → RHi − 1, SHi → SHi + 1 µHRHi

(3)

Tsetse



dPV

dt
= BV NH − (ξV + PV

K )PV

dSV

dt
= ξV P(pupate)PV − αSV − µV SV

dE1V

dt
= α

(
1− fT (t)

)
pV
(∑

i fi
(I1Hi + I2Hi)

NHi
+ fA

IA
NA

)
(SV + εGV )

−(3σV + µV + αfT (t))E1V

dE2V

dt
= 3σV E1V − (3σV + µV + αfT (t))E2V

dE3V

dt
= 3σV E2V − (3σV + µV + αfT (t))E3V

dIV
dt

= 3σV E3V − (µV + αfT (t))IV

dGV

dt
= α(1− fT (t))

(
1− pV

(∑
i fi

(I1Hi + I2Hi)

NHi
+ fA

IA
NA

))
SV

−α
(
fT (t) +

(
1− fT (t)

)
pV ε

(∑
i fi

(I1Hi + I2Hi)

NHi
+ fA

IA
NA

))
GV

−µV GV

(4)

222
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Model fitting 223

The posteriors of our 14 fitted parameters (see Table 1) are obtained for each location 224

using particle Markov chain Monte Carlo (pMCMC) with the stochastic model 225

described in Table 2. We use the adaptive Metropolis–Hastings random walk algorithm 226

described in Crump et al. [8], but rather than direct computation of the likelihood, we 227

obtain an estimate using a particle filter (otherwise known as sequential Monte Carlo). 228

We cannot directly compute the likelihood of our stochastic model since we cannot 229

consider the infinite number of possible trajectories the model could take due to the 230

random nature of the model [46]. 231

Particle MCMC is widely used for stochastic model fitting and seeing an increasing 232

use in mathematical epidemiology [47,48]. Our pMCMC algorithm is the integration of 233

a particle filter to calculate the marginal likelihood into an adaptive 234

Metropolis–Hastings algorithm. Since we cannot consider all stochastic trajectories, we 235

construct an estimate using a set of samples (or “particles”). Using the current 236

parameter set in the MCMC, we simulate the model from the initial state to a data 237

point. At each data point, the particles are assigned weights proportional to the 238

likelihood of the data point. Zero weight particles are removed and re-distributed 239

according to combine-split resampling [49]. This process prevents particles with no 240

likelihood propagating forward with no increase in the variance of the marginal 241

likelihood. In addition, if the effective sample size (ESS) of the particle filter falls below 242

the value of half the number of particles, we re-sample the particles according to 243

systematic re-sampling to ensure a high ESS [50]. After the re-sampling, if it occurs, the 244

new set of particles is simulated forward to the next data point and the process is 245

repeated sequentially until the end of the data. 246

For each particle trajectory (2000–2020), the value of the likelihood calculation is
given by:

LL(θ|x) = log(P (x|θ))

∝
2020∑

i=2000

(
log

[
BetaBin

(
AD1(i) +AD2(i) +ADU (i); z(i),

AM1(i) +AM2(i)

z(i)
,dispact

)]
+ log

[
Bin

(
AD1(i);AD1(i) +AD2(i),

AM1(i)

AM1(i) +AM2(i)

)]
+ log

[
BetaBin

(
PD1(i) + PD2(i) + PDU (i);NH ,

PM1(i) + PM2(i)

NH
,disppass

)]
+ log

[
Bin

(
PD1(i);PD1(i) + PD2(i),

PM1(i)

PM1(i) + PM2(i)

)])
,

for model parameterisation θ, and data point x. The number of cases detected by 247

passive or active screening in year i are given by PDj(i) and ADj(i), where the stage is 248

j = 1, 2, or unknown, U . Equivalently, PMj(i) and AMj(i) are the number of cases 249

detected by passive or active screening in the model. z(i) is the number of people 250

actively screened in year i. BetaBin(m;n, p, ρ) gives the probability of obtaining m 251

successes out of n trials with probability p and overdispersion parameter ρ. 252

We calibrate the number of particles used in the particle filter by comparing the 253

output likelihood for a range of options. We ran 10,000 parameter samples from a 254

previously obtained joint posterior distribution in the particle filter with between 5 and 255

