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ABSTRACT

Objectives: To propose a new method to account for time-dependent data missingness caused by the
increasing digitization of health records in the analysis of large-scale clinical data.

Materials and Methods: Following a data-driven approach we modeled the progressive
adoption of a common electronic health record in 38 hospitals. To this end, we analyzed data
collected between 2013 and 2022 and made available in the clinical data warehouse of the Greater
Paris University Hospitals. Depending on the category of data, we worked either at the hospital,
department or unit level. We evaluated the performance of this model with a retrospective cohort
study. We measured the temporal variations of some quality and epidemiological indicators by
successively applying two methods, either a naive analysis or a novel complete-source-only analysis
that accounts for digitization-induced missingness.

Results: Unrealistic temporal variations of quality and epidemiological indicators were ob-
served when a naive analysis was performed, but this effect was either greatly reduced or disappeared
when the complete-source-only method was applied.

Discussion: We demonstrated that a data-driven approach can be used to account for miss-
ingness induced by the progressive digitization of health records. This work focused on
hospitalization, emergency department and intensive care units records, along with diagnostic codes,
discharge prescriptions and consultation reports. Other data categories may require specific modeling
of their associated data sources.

Conclusions: Electronic health records are constantly evolving and new methods should be
developed to debias studies that use these unstable data sources.

Keywords Digitization, Electronic health record, Missing data, Bias, Quality indicators

1 Background and Significance

The ongoing digitization of healthcare is generating more and more routine data. These data contain rich and diverse
information about patients, opening up new prospects for research, innovation, quality monitoring and public health
surveillance.[1–4] However, their analysis also raises new methodological challenges that differ in many ways from
those associated with data collected specifically for research purposes.[5–8] In particular, the rapid pace of digitization
leads to frequent variations in data availability, format, and coverage, thereby hampering the conduct of multicenter
longitudinal studies, as records collected in different contexts are not always comparable.[9–22] To address this
pervasive problem, some studies have proposed tools to facilitate the detection of drifts or sudden changes in statistical
distributions,[9, 23–26] while others have explored methods to homogenize datasets before their analysis, such as
imputing missing data or dropping incomplete cases.[27–29] These seminal studies have paved the way for the analysis
of routine data, but many issues remain to be addressed.

First, temporal variations in statistical distributions can be induced by technological changes, but also by
other mechanisms. Disentangling technology-induced drifts from variations caused, for example, by reorganizations of
care or changes in patients populations seems to be a prerequisite for answering many questions of interest.

Second, the technological changes that need to be accounted for are increasingly complex. For example,
clinical data warehouses (CDWs) include more and more healthcare sites, and within those sites, each department may
have its own characteristics. In addition, the data being analyzed are increasingly diverse, including diagnostic codes,
clinical reports, laboratory tests, imaging, medications, etc., thus multiplying the number of dynamics to consider.
Controlling these complex drifts of data distributions by mere visual inspection would therefore mobilize enormous
resources, and there is a clear need for some degree of automation.[29]

2 Objective

In this study, we developed and evaluated a new method to automatically handle time-dependent missingness induced
by the progressive digitization of hospital health records. We analyzed data collected in the Greater Paris University
Hospitals (Assistance Publique-Hôpitaux de Paris, APHP). Among the many mechanisms that may induce missing data,
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we focused on the effect of the progressive adoption of functionalities used to collect administrative records, diagnostic
codes, discharge prescriptions, and consultation reports. Using a data-driven approach, we modeled the pace of their
adoption at different levels (hospitals, departments, units). We then evaluated the performance of this detailed model
by measuring some quality and epidemiological indicators. We evaluated their stability over time using two different
methods, either a naive approach that did not take into account the progressive digitization of health records, or a novel
approach, complete-source-only analysis, that took advantage of the previous modeling of this mechanism. This work
aimed to answer the following questions:

• Can we automatically model the progressive digitization of health records using a data-only approach?

• Can we use such a model to adjust for the time-dependent missingness induced by this mechanism when
conducting archetypal observational studies?

3 Materials and Methods

The study was reviewed and approved by the institutional review board of the AP-HP (IRB00011591, decision CSE21-
33). French regulations do not require written patient consent for this type of research. In accordance with the European
General Data Protection Regulation, patients were informed and those who objected to the secondary use of their data
for research were excluded from the study. This report follows the REporting of studies Conducted using Observational
Routinely-collected health Data (RECORD) reporting guideline in the Section F of the Supplementary Materials.[30]

3.1 Data source

AP-HP includes 38 hospitals spread across the Paris region (22 000 beds, 1.5 million hospitalizations per year). A
common electronic health record (EHR) software, ORBIS Dedalus Healthcare, has been progressively adopted since
2012. Each of the six data categories considered in this study is collected using a different EHR functionality (i.e.,
administrative records related to hospitalizations, emergency departments -ED- or intensive care units -ICU-, diagnostic
codes, discharge prescriptions, and consultation reports). The CDW follows the Observational Medical Outcomes
Partnership-Common Data Model version 5.4 standard.[31] Data are integrated into the CDW on a daily basis, and this
study was conducted on July 31st, 2023.

