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Abstract 45 
 46 
Background: Farm work entails a heterogeneous mixture of exposures that vary considerably 47 
across farms and farmers. Farm work is associated with various health outcomes, both adverse 48 
and beneficial. One mechanism by which farming exposures can impact health is through the 49 
microbiome, including the indoor built environment microbiome. It is unknown how individual 50 
occupational exposures shape the microbial composition in workers’ homes. 51 
 52 
Objectives: We investigated associations between farm work activities, including specific tasks 53 
and pesticide use, and the indoor microbiome in the homes of 468 male farmers.  54 
 55 
Methods: Participants were licensed pesticide applicators, mostly farmers, enrolled in the 56 
Agricultural Lung Health Study from 2008-2011. Vacuumed dust from participants’ bedrooms 57 
underwent whole-genome shotgun sequencing for indoor microbiome assessment. Using 58 
questionnaire data, we evaluated 6 farm work tasks (processing of either hay, silage, animal feed, 59 
fertilizer, or soy/grains, and cleaning grain bins) and 19 pesticide ingredients currently used in 60 
the past year, plus 7 persistent banned pesticide ingredients ever used. 61 
 62 
Results: All 6 work tasks were associated with increased within-sample microbial diversity, with 63 
a positive dose-response for the sum of tasks (p=0.001). All tasks were associated with altered 64 
overall microbial compositions (weighted UniFrac p=0.001) and with higher abundance of 65 
specific microbes, including soil-based microbes such as Haloterrigena. Among the 19 66 
pesticides, only current use of glyphosate and past use of lindane were associated with increased 67 
within-sample diversity (p=0.02-0.04). Ten currently used pesticides and all 7 banned pesticides 68 
were associated with altered microbial composition (p=0.001-0.04). Six pesticides were 69 
associated with differential abundance of certain microbes. 70 
 71 
Discussion: Specific farm activities and exposures can impact the dust microbiome inside 72 
homes. Our work suggests that occupational farm exposures could impact the health of workers 73 
and their families through modifying the indoor environment, specifically the microbial 74 
composition of house dust, offering possible future intervention targets.  75 
  76 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted August 21, 2023. ; https://doi.org/10.1101/2023.08.17.23293194doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.17.23293194


Introduction 77 

Farm work is a demanding occupation. Farmers have long been recognized as being at high risk 78 

of injury, respiratory diseases (e.g., farmers' lung), dermal conditions (e.g., irritant dermatitis), 79 

and certain cancers.(1-4) Farm work is not consistent across workers as it requires individuals to 80 

carry out a variety of tasks. Farmers, hired farmworkers, and farm family members may operate 81 

agricultural machinery, handle crops and livestock, build and repair equipment, and apply 82 

agrochemicals such as pesticides and fertilizers, which may put them at risk of some diseases. If 83 

farm type were the sole explanation for the morbidity pattern among farmers, we might expect 84 

disease prevalence and incidence to be quite similar among all farmers engaging in the same type 85 

of farming, but this does not appear to be the case.(5-7) This suggests that farming entails a 86 

heterogeneous mixture of individualized tasks and exposures, and points to the need for careful 87 

evaluation of the farm environment. 88 

 89 

Multiple theories have been offered to understand how farming exposures exert biological effects 90 

that lead to respiratory and other disease conditions. One of the most supported by the literature 91 

is through the microbiome, the collection of microorganisms within a single site, and its link to 92 

immune function.(8) Several studies have shown altered host microbiome – gut, nasal, oral, and 93 

skin – related to farm work.(9-11) Yet, it is not only the microbes in our bodies that cause 94 

biological effects. Humans contribute and are exposed to environmental microbes, especially 95 

indoors where they spend the most time.(12) The home built environment microbiome can 96 

influence health outcomes by altering the human host microbiome, as well as through direct 97 

effects on biologic processes (13), and is also associated with allergic, atopic, and respiratory 98 

conditions.(14-17)  99 

 100 

The indoor microbiota can be influenced by environmental factors, such as farming. The authors 101 

and others have previously shown altered home dust microbiota with living on a farm and by 102 

farm type.(18-20) However, it is unknown how different occupational tasks and exposures within 103 

farm work shape the microbes in workers’ homes, which is important for their health and the 104 

health of cohabitants. There is some evidence that the host microbiome is impacted by pesticides 105 

and other chemicals used by farmers and other occupational groups.(21-23) Yet, none of these 106 

studies have looked at the effect on built environment microbes. Therefore, we evaluated 107 
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whether farm work activities and pesticide use were associated with differences in the indoor 108 

dust microbiome in the homes of 468 male participants of the Agricultural Lung Health Study.  109 

 110 

Methods 111 

Study Design & Population 112 

The Agricultural Lung Health Study (ALHS) is a case-control study of asthma nested within the 113 