500 particles (Fig 3). We thus choose to use 50 particles for our model fitting, since this 256

number is low and so would limit computation time, but it is also high enough to 257
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provide stability in the log likelihood estimation; additional particles showed little 258

change in median value or variance. 259

As in Crump et al. [8], the MCMC process is fully-automated in outputting 260

posteriors and includes three phases run across two independent chains. Firstly, a 261

transient phase with single-site updates only to determine where in parameter space 262

sampling should begin. Secondly, an adaptive phase to start to learn the covariance 263

matrix of the posterior, such that an efficient proposal can be obtained. And thirdly, 264

the sampling phase to obtain the posteriors. The transient phase lasts for 1,000 265

iterations, the adaptive phase is continued until using the Gelman-Rubin statistic [51], 266

we have R
(i,j)
within ≤ 1.1 and R

(i)
between ≤ 1.5 for parameter i and chain j, for a maximum 267

of 100,000 iterations, and the sampling phase ends when R
(i)
between ≤ 1.2 and the ESS of 268

the pMCMC chain is at least 1,000. The ESS is here defined as the minimum value of 269

all the fitted parameters, where it is calculated using the autocorrelation of the thinned 270

sample, such that there are 1,000 values for each chain [52]. 271

These phases are shown in an example chain for fitting the health zone of Mosango 272

in Fig 3. We see that well mixed chains after the burn in, throughout the sampling 273

phase, (shown by the green background) result in good convergence below the threshold. 274

The chains terminate when the ESS threshold is reached in reasonable time. 275

Future projections and estimating EoT 276

We simulate future projections beyond the end of our data set to 2050, using parameters 277

the parameters obtained in model fitting. We adopt a “continuation” strategy, whereby 278

we maintain the same interventions in the future as the present ones. Annual active 279

screening continues at a coverage equal to the mean annual coverage of the last five 280

years of data and the rate of detection in passive screening remains unchanged. 281

Model outputs include the annual number of active cases given the number of people 282

screened, the number of passive cases detected and the number of new infections. While 283

the actual number of new infections is unknowable (as the timescale from infection to 284

detection can be long and furthermore many people are missed in screening), we infer 285

the number of new infections each year both historically and beyond 2020 assuming 286

interventions continue at the same level. 287

From these simulations, we calculate the probability of EoT (PEoT) as the 288

proportion of model realisations that reach the target of EoT. For calculating PEoT for 289

all the independent health areas of a health zone, we take the product of all health area 290

PEoT values. Hence, we are also able to predict the expected year of EoT, in both 291

health areas and health zones, as the median year EoT is reached in simulations. 292

Results 293

Fitting to health areas 294

On performing the fitting process on data for each of the 16 health areas independently, 295

the fitting ended successfully in each case, with an ESS of at least 1,000 and good 296

convergence that satisfied our threshold, such that for all our health area fits, we had 297

R
(i)
between ≤ 1.00867. 298

Comparing the relevant model outputs back to the data, we have a good 299

correspondence for all health areas. We show example outputs for two of the sixteen 300

health areas of Mosango (Fig 4), chosen as a low burden health area (Kinzamba I, 15 301
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Fig 3. pMCMC fitting outputs.
(Left) Estimates of the negative log posterior probability (NLPP) given by different numbers of particles used by our particle
filter. Each box plot consists of 10,000 values consisting of five stochastic realisations from a posterior of 2,000 values. (Right)
Iterations of example pMCMC chains. The top plot shows the two independent chains and values for the NLPP for 50
particles. The middle plot shows the between chain convergence diagnostic as the number of iterations increases after the
burn in. The bottom plot shows the effective sample size (ESS) after the burn in, which is taken to be the minimum value of
the autocorrelation of the thinned sample for all the fitted parameters. Dashed lines show where thresholds for completion lie.
Background colours indicate phase of the pMCMC: red for the (relatively short) transient phase, blue for the adaptive phase,
and green for the sampling phase.
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cases reported in 2000–2020) and the highest burden health area (Kinzamba II, 428 302

cases reported in 2000–2020). Outputs for all additional health areas are shown in S2 303

Text. 304

Fitting the stochastic model took three to ten times times as long to meet our fitting 305

cessation criteria compared to fitting the deterministic model to the same data, with 306

both computations performed on the same cluster with the deterministic code 307

parallelised over two cores and the stochastic code over ten cores. The longest 308

computation times occurred when substantially more MCMC iterations were required to 309

meet the ESS threshold, and the shorter times were when no additional sampling was 310

required beyond the number needed for deterministic fitting (typically < 200, 000 311

iterations). 312

For both example health areas, the expected trend in reported cases is well captured 313

with almost all data points falling within the displayed 95% credible intervals. 314