3.2 Modeling of the EHR adoption

The adoption of AP-HP’s common EHR is done by functionality, and the collection of each category of data depends on
the use of a particular functionality. The functionalities dedicated to hospitalization records are adopted at the hospital
level, while other functionalities are typically adopted at the department or unit level (e.g., ED or ICU visits, diagnostic
codes, or clinical reports). No curated knowledge base currently provides information on the effective use of each
EHR functionality, so we took a data-driven approach to generate it. Extracting the dynamics of EHR adoption from
data is not straightforward because of the interplay of different mechanisms: i) the technical introduction of EHR
functionalities causes a sudden increase in data availability, but ii) their gradual adoption by clinicians smooths this
effect, which is also sometimes blurred by iii) the copying of data collected in an earlier software into the new EHR.
Such mechanisms influence the shape of data availability curves, which rarely follow an ideal step shape when plotted
over time. However, compared to variations induced by other mechanisms such as changes in clinical practice, the
introduction and adoption of new EHR functionalities usually induces abrupt variations in data availability that are
more localized in time and within healthcare sites. Therefore, to automatically detect EHR adoption we computed c(t),
an estimate of completeness per EHR functionality and per healthcare site (i.e., hospital, department, or unit) for month
t, and we fitted step functions to these abruptly changing time series (see Section A.1 of the Supplementary Materials
for details).

We adopted two definitions of c(t) depending on the EHR functionality: either the proportion of hospitaliza-
tion records with at least one data point (to study the EHR functionalities used to collect diagnostic codes and discharge
prescriptions) or, when such a denominator was not available, the monthly number of data points divided by its highest
value measured during the study period (to study hospitalization records, emergency records, intra-hospitalization visits
to ICUs and consultation reports). This modeling provided, for each healthcare site and each EHR functionality, t0, the
estimated date of adoption, and c0, the stabilized average value of completeness after that date. In the case of visits to
ICUs, we also evaluated an alternative modeling that consisted of fitting rectangular functions to the completeness
estimates instead of step functions, thus additionally providing t1, an extinction date corresponding to the end of data
collection in a unit. This alternative modeling was motivated by the observation that data collected in a single ICU
sometimes disappeared after a certain date due to hospital reorganization (see Figure S1 in the Supplement). Finally, to
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assess the goodness of fit of our models, we computed an error term defined by the mean squared error between c0 and
c(t) after t0 (see Figure S2 in the Supplement).

3.3 Quality and epidemiological indicators

EHR data can be used to study retrospectively or to monitor prospectively quality or epidemiological indicators.
However, time-dependent missingness can lead to biased estimates of these indicators. In this article, quality in-
dicators were defined as the monthly proportion of hospitalizations for which some outcomes were observed, and
epidemiological indicators were defined as the weekly number of hospitalizations related to some seasonal epidemics.
Table 1 lists the indicators we considered and the categories of data we used to select each cohort and calculate the out-
comes. Bronchiolotis-related and flu-related hospitalizations were selected using J21 and J09, J10, J11 International
Classification of Diseases 10th Revision (ICD-10) codes, respectively.

Indicator Definition
EHR functionality
used for cohort selec-
tion (adoption level)

EHR functionalities
used for outcome mea-
surement (adoption
level)

30-day rehospitaliza-
tion

Proportion of hospitalizations with a
rehospitalization in the 30 days after
discharge.[32, 33]

Hospitalization record
(hospital-level)

Hospitalization record
(hospital-level)

30-day ED consulta-
tion*

Proportion of hospitalizations with at
least one consultation in ED in the 30
days after discharge.

Hospitalization record
(hospital-level)

Emergency record
(hospital-level)

30-day consultation
Proportion of hospitalizations with at
least one outpatient visit occurring in
the 30 days after discharge.[34]

Hospitalization record
(hospital-level)

Consultation reports
(department-level)

Discharge prescrip-
tion

Proportion of hospitalizations with at
least one discharge prescription deliv-
ered to the patient.