Agricultural Health Study (AHS), a prospective cohort of licensed private pesticide applicators, 114 

mostly farmers, and their spouses from Iowa (IA) and North Carolina (NC), USA.(24) (ALHS 115 

data release P3REL201209.00) Further details on the study design and inclusion criteria can be 116 

found elsewhere.(18, 19) Of the full ALHS cohort (N=3301), 2871 participants completed a 117 

home visit between 2009 to 2013 with vacuumed bedroom dust collection.(25) The Institutional 118 

Review Board at the National Institute of Environmental Health Sciences approved the study. 119 

Written informed consent was obtained from all participants. 120 

Home Dust Microbiome Examination 121 

A trained field technician vacuumed the sleeping surface and a two square yard area (1.68-m2) 122 

on the floor next to the bed for 4 minutes with a DUSTREAM Collector (Indoor Biotechnologies 123 

Inc.). A subset of 879 dust samples were sent for microbiome analysis, with sample selection 124 

described elsewhere.(18, 19, 25) DNA extraction followed standard protocols following 125 

manufactured kits and is described elsewhere.(18, 19) Extracted DNA samples were sent to the 126 

University of California San Diego IGM Genomics Center for library preparation, multiplexing, 127 

and whole genome shotgun sequencing using standard techniques.(26) Details on the full library 128 

preparation, sequencing protocols, and quality control steps are described in Wang et. al.(19) 129 

After quality control, 781 samples remained with 6,528 taxa for downstream analysis. A 130 

taxonomy chart was created that assigned all taxa to a taxonomic classification across the seven 131 

phylogenetic levels - kingdom, phylum, class, order, family, genus, and species. We filtered out 132 

samples with a minimum library size of less than 1,003 base pairs.  133 

Exposure Assessment  134 
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A technician recorded home cleanliness on a standardized five-point scale (27), which was 135 

aggregated to a binary variable comprising poor/lower (score of 1-2) or good/higher (score of 3–136 

5) home condition. We categorized season of dust collection based on the date of the home visit: 137 

March 21–June 20 for spring, June 21–September 20 for summer, September 21–December 20 138 

for fall, and December 21–March 20 for winter. 139 

Information on smoking status and indoor furry pets (dogs/cats) was reported on questionnaires.  140 

Participants reported whether they had performed the following 6 work tasks within the past 12 141 

months; handled hay, silage (fermented grass and other plants), or soybeans/grains, ground feed 142 

for animals, fertilized fields, and/or cleaned grain bins. Participants also provided the names of 143 

pesticide products used within the past 12 months (current use). Reported names were linked to 144 

pesticide active ingredient names using the Environmental Protection Agency (EPA) Pesticide 145 

Classification Code.(28) We restricted analysis to the 19 pesticide active ingredients currently 146 

used by at least 10 participants – 13 herbicides and 6 insecticides, which includes aggregated 147 

composite pesticide classes pyrethroid and organophosphate. In previous AHS surveys, 148 

participants provided names of agrochemicals used ever in their lifetimes. In the current work, 149 

we additionally analyzed past use of 7 banned organochlorine insecticides due to their long half-150 

lives, bio- accumulation and/or persistence in the environment. For 11 of the 19 currently used 151 

active pesticide ingredients and all 7 banned past use pesticide ingredients, we calculated lifetime 152 

days of use, estimated from the average days of use per year and the total years the participant 153 

reported using the pesticide active ingredient (information was not available to calculate lifetime 154 

days of use for 8 currently used pesticides).  155 

Statistical Analysis  156 

As we focused on direct exposure to farm work tasks and pesticides, we restricted analyses to 157 

dust samples from the 468 male pesticide applicators because 98% of pesticide applicators were 158 

male and the frequency of work tasks and pesticide use reported among female spouses (N=313) 159 

was lower (29). The primary exposure variables were the 6 self-reported work tasks performed 160 

within the past year, treated as binary yes/no variables. Additionally, the total number of reported 161 

tasks (0-6) for each participant was assessed as both a discrete categorical variable and, for dose-162 

response effect, an ordinal variable. For the 19 currently used pesticide active ingredients, we 163 

compared participants who reported use within the past 12 months to participants who reported 164 
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never using the specific pesticides in their lifetimes (current vs. never). Thus, individuals who 165 

reported only past use of the active ingredient (more than 12 months prior) were not included in 166 

the analysis for that active ingredient. For the 7 banned pesticides, any past use of the active 167 

pesticide ingredient ever in the participants’ lifetimes was compared to never use (ever vs. 168 

never). Lifetime days of use was available for 18 pesticide ingredients and was dichotomized at 169 

the median among users, generating three categories for analysis – never use, days of use below 170 

median, and days of use above median. We assessed correlation between self-reported work 171 

tasks and pesticide use via tetrachoric correlation (30) and Spearman’s correlation (31) for 172 

categorical work task total.   173 

 174 

We performed all statistical analyses and visualization in R v4.1.2 (32), and estimated diversity 175 

indices using phyloseq R package.(33) All models included age (continuous), smoking status 176 