Generally, higher historical screening coverage resulted in higher active case reporting, 315

while passive case numbers are more stable, but with a decline throughout the study 316

period, as the underlying expected number of new infections declines. The expected 317

number of new infections in the model also decreases with these trends. 318

The basic reproduction number R0 is a fitted parameter of the model, which defines 319

the expected number of new infections generated from a single infected in a susceptible 320

population. For gHAT, this number is very close to, but greater than one [8, 13,53]. 321

This can be explained by the fact that gHAT is a slow-moving endemic disease and so 322

infection only needs to cause one more (over several years) in order to maintain endemic 323

levels of transmission. Several factors will affect the local basic reproduction number for 324

each health area, such as the number of tsetse in the location or the geography of the 325

region defining the contact patterns and hence transmission rate of infection [3]. 326

The geographical distribution of R0 in Mosango health zone shows there is 327

substantial variation between health areas (Fig 5), hence justifying the use of a 328

finer-scale model. Kinzamba II health area (A3) has the largest median value with 329

R0 = 1.04 and the R0 posterior distribution is shifted to be be larger than most other 330

health areas. This corresponds with the largest number of cases being detected in this 331

health area. Health areas with the fewest cases, such as Kasay (A1), have the lowest R0 332

values. However, the median R0 values from the fitting show all health areas have 333

1 ≤ R0 ≤ 1.04. In all cases the posterior has greatly deviated from the exponential (but 334

relatively flat) prior distribution. 335

Values for the parameter u(1998), which is the proportion of stage 2 cases reported 336

from passive screening in 1998, are much more similar across the health zone. The 337

median values are in the range 0.29 ≤ u(1998) ≤ 0.37 and the posterior distributions all 338

substantially overlap. This parameter determines the level of under-reporting of 339

infection, since it defines the the proportion of late-stage cases detected in passive 340

screening, of those that are not detected by active screening. Due to similar access to 341

fixed health facilities across the health zone, it is logical that there would not be major 342

variation in this parameter across the health zone. For most health areas there is not 343

significant deviation from our informed prior distributions, indicating there may be 344

insufficient data to show difference from these distributions. However, there are 345

examples where model fitting highlights spatial differences. The reduced value of the 346

median of the posterior distribution in health area A9 (Kumbi Mbwana) indicates 347

passive screening is detecting fewer than expected cases here, given the relatively large 348

R0 value, whereas the larger posterior values in A10 (Mangungu) indicate passive 349

screening is performing well. These results contrast with the health area with most data, 350

A3 (Kinzamba II), where the median estimated value of u(1998) is only slightly higher 351
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Fig 4. Model fitting outputs in example health areas.
Data for the number of people actively screened and the active and passive cases reported are displayed as solid black lines for
two health areas: Kinzamba I and Kinzamba II (labelled as A2 and A3 respectively in this analysis). This is compared with
modelling outputs for active and passive cases and the number of new infections in each year given as coloured box plots. The
median value of the box plots is shown as a white line, with outer boxes and whiskers representing 50% and 95% credible
intervals respectively. No data line is shown for new infections, since this cannot be directly observed. Maps of the health
area locations with the Mosango health zone are shown in the top right of each column.
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Fig 5. Geographical distribution of model parameters in Mosango health
zone.
The geographical distribution of the median values for the basic reproduction number R0 and the proportion of stage 2 cases
reported from passive screening u(1998) is shown in maps of the health zone. Each health area is labelled A1–A16, with the full
posterior distribution given in histograms on the right. The median value is shown by a horizontal coloured line, aligned with
the color scale of the map. The prior distribution is shown on the histograms as a solid black line, although with a relatively
low probability density in the displayed region for the R0 histograms, and is the same for each health area. The names of
health areas A1–A16 are given in S1 Text. Shape files used to produce this map were provided by Nicole Hoff and Cyrus
Sinai under a CC-BY licence (current versions can be found at https://data.humdata.org/dataset/drc-health-data).
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than the prior. 352

Comparison of fitting approaches 353

In addition to fitting the stochastic model to the health area data, we performed that 354

same fitting methodology with data from the full health zone, and also fit the 355

deterministic model variant to the health zone data using the original methodology of 356