Hospitalization record
(hospital-level)

Discharge prescrip-
tion (department-
level)

30-day ICU readmis-
sion*

Proportion of hospitalizations with at
least one readmission in an ICU in the
30 days after discharge.[35]

Hospitalization record
(hospital-level)

Intra-hospitalization
visit to ICU* (unit-
level)

Bronchiolitis-related
hospitalizations

Weekly number of hospitalizations with
a bronchiolitis diagnosis.[36]

Hospitalization record
(hospital-level)

Diagnostic code
(department-level)

Flu-related hospital-
izations

Weekly number of hospitalizations with
a flu diagnosis

Hospitalization record
(hospital-level)

Diagnostic code
(department-level)

*ICU and ED stand for intensive care units and emergency departments, respectively.

Table 1: Quality indicators and epidemiological indicators.

3.4 Statistical analysis

Continuous variables were reported as medians with interquartile ranges (IQRs), and qualitative variables were reported
as numbers and proportions (%). Quality and epidemiological indicators were calculated for the period from tinit, a
variable start date, to May 2022, a fixed end date. We chose this end date because of some technical issues affecting the
integration of clinical reports into the CDW after this date. The temporal variations of quality indicators were modeled
by linear functions:

QI(t) = α0 + α1t+ ϵ(t) (1)

with QI the quality indicator, t the month, α0 and α1 parameters characterizing respectively the origin and the linear
trend, and ϵ(t) a random error. We estimated model coefficients and 95% confidence intervals (CIs) using ordinary
least squares regression. We discussed the linear trend α1 because it characterizes the temporal variation and could be
affected by time-dependent data missingness. The temporal variation of the epidemiological indicators was discussed
qualitatively, with particular emphasis on the post-COVID-19 period. Indeed, seasonal epidemics of bronchiolitis and flu
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were affected by COVID-19 and epidemiological indicators were used to adjust the response of healthcare organizations.

We performed these analyses using either a naive approach (N), which did not take into account the progres-
sive digitalization of healthcare, or a novel approach, which we termed complete-source-only (CSO). To calculate the
outcomes, we either used all available data (N) or restricted the analysis to healthcare sites (hospitals, departments, or
units) where the EHR functionalities used to collect the required data were considered fully adopted before the start of
the study period (CSO method, t0 ≤ tinit for each healthcare site and each data category used to calculate the outcome,
as mentioned in Table 1). For the sake of simplicity, quality indicators were computed using the same denominator for
both methods, considering cohorts of hospitalizations that occurred in the 28 of the 38 hospitals where hospitalization
records were collected since January 2013 (i.e., with t0 for hospitalization records prior to that date).

We expected to observe indicators with increasing values when using the naive method, as the progressive adoption of
EHR functionalities induces a temporally improving detection of outcomes. On the contrary, the CSO method aimed at
stabilizing the data source used to detect outcomes to avoid this spurious temporal drift.

We conducted two sensitivity analyses to examine the quality indicators. First, we varied the value of tinit in [January
2013; January 2016; January 2019]. Second, we performed a subgroup analysis per hospital . Statistical analysis was
performed using the Python package statmodels v0.13.5.[37] The modeling of EHR adoption was realized using the
Python library EDS-TeVa v0.2.4 that has been made freely available.[38]

4 Results

4.1 Modeling of the EHR adoption

The APHP CDW contains data related to 14.5 million patients. The total amount of data available in the CDW increased
over time, following dynamics that varied by data category and reflected the progressive digitization of healthcare (see
Figure 1). While administrative records related to hospitalizations showed a stable collection for a decade, the other data
categories showed a monotonic increase in collection, reflecting the progressive adoption of new EHR functionalities.

Figure 1: Temporal evolution of the amount of data collected within the electronic health record (EHR), per functionality.
To obtain a common scale, for each functionality the monthly number of data points was divided by the highest value
measured during the study period.
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Figure 2: Completeness estimates (plain curves) of arbitrarily selected hospitals and departments considering from
top to bottom hospitalization records, emergency department records, consultation reports, discharge prescriptions,
and diagnostic codes. Department 1 and Department 2 are located within Hospital 1 and Hospital 2, respectively.
Completeness estimate is defined either as the monthly number of data points divided by its maximum value during
the study period (hospitalization and emergency department records, and consultation reports), or by the proportion of
hospitalization records with at least one data point (diagnostic codes and prescription report). The modeling of the
completeness estimate is shown as dashed curves.
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As shown in Figure2, we modeled the adoption of these functionalities in each healthcare site by fitting step functions
with a level of description appropriate to the adoption mechanism (i.e., hospital, department, or unit). The digitization
of hospitalization, ED, and ICU records was abrupt, whereas the adoption of EHR functionalities to capture prescription
reports or consultation reports was more gradual. While the data availability curves per hospital and per department
were mostly step-shaped, when we looked at the smaller unit level, here looking at ICU records, we observed adoptions
that were rectangular (see Figure S1).