(never, former, or current), state of residence (IA or NC), asthma status (case or noncase, see 177 

House et. al. for case definition (34)), indoor pets (yes or not present), home condition (high or 178 

low), and home visit season (winter, spring, summer, or fall), as these were determined to be 179 

confounders a priori. To evaluate within-sample alpha diversity and its association with work 180 

tasks and pesticide use exposures, we used the Shannon alpha diversity index as the outcome in 181 

generalized linear models for each exposure. We ran additional adjusted models to evaluate the 182 

independent effect of work tasks and pesticide exposures. To explore beta diversity, we 183 

calculated unweighted and weighted UniFrac distance metrics. We conducted permutational 184 

multivariate analysis of variance (PERMANOVA) models to test the differences in microbial 185 

community structure across exposure groups using the adonis method in the R vegan package 186 

v2.5.7 (35, 36), which reports the R2 value to quantify the percentage of variance explained and 187 

the p-value for the F-statistic for compositional heterogeneity by exposure groups. We set p<0.05 188 

as the statistical significance threshold for all alpha and beta diversity analyses. To test 189 

differentially abundant taxa by exposure groups, we used analysis of composition of 190 

microbiomes with bias correction (ANCOM-BC, v1.0.5) models (37) based on a linear 191 

regression framework on the log transformed taxa counts. To account for the influence of 192 

sequencing depth on taxa counts, we performed normalization by estimating the sampling 193 

fraction using the ANCOM-BC built-in algorithm. We tested taxa at the OTU level and 194 

summarized the results by genus rank. The coefficients presented are the log fold-difference of 195 
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the mean normalization abundance difference by ANCOM-BC across exposure levels. 196 

Significantly differentially taxa were determined by Benjamini-Hochberg false discovery rate 197 

(FDR) controlled p-value of <0.05.    198 

 199 

Results 200 

Study Population Characteristics and Exposures  201 

Table 1 summarizes the demographic characteristics and environmental exposures of the study 202 

population. Seventy percent of the study population was from Iowa. Participants had a median 203 

age of 61 years (IQR 15). Most participants (58%) were never smokers and 33% were asthma 204 

cases. Thirty eight percent had indoor pets and 78% had good/higher home condition. Home 205 

visits were roughly evenly split across the four seasons (from 17% to 30%).  206 

  207 

Table 2 displays the participants’ reported work tasks. The most commonly reported task was 208 

handled soy and grains (76%), followed by handled hay (59%), cleaned grain bins (49%), 209 

fertilized fields (39%), ground animal feed (27%), and handled silage (17%). The total number 210 

of tasks an individual reported, shown in Table 3, was evenly spread out from 0 to 6, ranging 211 

from 10% (6 tasks) to 18% (0 and 2 tasks). 212 

 213 

Table 4 shows all 26 pesticide active ingredients with the 19 currently used pesticides listed first. 214 

The herbicide glyphosate was the most commonly reported current pesticide (238 users, 86% 215 

total), followed by 2,4-D (148, 70%) and atrazine (85, 52%). Among the 7 banned past use 216 

pesticides examined, DDT was the most frequently reported (28%), followed by chlordane 217 

(27%) and lindane (26%). Supplemental Table ST1 shows the quantitative lifetime days of use 218 

for both current and past use pesticide active ingredients. 219 

 220 

Moderate to Strong Correlations Among Works Tasks and Pesticide Use 221 

 222 

The correlation between work tasks and pesticide use is presented in Supplemental Figure SF1. 223 

Correlation to pesticide use was based on current use of 19 active ingredients and ever use of 7 224 

banned active ingredients. Work tasks were highly positively correlated with each other 225 
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(tetrachoric rho statistic range 0.47–0.87 with only one correlation<0.57), as were past use of 226 

banned pesticides (0.30–0.81). Correlations among currently used pesticides ranged from -0.46 227 

to 0.96. A few currently used pesticides (glyphosate, atrazine, 2,4-D, pyrethroid and 228 

organophosphate) were moderately correlated with the various work tasks (highest 0.82), with 229 

lower correlations for the other pesticides. As expected, banned pesticides had lower correlation 230 

with work tasks (-0.39–0.25). 231 

 232 

Work Tasks Strongly Associate with the Home Dust Microbiome 233 

Figure 1 shows associations between the work tasks and Shannon alpha diversity index. All 6 234 

work tasks were positively associated with within-sample alpha diversity levels (coefficients 235 