Crump et al. [8]. In order to compare between the three approaches, we aggregated 357

together the health area data by taking the sum of the output model realisations for 358

each health area, to create health zone distributions. 359

All three fitting approaches provide very similar outputs that capture the dynamics 360

seen in the data, providing confidence that all of these methods are appropriate for 361

model fitting (Fig 6). In particular, the health zone fitting shows there is very little 362

difference in median between outputs of the deterministic and stochastic model variants, 363

shown as blue and red boxes respectively in Fig 6. The stochastic model variant does 364

indicate more uncertainty in the number of new infections since the random nature of 365

the model demonstrates a wider range of outcomes can still match the data. There is 366

also more uncertainty in the stochastic model in later years where gHAT is closer to 367

elimination, shown by the longer time span in the probability of EoT increasing from 368

zero to one. Hence, this provides evidence that using the stochastic model is more 369

appropriate for low infection numbers, as the uncertainty is representative. This is 370

particularly true when considering the smaller population sizes of single health areas 371

(Fig 7). The larger uncertainty in the versions that use stochastic projections is 372

important for projecting cases in future years, where we would expect a further decline, 373

given current intervention strategies, and more realistically captures the uncertainty in 374

when EoT could occur. We also note that using the posterior of the deterministic fitting 375

in the stochastic model projections provides outputs more similar to the full stochastic 376

output, rather than the deterministic one (Fig 7, see S2 Text for aggregated health area 377

results). This indicates that there are greater fundamental differences between the 378

deterministic and stochastic model variants than can be accounted for in model fitting. 379

For modelling at different spatial scales, while the outputs are very similar for the 380

health zone and aggregated health areas, it is clear that there is additional benefit of 381

using a more fine-scaled approach (Fig 6). The aggregation of health area models 382

provides the best fit to the health zone data (green boxes in Fig 6). Some information is 383

lost on the location of active screenings and cases when the data is combined for the 384

purpose of model fitting to health zones, and so the more nuanced health area fitting 385

process is more likely to recover the infection dynamics. 386

Future projections and estimating EoT 387

We also compare differences in health area and health zone fitting, by considering 388

projections for future infections and specifically the probability of EoT. For each health 389

area, we calculate the annual probability of EoT (PEoT) as the proportion of samples 390

where EoT has been achieved, assuming continued interventions in future years. Since, 391

EoT is defined as when there are no future transmission events, this requires simulating 392

the model beyond just the first year there are no new infections to ensure people 393

infected for long periods do not cause onward transmission much later. 394

We see that in each of the health areas of Mosango there is a very high PEoT by 395

2030 (Fig 8). Each health area in isolation has a PEoT by 2030 greater than 0.94, with 396

the lowest in Kinzamba II (health area A3). However, the probability of achieving EoT 397

in all the health areas, and thus the entire health zone, will be substantially lower as it 398
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Fig 6. Model fitting outputs for Mosango health zone.
Data for the number of people actively screened and the active and passive cases reported is displayed as solid black lines.
The coloured box plots show annual model outputs for different fitting approaches, where blue boxes show the deterministic
health zone model, red shows the stochastic health zone model, and green shows the aggregated stochastic health area models.
The median value of the box plots is shown as a white line, with box plot whiskers representing 95% credible intervals. The
bottom panel shows the probability of EoT from 2000–2050 assuming a continuation of interventions.
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Fig 7. Model fitting outputs for Kinzamba II (A3) health area.
Data for the number of people actively screened and the active and passive cases reported is shown by solid black lines.
Coloured box plots show annual model outputs for different methods for both model fitting and model projections. The light
blue boxes show the deterministic model fitting with deterministic projections, the light purple shows the deterministic model
fitting with stochastic projections, and light red shows the stochastic model fitting with stochastic projections. The median
value of the box plots is shown as a white line, with box plot whiskers representing 95% credible intervals. The bottom panel
shows the probability of EoT from 2000–2050 assuming a continuation of interventions.
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is equal to the product of the PEoTs. Indeed the PEoT in all health areas by 2030 is 399

0.82 (solid black line in Fig 8), which is comparable to the same calculation used, but 400

with the health zone model that gives a probability of 0.86 (dotted grey line in Fig 8). 401