4.2 Quality indicators

Figure 3 shows the temporal variations of the quality indicators using either the naive or the complete-source-only
method, and choosing three different starting dates tinit. Both methods resulted in similar curves for 30-day rehospital-
ization, but discrepancies appeared for other indicators. For 30-day ED consultation, 30-day consultation, and discharge
prescription, a monotonic increase was observed with the naive method, which disappeared when the CSO method
was applied. However, the application of the CSO method reduced the absolute value of the indicators, since the data
used to determine the outcomes were filtered to obtain temporal stability of the data sources. The amplitude of this
reduction was smaller for more recent starting dates. ICU readmission also showed a monotonic increase when using
the naive method, but the application of the Step function CSO method resulted in a monotonically decreasing indicator
(Figure S3). The use of a rectangular function CSO, which also takes into account the disappearance of units, resulted
in a more stable indicator, as expected.

*ED stands for emergency departments.

Figure 3: Combined effect of varying the initial observation date (tinit) and the analysis (naive in blue and complete-
source-only in orange) on the longitudinal study of quality indicators. The linear modeling of temporal variations
is indicated by dashed lines. Insets indicate the number of healthcare sites selected in the complete-source-only
analysis, along with the proportion they represent of healthcare sites with at least one data point collected by the EHR
functionality during the study: January 2013 - May 2022.
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*ED stands for emergency departments.

Figure 4: Left: slopes α1 of the linear model (Eq 1) estimated either on all the hospitals (diamond) or considering
separately each one of the hospitals (IQR is the box, min and max are the lower and upper whiskers respectively),
adopting either the naive (blue) or the complete-source-only (orange) method. Three different initial dates were
considered. Right: values of the indicators averaged over the study period.
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As shown in the sensitivity analysis (Figure 4), the stabilizing effect of the CSO method was still observed when the
28 hospitals used for the cohort selection were considered separately. This sensitivity analysis also showed a strong
reduction in the amplitude of the indicators induced by the CSO method, consistent with the observations in Figure 3.
For 30-day ICU readmission, the sensitivity analysis on the 28 hospitals showed a positive slope for the naive analysis
for older baseline data, a negative slope for the Step function CSO method, and no slope for the rectangular-function
CSO method (Figure S4). Similar to the other quality indicators, this sensitivity analysis showed that both CSO
methods reduced the amplitude of the indicator assessment. All fitted parameters are available in Tables S1 to S6 in the
Supplementary Materials.

4.3 Epidemiological indicators

Figure 5 shows the weekly number of bronchiolitis- and flu-related hospitalizations estimated using either all diagnostic
codes collected in the EHR (N), or only those collected in departments where the EHR functionality was fully adopted
since the beginning of observation (CSO). While the strong impact of the COVID-19 context on these epidemics was
observed in both cases, it seemed difficult to interpret the curves when using the naive method, as the COVID-19 effect
could not be disentangled from the effect of the progressive EHR adoption. In fact, as can be seen by considering
the years before the COVID-19 outbreak, this mechanism caused a spurious increase in the amplitude of the seasonal
epidemics.

Figure 5: Epidemiological indicators computed adopting either the naive (blue) or the complete-source-only (orange)
approach and varying the initial observation date (tinit). The start of the COVID-19 epidemic is indicated by a gray
line (March 2020). Insets indicate the number of healthcare sites selected in the complete-source-only analysis, along
with the proportion they represent of healthcare sites with at least one data point collected by the EHR functionality
during the study: January 2013 - May 2022.

5 Discussion

We showed that a multiscale modeling of digitization could be used to mitigate spurious temporal variations in the
study of quality and epidemiological indicators. To this end, we discarded all healthcare sites that had not fully adopted
the required EHR functionalities since the beginning of the measurement period, and referred to this approach as the
complete-source-only method.