range from 0.15-0.23, all low 95% confidence intervals >0.045). Due to the strong correlations 236 

among the work tasks, it was not possible to determine the independent effect of each one 237 

adjusted for all other tasks. Therefore, we focused on evaluating their combined effects with the 238 

summed work task variable. A strong positive dose-response pattern was observed for the 239 

associations of total number of work tasks and alpha diversity (range of coefficients 0.17 [2 240 

tasks] to 0.45 [6 tasks] compared to no tasks, all low 95% confidence intervals >0.03, p-value for 241 

trend <0.001).  242 

 243 

For beta-diversity (weighted UniFrac, Table 5) we found statistically significant differences in 244 

overall microbial composition for all work tasks (all p-values<0.001), with a moderate percent 245 

variance explained (R2 range 1.2%-3%). The sum of the work tasks accounted for higher 246 

explained variance (3%), followed by fertilizing fields (2%). Results for unweighted UniFrac 247 

distance were similar to the weighted metric for beta diversity (Supplemental Table ST2).  248 

 249 

In analysis of individual microbial taxa, we found 21 taxa across 10 unique genera to be 250 

significantly differentially abundant by any work tasks (Figure 2). Haloterrigena was the most 251 

frequent differentially genera, with all six work tasks having higher abundance compared to not 252 

reporting any tasks. While most taxa (18) had increased abundance in relation to work tasks, 3 253 

taxa within 3 genera had decreased abundance – Thalassiosira and Fimbriimonas for ground 254 

animal feed and Oscillatoria for handled hay. For the sum of the job tasks, only participants 255 

reporting 5 or 6 job tasks had significantly increased taxa abundance (Sphaerobacter and 256 
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Haloterrigena) compared to participants’ reporting zero tasks (no differential taxa for 4 or fewer 257 

tasks).  258 

 259 

Varied Associations between Pesticides and the Home Dust Microbiome 260 

Pesticide use was associated with home dust microbial diversity and composition, but to a lesser 261 

degree than work tasks. Of the 26 pesticide active ingredients, 19 had positive coefficients and 5 262 

had negative coefficients for Shannon alpha diversity levels. Only current use of glyphosate and 263 

past use of lindane were statistically significant with confidence intervals above the null 264 

(glyphosate coefficient 0.18, 95% CI 0.02-0.36; lindane coefficient 0.11, 95% CI 0.03-0.21) 265 

(Figure 3). For beta compositional diversity (Table 6), 10 of the 19 currently used pesticides 266 

[acetochlor, atrazine, carbaryl, cyfluthrin, dicamba, glyphosate, permethrin, picloram, pyrethroid, 267 

2,4-D] and all 7 banned pesticides were associated with altered weighted UniFrac beta diversity 268 

(range p-value 0.001-0.026). The explained variance for each pesticide (R2 range 0.4%-1.0%) 269 

was lower than that for any work task (R2 range 1.2%-3%). No pesticides were associated with 270 

unweighted UniFrac beta diversity (Supplemental Table ST3).  271 

 272 

In analyses of individual microbial taxa, there were 14 unique taxa belonging to 11 genera within 273 

11 unique phyla that were differentially abundant in relation to at least one pesticide active 274 

ingredient (Figure 4). Current users of atrazine had decreased abundance of Oscillatoria, and 275 

current users of pyrethroid had decreased abundance of Phocaeicola, Malassezia, Candidatus, 276 

Akkemansia, and an unlabeled genus in the Podoviridae family. Increased abundances were seen 277 

for current 2,4-D and Candidatus, and past use of dieldrin, heptachlor, and lindane with 278 

Treponema, Toxoplasma, Nitrospira, Haloterrigena, Phocaeicola, Malassezia, and Fusarium. 279 

Overall, the ANCOM-BC coefficients representing log-fold changes in abundance for significant 280 

taxa were relatively small (range -0.75 to 0.67) compared to other microbiome studies (37).  281 

 282 

Associations of quantitative lifetime days of pesticide use with home dust microbiome are 283 

presented in Supplemental Tables ST4-ST6. For alpha diversity (ST4), carbaryl use days above 284 

the median was associated with increased within-sample diversity compared to never users 285 

(coefficient 0.13, 95% CI 0.003-0.25). Below the median days of use for dicamba (coefficient 286 