We also display the expected year of EoT, calculated as the median year from all 402

model realisations (Figure 8). For each health area, the expected year of EoT are all in 403

the past. This is consistent with the fact that when considering a smaller area there is a 404

higher chance of elimination in that area only. Furthermore, while EoT may have 405

occurred in health areas (i.e. the last transmission events may have already occurred), 406

there could still be undetected infections, that are yet to be reported as cases due to the 407

long infection time scales of gHAT [4]. And indeed, while local EoT may have already 408

occurred in selected health areas, we still predict a later median year of 2024 for EoT 409

for all health areas of Mosango, which aligns with the results for modelling at the health 410

zone level. We also re-iterate that this is to have a 50% probability of EoT, and to have 411

higher confidence that EoT has truly occurred, it would be recommended for vertical 412

interventions to remain in place for several more years, as would also be recommended 413

based on current WHO guidelines for active screening. 414

Discussion 415

By implementing a pMCMC fitting algorithm, we have been able to fit a stochastic 416

infection model to historical gHAT screening and case data. This process is more 417

complex and computationally intensive than fitting a deterministic model with a more 418

traditional MCMC approach. With the particle filter we are able to account for 419

stochastic variations in the infection dynamics with improved realism. Moreover, 420

pMCMC allows us to fit the multiple parameters of our stochastic model in a reasonable 421

time frame, rather than relying on the deterministic analogue. 422

Previous modelling work has used the parameters determined from fitting a 423

deterministic model to make projections of future infection dynamics in a stochastic 424

model variant [4, 15,45]. We have shown here that this gives a good approximation to 425

using using the parameters obtained from stochastic fitting. In particular, we show that 426

in fitting different models to health zone data for Mosango, both deterministic and 427

stochastic models produce very similar results (Fig 6). Although we note that results 428

can diverge more in the future projections in the approach to elimination (see S2 Text). 429

In fitting stochastic models suited to where there are low number of infections, we 430

have also expanded the range of previously modelled locations, to include the small 431

scale approach of health area modelling. This new modelling at a health area spatial 432

scale provides highly specific results that captures the full heterogeneity and focal 433

nature of gHAT infections. We show that by using information in the data on the 434

health area location for screening activities and cases, we can obtain a better fit to the 435

data (Fig 6), since screening activities are directly mapped to the specific health areas 436

they occurred in. 437

The main benefit of health area modelling, however, will be in future projections. A 438

more fine-scaled approach will bring added realism into modelling by more accurately 439

reflecting proposed scenarios and providing more flexibility in the scenarios that can be 440

modelled. For example, increasing active screening coverage in specific region of a 441

health zone, or only implementing vector control in the relevant high-tsetse density 442

areas can now be modelled, as opposed to blanket changes across the whole health zone 443

(see S2 Text). 444

We choose to model all health areas independently since we know that gHAT 445
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Fig 8. Elimination of transmission (EoT) in Mosango.
Probabilities of EoT for health area by a given year is shown by coloured lines in the top panel, with aggregated health area
results shown as a black line and separate health zone model results shown by a dotted grey line. The below panel shows
maps of Mosango with median expected years of EoT given by colour. The three maps show three approaches for displaying
EoT: for each individual health area, for the health zone using the health area models, and for the health zone using the
health zone model. Shape files used to produce this map were provided by Nicole Hoff and Cyrus Sinai under a CC-BY licence
(current versions can be found at https://data.humdata.org/dataset/drc-health-data).
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transmission is very localised and in many instances there will only be very limited 446

movement of both people and tsetse between neighbouring health areas [5]. However, 447

this is not uniformly the case, and there could be importations of infection between 448

neighbouring health areas, which are not considered. Future work would consider 449

correlations between infections in health areas that share a border along a river, a 450

typical habitat for tsetse [6], since here the same tsetse population would be infecting 451

humans from both health areas. 452

In developing our model, we also choose not to consider the presence of possible 453

animal reservoirs or transmission from asymptomatic humans. While T.b. gambiense 454

can be found in animals [54], evidence is inconclusive to this contribution to the 455

transmission cycle with humans [55]. Previous modelling has been shown that there is 456

some evidence that animals may contribute to transmission in some areas, however it is 457

extremely unlikely that animals could sustain transmission without humans [16,20]. 458