The time-dependent variation in completeness that we observed before any correction is consistent with pre-
vious work.[11] Our adjustment method is close to the well-known complete-case method, with the main difference
being that we adopted a per-healthcare site approach instead of a per-case approach in order to leverage our understand-
ing of the missingness mechanism induced by progressive digitization.[27] By taking advantage of a specific pattern
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that emerged when adopting this description, i.e., the abrupt increase or decrease in data availability, we were able to
specifically adjust for the time-dependent bias induced by the progressive adoption of EHR functionalities, thus comple-
menting other works that focused on the overall drifts or shifts of data distributions.[9, 10, 25] As discussed by Finlayson
et al., many mechanisms can cause temporal variations, and we emphasize that this work addresses only one of them.[17]

The CSO method is not a panacea. On the one hand, its impact depends strongly on the time span exam-
ined. While too long a period leads to a massive discarding of data, too short a period can severely limit the scientific
relevance of a longitudinal study. Therefore, an optimal trade-off should be found. Furthermore, this method is only
useful when temporal drifts of statistical distributions are detrimental to the objective of the study. For example, it is not
appropriate if the goal is instead to maximize the number of events/outcomes/patients detected while withstanding
time-dependent biases. On the other hand, omitting data sources is not always harmless, as it may cause a selection bias
by altering the population under study, e.g., omitting hospital units with patients with different severity. Consequently,
the interpretation of results obtained using this strategy should remain cautious.

In addition to the specific advantages and limitations of the CSO method, this study illustrates some of the
organizational challenges associated with real-world data platforms. Due to privacy concerns, investigators only have
access to minimized cohorts of patients extracted from the full database which contains millions of records. However,
the application of the analysis workflow presented in this study requires background information such as completeness
estimated on the overall database. Such indicators should therefore be precomputed and provided to investigators in
addition to patient-level data, requiring close coordination between platform operators and research teams. To address
this challenge, we have structured the computer code of this project as an open source library that can be extended by
investigators while being applied to the entire database by platform operators (see eFigure5 for the proposed workflow).

Our study has several limitations. First, we used a single, highly simplified definition of completeness. In
some cases, it could be refined to match a more intuitive definition or a more elaborate definition of plausibility.[28]
Second, we used a crude modeling of EHR adoption that relied on the detection of abrupt changes in data availability.
The actual dynamics of a hospital’s information system exhibit diverse behaviors that may induce more complex
patterns in statistical distributions.[39] Third, we considered highly simplified quality and epidemiological indicators.
As such, the indicators we calculated are not directly applicable to epidemiological surveillance or quality monitoring.
In particular, it seems important to further characterize the patients included in the analysis in order to be able to
compare facilities with similar case mix.[32] Fourth, our analysis focused on some administrative and clinical data
categories that do not cover the wide variety of data found in a CDW. It should therefore be expanded to support a
larger range of studies conducted on real-world data.

6 Conclusion

EHR studies require working with data collected by a constantly evolving system. The current pace of technological
innovation is unlikely to slow anytime soon, and this complexity will continue to increase. By focusing on a specific
mechanism, the adoption of new EHR functionalities, we have shown that various metadata can be used to meaningfully
analyze EHR data at scale. Moreover, automating the computation of such metadata was critical to avoid an explosion
in data management burden. Our work is a step in the direction of developing tools and methods to address these
challenges. Much work remains to be done, particularly to fully integrate information about technological change into
the statistical design of studies.
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Supplementary Materials
A Details on the modeling of EHR adoption

We used two alternative models of the adoption of elcetronic health record (EHR) functionalities: either a Step function
model, which takes into account only the adoption of a functionality (most analyses, see Figure 2 in the main article),
or a rectangular function model, which also takes into account the end of use of a functionality in a healthcare unit
(complementary analyses related to the collection of intensive care unit -ICU- records, see Figure S1). This second
modeling seems to be particularly appropriate when working at the unit level, since units are constantly appearing and
disappearing due to hospital reorganizations.

Figure S1: Completeness estimates of intensive care unit records (plain curve) considering two arbitrarily selected
units (colors) along with their modeling (dashed lines) using either step functions (top) or rectangular functions (down).
Completeness estimate is defined as the monthly number of data points divided by its maximum value during the study
period.

A.1 Step function model

We used the following error definition to measure the distance between completeness estimates, c(t), and their modelings
by step functions (c0 and t0 parameters):

error =

tmax∑
t=t0

(c0 − c(t))
2

tmax − t0

with tmax the end of the study period, i.e., May 2022. We underline that this definition leads to high values of error for
healthcare sites that disappeared before the end of the study’s period.