0.13, 95% CI 0.003-0.26 ) and glyphosate (coefficient 0.22, 95% CI 0.07-0.37) were associated 287 
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with increased within-sample diversity compared to never users. For both pesticides, days above 288 

the median had similar trends, but were not significant. We did not observe associations between 289 

alpha diversity and lifetime days of use for any of the banned pesticides. For beta diversity using 290 

weighted UniFrac beta diversity metric (ST5), lifetime days of use for 6 of the 19 current 291 

pesticides [acetochlor, atrazine, carbaryl, dicamba, glyphosate, metolachlor] and two of the 292 

banned pesticides [DDT, toxaphene] were associated with altered microbial composition. No 293 

lifetime days of pesticides use were associated with unweighted UniFrac metric. Twenty-nine 294 

unique taxa, within 16 unique genera and 16 unique phyla, were significantly differentially 295 

abundant across 9 pesticides by lifetime days of use (ST6).  296 

 297 

Independent Effect of Work Tasks and Pesticides on Home Microbial Diversity 298 

To determine whether associations between work tasks and home dust microbiome alpha 299 

diversity were independent of pesticide use, we ran additional models adjusted for 1) the use of 300 

any pesticide in the past year and 2) for the two pesticide ingredients significantly associated 301 

with alpha diversity (glyphosate and lindane) (Supplemental Table ST7).  Compared to models 302 

adjusting for demographics and home factors, adjustment for the use of any pesticide in past year 303 

had little effect on associations with the work tasks. Adjustment for use of lindane, a banned 304 

pesticide, also resulted in little effect size changes. However, because current use of glyphosate 305 

was highly prevalent at 86.2% and thus fairly strongly correlated with current work tasks, 306 

adjustment for glyphosate had a larger impact on the association. Associations were attenuated, 307 

with only 3 remaining statistically significant – fertilizing fields (coefficient 0.168, 95% CI 0.03-308 

0.307), handling soybeans and grains (coefficient 0.281, 95% CI 0.048-0.515), and work tasks 309 

total (ordinal, coefficient 0.057, 95% CI 0.015-0.099). In analyses of categorical total number of 310 

work tasks, after adjusting for current glyphosate use, 5 or 6 total tasks remained significantly 311 

associated with alpha diversity (coefficients 0.349 and 0.384, 95% CI 0.006-0.691 and 0.023-312 

0.746, respectively), which also had low correlation to glyphosate (tetrachoric correlation for 5 313 

and 6 work tasks 0.16 and 0.14, respectively).  314 

 315 

To determine whether associations between pesticide use and home dust microbiome alpha 316 

diversity were independent of work tasks, we ran additional models adjusted for work task total 317 

and specifically for fertilizing fields. Adjustment covariates were informed by independent 318 
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associations between work tasks and alpha diversity after adjusting for pesticide use, and were 319 

less strongly correlated to pesticides (-0.23–0.6 and -0.28–0.61, respectively) (Supplemental 320 

Table ST8). Handling soybeans and grains was more strongly correlated with pesticide use (-321 

0.31–0.82), hence we did not control for this task. No pesticide active ingredients were 322 

significantly associated with alpha diversity in models adjusting for either work tasks total or for 323 

fertilizing fields.  324 

 325 

Given the complexity of the beta PERMANOVA and differential taxa abundance ANCOM-BC 326 

models, we did not conduct further analyzes to determine the independent effects of work tasks 327 

and pesticide use for these microbiome metrics. 328 

 329 

 330 

Discussion 331 

This study is the first to assess the associations between agricultural work exposures and the 332 

worker’s home dust microbiome using metagenomic shotgun sequencing. We aimed to 333 

characterize farm occupational factors that influence the indoor built environment microbiome, a 334 

critical component to occupational and community health. We found that different work tasks 335 

were associated with altered diversity and composition of the microbes in participants’ homes. 336 

Further, we observed a dose-response relationship between microbial diversity and the number 337 

of farm work tasks performed. The use of certain pesticides, both current use and past use of 338 

banned pesticides, were associated with some differences in home dust microbiome, although 339 

associations were more modest than for the farm tasks. Overall, our findings suggest that the 340 

work that farmers perform in these facilities can impact the built environment of their homes, 341 

which could have implications for their own health and the health of any cohabitants in the 342 

home.  343 

 344 

This research benefitted from the incorporation of in-depth details of participants’ reported farm 345 

work tasks. Previous studies evaluating potential hazards associated with farm work, particularly 346 

those integrating microbiome data, generally only assessed current job status and type of farm or 347 

commodity produced.(1, 38) However, our research showed robust associations between indoor 348 
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microbiome and the tasks an individual performed on the farms, with a dose-response increase in 349 

microbial diversity linked to total number of tasks performed. All work tasks, including the sum 350 

of tasks preformed, were associated with altered beta composition metrics, with relatively high 351 