Modelling has not yet been able to evaluate the evidence for self-curing asymptomatic 459

human infections on transmission and elimination through matching to data, however 460

an asymptomatic model sensitivity analysis has been performed [56]. The modelling and 461

fitting methods presented here could be modified readily to include the animal 462

transmission or asymptomatic model variations, however this would further increase 463

time to run the simulation as an additional two or five model parameters would need to 464

be estimated through the pMCMC for the two models respectively. 465

Future work should use the principles demonstrated here and expand to provide 466

fitted models for all health areas in the DRC that have sufficient data to be confident in 467

the results. One drawback of this approach will be the lack of data across all endemic 468

regions, particularly as we approach elimination. In Mosango the minimum number of 469

data points we have was 7 (in health area A1, Kasay), however it is highly likely that 470

some health areas may have fewer data points than this and could render fitting 471

unreliable in those locations. In this instance, options could overcome this issue include 472

amalgamation of neighbouring health areas of similar (believed) prevalence to create 473

sub-health-zone but larger-than-health-area sized regions for an analysis — this 474

approach is demonstrated for the two health areas with fewest data points in Mosango 475

in S1 Text. For some locations it may not be recommendable to attempt 476

sub-health-zone level fitting due to data limitations. 477

Our model uses data points on active and passive cases and the infection state of 478

those cases detected (stage 1 or stage 2), where available, to determine the likelihood 479

and thus inform the model parameters. Since 2020, the DRC have expanded first-line 480

treatments for gHAT patients to include fexinidazole [10,57], it is no longer necessary to 481

determine infection stage, since the treatment is suitable for both stages and the process 482

of determining infection stage, visualising parasites in cerebrospinal fluid, requires a 483

lumbar puncture and is unpleasant for the patients. While this is a great benefit for 484

patients, and results in a reduced incentive to avoid treatment, there is a loss of 485

information in people’s infection status. For the purpose of model fitting, more 486

information is always beneficial to better match reality [17] and may lead to 487

deterioration in our ability to fit models unless additional information is recorded such 488

as infection symptoms, as to give a proxy for this lost stage information. 489

Additionally, we note that fitting models for all health areas is more computationally 490

intensive than fitting to health zones. This is in part due to the fact that there are 491

many more health areas of the DRC and so there are simply more locations; 492

approximately 1200 analysable health areas based on the 2000–2020 HAT Atlas data, 493

assuming a minimum of 10 data points required for fitting, currently available shape 494

files to define health area boundaries, and good estimates of health area population 495
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sizes. Also, the stochastic fitting methodology is more intensive than deterministic 496

fitting if we choose to fit with this methodology. In the pMCMC, we have to simulate 497

multiple trajectories to be able to evaluate the likelihood of a parameter set rather than 498

the single deterministic trajectory. The model fitting procedure presented here is fully 499

automated, and parallelised to optimise performance on a computer cluster, so while 500

compute times may be longer (three to ten times as long, using five times the number of 501

cores), there is little additional work for the user. However, we have demonstrated in 502

this manuscript that, for gHAT, fitting using the deterministic model variant provides a 503

close approximation (Fig 7), which would negate the necessity for this additional 504

computation time. We note that this will no be true for disease modelling generally; the 505

long time scales of gHAT infection, slow disease progression and small critical 506

community size are likely to make this approximation valid [23]. 507

This study has focused on the computational methodology to allow gHAT 508

transmission model fitting to health area data in the DRC and does not seek here to 509

make any specific policy recommendations. Our projections simulated from 2020 510

onwards assume a status quo for interventions and we do not seek to assess the possible 511

impact on changes to interventions. Our study does lay out a appropriate framework 512

with which to evaluate future health-area-level strategy in further analyses, ensuring 513

models are suitably calibrated to local data and that they can provide very granular 514

recommendations, extending the health zone projection and health economic evaluations 515

produced previously [30,58]. 516

Conclusion 517

In demonstrating that a mechanistic, stochastic infection model can be fitted to 518

different health area data in the DRC, we have added a new framework that can 519

provide highly detailed calibration and projections of future gHAT infections for a range 520

of intervention scenarios. The similarity in fitting stochastic models to data and 521

simulating stochastic models, but using deterministic variants for fitting, validates the 522

approach of previous studies and indicates that stochastic fitting may not always be 523

necessary. The importance of stochastic models however remains clear, in determining 524

time to elimination of transmission and our uncertainty in this. 525

The greater nuance afforded by smaller-scale health area modelling will further refine 526

the ability to accurately forecast future infections for intervention scenarios, allowing 527

policy makers to better understand the cost and impact of proposed interventions. 528

Supplementary information 529

S1 Text. Additional methods. An expansion of the mathematical modelling 530

methodology. 531

S2 Text. Additional model outputs. Further comparisons of modelling 532

approaches and full posteriors for health area fitting. 533
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