A.2 Rectangular function model

We modified the fitted parameters and the definition of error when using rectangular functions to model EHR usage. In
that case, in addition to c0 and t0 parameters the fit moreover provides t1, the end of functionality usage, and the error
function is replaced by:

error =

t1∑
t=t0

(c0 − c(t))
2

t1 − t0
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B Goodness-of-fit of the Step function modeling

In the analyses presented in this article, we have not yet assessed the goodness-of-fit of our modeling. Figure S2 shows
the dispersion of completeness estimates around the fitted Step function curve for each of the six data categories. Al-
though the dispersion is not negligible, the pattern of an abrupt increase in data availability appears robust. Nevertheless,
these curves show that the average value of the completeness estimate decreases after EHR adoption in the case of ICU
records, consistent with the need to use rectangular functions as discussed earlier. For the sake of simplicity, we chose
to remove healthcare sites with a low mean value of completeness after the estimated adoption date (c0 ≤ 0.15), which
represent about 2% of the total number of administrative records, because their normalized completeness estimates
would have spiked and made the figure unreadable.
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Figure S2: Completeness estimates centered on their adoption date t0 and normalized by their stabilized value c0,
from top to bottom for each one of the six EHR functionalities and shown as their average (plain curve) and standard
deviation (shaded area). The reference Step function is shown as dashed curves.
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C The special case of ICU-readmission

Since the model of ICU records is different from the other EHR functionalities, the analysis of 30-day ICU readmissions
was treated separately. Figure S3 shows the temporal variation of the quality indicator using either the naive or the CSO
method and choosing three different starting dates tinit. The naive method resulted in a monotonous increase, while the
Step function CSO method resulted in a monotonous decrease of the indicator. However, the rectangular function CSO,
which also accounts for unit disappearance, discarded many small units and resulted in a stabilized indicator.

*ICU stands for intensive care units.

Figure S3: Combined effect of varying the initial observation date (tinit) and the analysis (naive in blue and complete-
source-only in orange) on the study of 30-day readmission in intensive care units. Two modelings of the adoption of the
EHR functionality used to collect intensive care units records were compared, using either a step function (up) or a
rectangular function (down). The linear modeling of temporal variations is indicated by dashed lines. Insets indicate the
number of healthcare sites selected in the complete-source-only analysis, along with the proportion they represent of
healthcare sites with at least one data point collected by the EHR functionality during the study: January 2013 - May
2022.

Figure S4 provides a sensitivity analysis of the slope α1 and the mean of the indicator for the 28 hospitals used for
the cohort selection. Similar to the observations of Figure S3, it shows a positive slope for the naive analysis for older
initial data, a negative slope for the step function CSO method, and no slope for the rectangular function CSO method.
This sensitivity analysis also indicates that both CSO methods reduce the amplitude of the indicator.
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*ICU stands for intensive care units.

Figure S4: Left: slopes α1 of the linear model (Eq 1) estimated either on all the hospitals (diamond) or considering
separately each one of the hospitals (IQR is the box, min and max are the lower and upper whiskers respectively),
adopting either the naive (blue) or the complete-source-only (orange) method. Right: values of the indicators averaged
over the study period. Two modelings of the adoption of intensive care units records were compared, using either a step
function (up) or a rectangular function (down). Three different initial dates were considered.
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D Additional results

Tables S1 to S6 shows the detailed results of the modeling of quality and epidemiological indicators.

30-day rehospitalization

Start date Statistical analysis
No. of hospitals

considered in
the analysis (%)

α0 [95%CI]* α1 [95%CI]*

Naive analysis 38 (100 %) 1.72·10-1

[1.69·10-1, 1.75·10-1]
1.62·10-4

[1.16·10-4, 2.09·10-4]
2013-01-01 CSO analysis 28 (73.7 %) 1.71·10-1

[1.68·10-1, 1.74·10-1]
2.21·10-5

[-1.72·10-5, 6.13·10-5]

Naive analysis 38 (100 %) 1.87·10-1

[1.84·10-1, 1.90·10-1]
-3.55·10-5

[-1.13·10-4, 4.19·10-5]
2016-01-01 CSO analysis 37 (97.4 %) 1.87·10-1

[1.84·10-1, 1.90·10-1]
-5.77·10-5

[-1.34·10-4, 1.87·10-5]

Naive analysis 38 (100 %) 1.91·10-1

[1.86·10-1, 1.96·10-1]
-3.13·10-4

[-5.17·10-4, -1.10·10-4]
2019-01-01 CSO analysis 38 (100.0 %) 1.91·10-1

[1.86·10-1, 1.96·10-1]
-3.15·10-4

[-5.17·10-4, -1.13·10-4]
*The confidence interval is based on Student’s t-distribution.

Table S1: Parameters resulting from the modeling of the temporal variations of the 30-day rehospitalization (origin
α0 and slope α1, see Eq 1 in the main article) along with the number and proportion of considered hospitals for each
method (naive and complete-source-only) and each start date.