R2 explained variance compared to other studies.(19) All tasks were also associated with 352 

increased abundance of at least one microbe, the most frequent of which was Haloterrigena, a 353 

gram-negative soil-based bacteria.(39) Previous research has shown exposure to soil-based 354 

microbes in adult mouse models were associated with changes to the host microbiome, improved 355 

immune tolerance, and minimized allergic inflammation.(40) 356 

 357 

Few studies have evaluated specific work tasks in relation to health outcomes or biomarkers of 358 

health. Within the Agricultural Health Study, specific farm work tasks were associated with 359 

systemic lupus (41), rheumatoid arthritis (42, 43), COPD (44), “famers’ lung” (specifically silage 360 

exposure) (45), wheeze (hay exposure) (46), stroke mortality (inversely associated with hay, 361 

grains, and silage) (47), non-Hodgkin lymphoid cancer (soybeans, grains, and hay) (48), and 362 

various injuries (49). Findings from other farming cohorts have found differences in lung cancer 363 

risk based on crop seedling and harvesting levels.(1) Additional studies have shown differences 364 

in adverse contaminant levels based on farm tasks, including mold (50) and black carbon.(51, 365 

52) Research conducted in non-farming occupations have found differences in the microbiome of 366 

the host based on individual occupational exposures in salon workers (23), space station workers 367 

(53), firefighters (54), and janitorial staff.(55) However, to date, no studies have assessed farm 368 

work tasks associated with the microbiome of the workers at any host body site, or with the 369 

environmental microbiome. The findings from this work supports the need for careful evaluation 370 

of specific, detailed agricultural exposures to future occupational health studies.  371 

 372 

In addition to specific work tasks, we explored the influence of participants’ use of pesticides on 373 

their home microbiome. The associations between pesticide use and dust microbiota were more 374 

varied than that for work tasks, in that not all pesticides were associated with changes to the 375 

home microbiome and some pesticides had opposite impacts on diversity levels and abundance 376 

of microbes, which might be expected due to the different mechanisms of action. We observed 377 

overall smaller R2 explained variance for beta diversity than work tasks, indicating pesticide use 378 

did not account for as much heterogeneity seen in the sample’s microbial composition as 379 
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compared to work tasks, as well as lower log-fold changes for abundance of specific microbes 380 

compared to work tasks and previous literature using ANCOM-BC.(19) Pesticides that arose as 381 

related to the dust microbiome were current use of glyphosate, atrazine, 2,4-D, and pyrethroid, as 382 

well as past use of lindane. Atrazine and glyphosate, known bacterial degraders, have previously 383 

been associated with decreased diversity and decreased abundance of specific microbes in the 384 

soil microbiome.(56, 57) 385 

 386 

Studies evaluating the effect of pesticides on the human microbiome have shown similarly 387 

heterogenous results to those in our study. Vindenes et al. found minimal associations between 388 

urinary pesticide metabolite concentration and oral microbiome metrics in a population-based 389 

study in Norway.(58) Conversely, Stanaway et al. found that the organophosphate insecticide 390 

azinphos-methyl was associated with changes in the oral microbiome in farmers in Yakima 391 

Valley, Washington USA, specifically decreased microbial diversity and reduced abundance of 392 

the Streptococcus genus.(21) While azinphos-methyl was not one of the active ingredients 393 

evaluated in our project, we did not see associations with reported use of organophosphates. 394 

Importantly, these research studies were evaluating urinary or serum concentrations of pesticide 395 

active ingredients, which generally reflect short-term exposure, whereas our study relied on self-396 

report of pesticide use, an indicator of longer term exposure. Also, both prior studies focused on 397 

the oral microbiome and used 16S rRNA sequencing to characterize the microbiome, while we 398 

assessed the indoor environmental microbiota characterized by shotgun whole-genome 399 

sequencing, which can result in different exposure-outcome associations.(19) As ours is the first 400 

work to examine environmental microbiota in the homes of workers using advanced sequencing 401 

methodologies, it importantly adds to the growing literature of the effect of occupational 402 

chemical exposure on environmental microbiota, with inferences to health.  403 

 404 

Our novel research benefits from a large sample population with detailed survey data on 405 

occupational exposures and characterization of the environmental microbiota using advanced 406 

techniques. However, this work does have limitations. First, work tasks were based on 407 

participant’s self-report, evaluated dichotomously (yes/no ), as opposed to direct observation by 408 

a research technician. Yet, previous work in this population has shown these to correlate well 409 

with direct on-farm observations.(59) Similarly, pesticide use was assessed only by self-report. 410 
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Nevertheless, biologic measurements of nonpersistent pesticides reflect only very recent use. 411 

Additionally, previous work in the target population has found strong accuracy of self-reported 412 

use of specific pesticides.(28, 60) Our analysis did not account for the rapidly growing area of 413 

pesticide and chemical mixtures, however current statistical mixtures methods do not 414 

accommodate binary exposure data.(61) Future development of mixtures methods and 415 

convenient code suitable for metagenomic analysis would be of interest. Although 416 

misclassification of farm exposure in this study is possible, we would expect this to be non-417 

differential with respect to metagenomics and thus generally be a source of bias toward the null. 418 