30-day emergency department consultation

Start date Statistical analysis
No. of hospitals

considered in
the analysis (%)

α0 [95%CI]* α1 [95%CI]*

Naive analysis 19 (100 %) 1.86·10-2

[1.54·10-2, 2.17·10-2]
5.17·10-4

[4.69·10-4, 5.66·10-4]
2013-01-01 CSO analysis 2 (10.5 %) 7.27·10-3

[7.00·10-3, 7.55·10-3]
1.03·10-5

[6.08·10-6, 1.46·10-5]

Naive analysis 19 (100 %) 5.00·10-2

[4.73·10-2, 5.26·10-2]
2.30·10-4

[1.68·10-4, 2.92·10-4]
2016-01-01 CSO analysis 12 (63.2 %) 4.08·10-2

[3.94·10-2, 4.22·10-2]
3.93·10-5

[6.88·10-6, 7.18·10-5]

Naive analysis 19 (100 %) 5.96·10-2

[5.66·10-2, 6.25·10-2]
1.17·10-4

[-1.53·10-5, 2.49·10-4]
2019-01-01 CSO analysis 18 (94.7 %) 5.91·10-2

[5.60·10-2, 6.22·10-2]
8.62·10-5

[-5.20·10-5, 2.24·10-4]
*The confidence interval is based on Student’s t-distribution.

Table S2: Parameters resulting from the modeling of the temporal variations of the 30-day emergency departments
consultation (origin α0 and slope α1, see Eq 1 in the main article) along with the number and proportion of considered
hospitals for each method (naive and complete-source-only) and each start date.

6

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 21, 2023. ; https://doi.org/10.1101/2023.08.17.23294220doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.17.23294220
http://creativecommons.org/licenses/by/4.0/


30-day consultation

Start date Statistical analysis
No. of departments

considered in
the analysis (%)

α0 [95%CI]* α1 [95%CI]*

Naive analysis 1452 (100 %) -7.72·10-3

[-1.03·10-2, -5.13·10-3]
6.72·10-4

[6.32·10-4, 7.12·10-4]
2013-01-01 CSO analysis 29 (2.0 %) 6.12·10-4

[5.17·10-4, 7.06·10-4]
-6.80·10-6

[-8.27·10-6, -5.33·10-6]

Naive analysis 1452 (100 %) 8.27·10-3

[5.40·10-3, 1.11·10-2]
8.58·10-4

[7.92·10-4, 9.24·10-4]
2016-01-01 CSO analysis 167 (11.5 %) 3.86·10-3

[3.55·10-3, 4.16·10-3]
1.38·10-5

[6.79·10-6, 2.07·10-5]

Naive analysis 1452 (100 %) 4.70·10-2

[4.35·10-2, 5.05·10-2]
4.89·10-4

[3.33·10-4, 6.45·10-4]
2019-01-01 CSO analysis 809 (55.7 %) 4.21·10-2

[3.94·10-2, 4.47·10-2]
-6.78·10-5

[-1.84·10-4, 4.87·10-5]
*The confidence interval is based on Student’s t-distribution.

Table S3: Parameters resulting from the modeling of the temporal variations of the 30-day consultation (origin α0 and
slope α1, see Eq 1 in the main article) along with the number and proportion of considered departments for each method
(naive and complete-source-only) and each start date.

Discharge prescription

Start date Statistical analysis
No. of departments

considered in
the analysis (%)

α0 [95%CI]* α1 [95%CI]*

Naive analysis 825 (100 %) -1.36·10-1

[-1.64·10-1, -1.07·10-1]
6.28·10-3

[5.83·10-3, 6.73·10-3]
2013-01-01 CSO analysis 23 (2.8 %) 7.97·10-5

[6.53·10-5, 9.41·10-5]
-1.00·10-6

[-1.22·10-6, -7.75·10-7]

Naive analysis 825 (100 %) -2.03·10-2

[-4.52·10-2, 4.65·10-3]
8.81·10-3

[8.23·10-3, 9.38·10-3]
2016-01-01 CSO analysis 39 (4.7 %) 3.19·10-5

[1.57·10-5, 4.82·10-5]
2.15·10-7

[-1.59·10-7, 5.89·10-7]

Naive analysis 825 (100 %) 3.62·10-1

[3.53·10-1, 3.70·10-1]
5.66·10-3

[5.28·10-3, 6.04·10-3]
2019-01-01 CSO analysis 485 (58.7 %) 3.37·10-1

[3.31·10-1, 3.44·10-1]
3.67·10-4

[9.47·10-5, 6.40·10-4]
*The confidence interval is based on Student’s t-distribution.