In addition, our work task variables were highly correlated, making it challenging to assess their 419 

independent effect on the home dust microbiome. However, we were able to determine the 420 

magnitude of farming work by evaluating the total number of reported tasks, which can serve as 421 

a proxy for intensity of farming. A final limitation is that our dust sample was collected only 422 

from one location (participant bedroom) at one time and may not reflect the spatial and temporal 423 

heterogeneity in the environmental microbes found inside homes.(62) Again, this should be 424 

expected to reduce our ability to detect association and be a source of bias toward the null.  425 

 426 
This work demonstrates that occupational exposures impact the microbiome inside farm 427 

workers’ homes as shown by altered diversity levels and abundance of specific microbes. Farm 428 

work tasks had more profound effects on home dust microbiota than use of pesticides. This is the 429 

first study to evaluate individual occupational exposures within farm work that associate with the 430 

indoor built environment microbiome. Our findings shed light on potential mechanistic pathways 431 

whereby occupational exposures can influence health through the role of the indoor microbiome 432 

and offers possible future intervention targets. 433 
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Occupational Farm Work Activities Influence Workers’ Indoor Home Microbiome  
Dalton et. al. 
 

Tables & Figures 

 

Table 1: Study Population Characteristics (N=468) 

Characteristic N (%) or Median (IQR) * 
State 
Iowa 329 (70.3) 
North Carolina 139 (29.7) 
Age 
in years 61 (15) 
Smoking Status 
Never 272 (58.1) 
Former 170 (36.3) 
Current 26 (5.6) 
Asthma Status 
Case 155 (33.1) 
Control 313 (66.9) 
Pet Ownership 
Yes 180 (38.5) 
No 288 (61.5) 
Home Condition 
Good 367 (78.6) 
Poor 100 (21.4) 
Season 
Spring 135 (28.8) 
Summer 142 (30.3) 
Fall 80 (17.1) 
Winter 111 (23.7) 
* Age is presented as the median years with the interquartile range in parentheses. Other 
characteristics are presented as the total number and the percent in parentheses. 
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Table 2: Prevalence of Work Tasks in Study Population 

Work Tasks N (%) reporting Yes 
Fertilized Fields 181 (38.7) 
Cleaned Grain Bins 228 (48.7) 
Handled Hay 279 (59.6) 
Handled Silage 81 (17.3) 
Ground Animal Feed 127 (27.1) 
Handled Soybeans & Grains 357 (76.3) 

 

Table 3: Distribution of Work Task Totals 

Total Work Tasks*  N (%)  
0 Tasks 86 (18.4) 
1 Tasks 63 (13.5) 
2 Tasks 84 (17.9) 
3 Tasks 68 (14.5) 
4 Tasks 63 (13.5) 
5 Tasks 58 (12.4) 
6 Tasks 46 (9.8) 
* Total work tasks is the individual sum of all work tasks a participant reported Yes to, with a 
maximum of 6. 
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Table 4: Prevalence of Pesticide Use in Study Population 

Class Active Ingredient 
Users 
(N) 

Never 
Users (N) 

% 
Users 

Current Use of Pesticides * 
Herbicides 
Organophosphorus GLYPHOSATE 238 38 86.2 

GLUFOSINATE_AMMONIUM 16 426 3.6 
Triazine ATRAZINE 85 77 52.5 
Acetic Acid CLOPYRALID 11 422 2.5 

DICAMBA 15 172 8 
PICLORAM 25 385 6.1 

Amide MESOTRIONE 22 411 5.1 
Chloroacetanilide ACETOCHLOR 23 392 5.5 

METOLACHLOR 26 189 12.1 
Dinitroaniline TRIFLURALIN 10 201 4.7 
Oxazole ISOXAFLUTOLE 15 440 3.3 
Phenoxy 2,4-D 148 64 69.8 
Pyridine TRICLOPYR 18 408 4.2 
Insecticides 
Carbamate CARBARYL 10 171 5.5 
Organophosphate ORGANOPHOSPHATE 45 38 54.2 

MALATHION 20 98 16.9 
Pyrethroid CYFLUTHRIN 18 408 4.2 

PERMETHRIN 13 278 4.5 
  PYRETHROID 50 250 16.7 
Past Use of Banned Pesticides # 
Insecticides 
Organochlorine ALDRIN 98 348 22 
  CHLORDANE 121 325 27.1 
  DDT 127 326 28 
  DIELDRIN 34 410 7.7 
  HEPTACHLOR 86 361 19.2 
  LINDANE 119 329 26.6 
  TOXAPHENE 62 384 13.9 
* For currently used pesticides, the Users column represents the number of participants reporting 
use within the past 12 months. The total number of participants (Users + Never Users) in each 
row is different for each pesticide due to the exclusion of participants who only reported past use 
of the pesticide without current use.  
# For the past used of banned organochlorine insecticides, the Users column represents the 
number of participants who reported ever having used the pesticide in their life. Pyrethroid and 
organophosphate are aggregated composite pesticide classes. 
  