Table S4: Parameters resulting from the modeling of the temporal variations of the discharge prescription (origin α0

and slope α1, see Eq 1 in the main article) along with the number and proportion of considered departments for each
method (naive and complete-source-only) and each start date.
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30-day intensive care unit readmission

Start date Statistical analysis
No. of units

considered in
the analysis (%)

α0 [95%CI]* α1 [95%CI]*

Naive analysis 1048 (100 %) 1.71·10-2

[1.60·10-2, 1.81·10-2]
1.31·10-4

[1.15·10-4, 1.47·10-4]

Step function CSO 329 (31.4 %) 1.25·10-2

[1.22·10-2, 1.28·10-2]
-4.94·10-5

[-5.41·10-5, -4.48·10-5]
2013-01-01

Rectangular function CSO 45 (4.2 %) 6.21·10-3

[6.00·10-3, 6.43·10-3]
1.09·10-6

[-2.25·10-6, 4.43·10-6]

Naive analysis 1048 (100 %) 2.57·10-2

[2.51·10-2, 2.63·10-2]
4.16·10-5

[2.77·10-5, 5.56·10-5]

Step function CSO 697 (66.5 %) 2.61·10-2

[2.55·10-2, 2.68·10-2]
-1.05·10-4

[-1.20·10-4, -9.04·10-5]
2016-01-01

Rectangular function CSO 128 (12.0 %) 1.75·10-2

[1.70·10-2, 1.80·10-2]
-2.32·10-6

[-1.33·10-5, 8.62·10-6]

Naive analysis 1048 (100 %) 2.80·10-2

[2.71·10-2, 2.88·10-2]
3.32·10-6

[-3.64·10-5, 4.30·10-5]

Step function CSO 793 (75.7 %) 2.76·10-2

[2.67·10-2, 2.85·10-2]
-1.84·10-4

[-2.25·10-4, -1.44·10-4]
2019-01-01

Rectangular function CSO 172 (16.2 %) 2.06·10-2

[1.98·10-2, 2.14·10-2]
-4.64·10-6

[-3.94·10-5, 3.02·10-5]
*The confidence interval is based on Student’s t-distribution.

Table S5: Parameters resulting from the modeling of the temporal variations of the 30-day intensive care units
readmission (origin α0 and slope α1, see Eq 1 in the main article) along with the number and proportion of considered
units for each method (naive, step function complete-source-only and rectangular function complete-source-only) and
each start date.

Bronchiolitis and Flu-related hospitalizations

Start date Statistical analysis
No. of departments

considered in
the analysis (%)

Naive analysis 562 (100 %)
2013-01-01

CSO analysis 25 (4.4 %)
Naive analysis 562 (100 %)

2016-01-01
CSO analysis 210 (37.4 %)
Naive analysis 562 (100 %)

2019-01-01
CSO analysis 450 (80.1 %)

Table S6: Number of departments considered for the computation of the epidemiological indicators for each method
and each start date.
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E Delivery of indicators in the context of a clinical data warehouse

The indicators used in this study’s analyses were computed on the entire database of the clinical data warehouse, to
which access is never granted to investigators that are not members of the IT department in charge of the platform
operation (i.e., data custodian) in order to protect patient privacy (data minimization principle). In fact, investigators
analyze data extracts related to specific cohorts that are provided by data custodians in isolated and secure environments
(see Figure S5). The provision of pre-computed indicators describing EHR adoption, in addition to patient-level data,
therefore appears necessary for investigators to use the complete-source-only method.

Figure S5: Data flows in the context of a clinical data warehouse. Blue: from left to right, patient-level data collected in
clinical softwares are integrated and standardized by data custodians and data relative to cohorts of patients are extracted
to be analyzed by investigators in per-project isolated environments. Red: in order to adjust for the progressive EHR
adoption, dedicated indicators are computed either by investigators on their cohorts or by data custodians on the total
dataset. Data custodians’ and investigators’ data accesses are represented by dashed red boxes.
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RECORD 1.1: The type of data
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title or abstract. When possible,
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should be included.

RECORD 1.2: If applicable,
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timeframe within which the
study took place should be
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between databases was
conducted for the study, this
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sources and methods of
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Case-control study - Give the
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ascertainment and control
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the choice of cases and
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the sources and methods of
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Case-control study - For
matched studies, give matching
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Methods

No
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RECORD 6.1: The methods of
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is not possible, an explanation
should be provided.
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studies of the codes or
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and Sup-
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confounders, and effect
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outcomes, confounders, and
effect modifiers should be
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give sources of data and details
of methods of assessment
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methods if there is more than
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potential sources of bias

Methods
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chosen, and why

Methods

Statistical
methods
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to control for confounding
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(c) Explain how missing data
were addressed

(d) Cohort study - If applicable,
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