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted August 21, 2023. ; https://doi.org/10.1101/2023.08.17.23293194doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.17.23293194


Figure 1: Work Tasks and Alpha Diversity in Home Dust Microbiome Samples. 
Coefficients derived from generalized linear regression models for each work tasks exposure, 
with Shannon alpha diversity index as the outcome, adjusted for age, smoking status, state of 
residence, asthma status, indoor pets, home condition, and home visit season. Error bars 
represent the 95% confidence intervals of the regression coefficients.  
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Table 5: Work Tasks and Weighted UniFrac Beta Diversity in Home Dust Microbiome 
Samples 
 
 Work Tasks R2 statistic F p-value 
Fertilized Fields 0.02 0.001 
Cleaned Grain Bins 0.019 0.001 
Handled Hay 0.016 0.001 
Handled Silage 0.012 0.001 
Ground Animal Feed 0.018 0.001 
Handled Soybeans & Grains 0.014 0.001 
Job Tasks Sum 0.03 0.001 
Results from permutational multivariate analysis of variance (PERMANOVA) models for each 
work task exposure, with weighted UniFrac distance metric as the outcome, adjusted for age, 
smoking status, state of residence, asthma status, indoor pets, home condition, and home visit 
season. Presented is the R2 value to quantify the percentage of variance explained by each 
exposure and the p-value for the F-statistic for compositional heterogeneity by exposure groups.  
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Figure 2: Work Tasks and Differentially Abundant Taxa in Home Dust Microbiome 
Samples. Figure shows the log fold-difference of the mean abundance of differentially abundant 
taxa (FDR p-value <0.05) by work tasks exposure groups, using the analysis of composition of 
microbiomes with bias correction (ANCOM-BC, v1.0.5) models.  
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Figure 3: Pesticide Use and Alpha Diversity in Home Dust Microbiome Samples. 
Coefficients derived from generalized linear regression models for each pesticide, with Shannon 
alpha diversity index as the outcome, adjusted for age, smoking status, state of residence, asthma 
status, indoor pets, home condition, and home visit season. Green font indicates currently used 
pesticide and purple font indicates past use of banned pesticides. Error bars represent the 95% 
confidence intervals of the regression coefficients.  
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Table 6: Pesticide Use and Weighted UniFrac Beta Diversity in Home Dust Microbiome 
Samples 
 

Current Pesticide 
R2 
statistic 

F p-
value 

Banned Pesticide 
R2 
statistic 

F p-
value 

ACETOCHLOR 0.007 0.004 ALDRIN 0.007 0.012 
ATRAZINE 0.009 0.001 CHLORDANE 0.007 0.01 
CARBARYL 0.007 0.011 DDT 0.008 0.003 
CLOPYRALID 0.004 0.586 DIELDRIN 0.006 0.019 
CYFLUTHRIN 0.007 0.017 HEPTACHLOR 0.006 0.023 
DICAMBA 0.01 0.001 LINDANE 0.007 0.014 
GLUFOSINATE_AMMONIUM 0.004 0.341 TOXAPHENE 0.007 0.011 
GLYPHOSATE 0.01 0.001 
ISOXAFLUTOLE 0.005 0.216 
MALATHION 0.005 0.131 
MESOTRIONE 0.005 0.26 
METOLACHLOR 0.004 0.458 
ORGANOPHOSPHATE 0.005 0.186 
PERMETHRIN 0.007 0.005 
PICLORAM 0.006 0.026 
PYRETHROID 0.01 0.001 
TRICLOPYR 0.004 0.553 
TRIFLURALIN 0.004 0.678 
2,4-D 0.007 0.003 
Results from permutational multivariate analysis of variance (PERMANOVA) models for each 
pesticide exposure, with weighted UniFrac distance metric as the outcome, adjusted for age, 
smoking status, state of residence, asthma status, indoor pets, home condition, and home visit 
season. Presented is the p-value for the F-statistic for compositional heterogeneity by exposure 
groups and the R2 value to quantify the percentage of variance explained. 
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Figure 4: Pesticide Use and Differentially Abundant Taxa in Home Dust Microbiome 
Samples. Figure shows the log fold-difference of the mean abundance of differentially abundant 
taxa (FDR p-value <0.05) by pesticide exposure groups, using the analysis of composition of 
microbiomes with bias correction (ANCOM-BC, v1.0.5) models. Green facets are for currently 
used pesticide and purple facets are for past use of banned pesticides. 
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