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Abstract 
Heritability of common eye diseases and ocular traits are relatively high. Here, we develop an 
automated algorithm to detect genetic relatedness from color fundus photographs (FPs). We 
estimated the degree of shared ancestry amongst individuals in the UK Biobank using KING 
software. A convolutional Siamese neural network-based algorithm was trained to output a 
measure of genetic relatedness using 7224 pairs (3612 related and 3612 unrelated) of FPs. The 
model achieved high performance for prediction of genetic relatedness; when computed 
Euclidean distances were used to determine probability of relatedness, the area under the receiver 
operating characteristic curve (AUROC) for identifying related FPs reached 0.926. We 
performed external validation of our model using FPs from the LIFE-Adult study and achieved 
an AUROC of 0.69. An occlusion map indicates that the optic nerve and its surrounding area 
may be the most predictive of genetic relatedness. We demonstrate that genetic relatedness can 
be captured from FP features. This approach may be used to uncover novel biomarkers for 
common ocular diseases.  
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Introduction  
Heritability, defined as the proportion of overall variation in a population that is attributable to 
genetic variation, of ocular traits and disease has been extensively studied.1,2 Heritability of 
common eye diseases is relatively high, with glaucoma and age-related macular degeneration 
(AMD) being two of the most heritable; previous studies have estimated the heritability of 
glaucoma to be 70% and AMD to be 46-71%.2,3 Several fundus features including cup to disc 
ratio (CDR), disc area, and cup area, have been well examined in family-based studies. CDR are 
estimated to be 48-79% heritable.1,4,5 Disc area and cup area have been found to be 66-77% and 
52-83% heritable, respectively.1,5–7 Similarly, the high heritability of other ophthalmologic 
imaging features visualized through optical coherence tomography like ganglion cell complex 
(GCC) thickness and anterior chamber parameters have been previously documented.8,9 The high 
heritability of ocular traits may indicate a large role of genes or genetic variation in the 
pathogenesis of ophthalmologic disease. 
 
Color fundus photographs (FPs) capture the retina, optic nerve, and retinal blood vessels which 
allows for assessment of the interior of the eye. Clear and consistent visualization of nerves and 
vasculature is unique to FPs and has led to the discovery of novel relationships, including retinal 
vascular damage and risk of hypertension, as well as diabetic retinopathy and risk of stroke.10,11 
 
Prior studies of heritability of ocular traits and diseases have primarily used twins or families. In 
absence of such information, level of relatedness among a pair of individuals can be calculated 
from the number of shared alleles, with related individuals sharing more alleles than expected by 
chance, and the degree of additional sharing proportional to the degree of relatedness.12 
 
The recent availability of large-scale genomics data has made it possible to assess relatedness 
utilizing shared genetics. Large datasets with individuals who may be related but do not 
necessarily share the same environment can be used to assess the role of heritability and genetics 
in different imaging features. One example of such a dataset is the UK Biobank (UKBB), a large 
population-based study composed of greater than 500,000 individuals aged 40-69 across the 
United Kingdom.13 The UKBB contains both genetic and phenotypic data, including fundus 
photographs, creating a powerful tool to discover new genetic associations of complex traits. 
 
Deep learning is a powerful tool that can be used to automate segmentation and classification of 
medical images. To date, deep learning models have been used to discover quantitative 
relationships between fundus appearance and systemic disease, at times succeeding at tasks not 
previously thought possible, such as predicting age and sex from fundus photographs.14 Since 
fundus photos are more easily acquired than genome data, by harnessing the power of such 
technology, it may be possible to predict levels of relatedness in subjects where genotype 
information may not be available and use clustering approaches to uncover novel biomarkers for 
common heritable eye and systemic diseases.15,16 
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Siamese neural networks, originally designed to verify the authenticity of credit card signatures, 
take two separate images as inputs and by passing them through twinned neural networks, 
measure the distance between the two images with respect to their respective imaging features.17 
Siamese neural networks have been previously used to detect COVID-19 pulmonary disease 
severity, classify Alzheimer’s disease, assess retinopathy of prematurity from retinal 
photographs, and assess knee pain from MRI scans, amongst others.18–21  
 
In this study, we leverage a Siamese convolutional neural network algorithm for detection of 
genetic relatedness from FPs using available data from the UKBB and used occlusion maps to 
identify features of the fundus that are the most inherited. We further use the LIFE-Adult study 
for external validation of our model.  Our approach utilizes the power of big data and deep 
learning and may offer a way to uncover novel biomarkers in related subjects and sets the stage 
for better understanding of the pathogenesis of heritable ophthalmologic diseases.  
 
Materials and methods 
Participants and Datasets 
The algorithm was developed using FPs from the UKBB dataset13 
(http://www.ukbiobank.ac.uk/resources/) and then externally validated on FPs from the LIFE-
Adult study.22 
 
The UKBB dataset is a prospective cohort study of 502,506 UK residents aged 40-69. 
Participants were identified from the National Health Service registry. The dataset includes 
detailed genotypic and phenotypic information on all participants, as well as data from a 
questionnaire including socio-demographic information, diet, lifestyle, and environmental 
factors. Over 86,000 people underwent retinal imaging with 45-degree color FPs and paired 
macular optical coherence tomography (OCT) scans using a Topcon 3D OCT 1000 Mk2 
(Topcon, Inc, Japan). The National Research Ethics Service Committee NorthWest–Haydock 
approved the study, and it was conducted in accordance with the Declaration of Helsinki. All 
participants provided written informed consent. 
 
The LIFE-Adult study (Leipzig Research Center for Civilization Diseases) is a population-based 
cohort study of 10,000 randomly selected participants (registry office) from Leipzig, a city with 
550,000 inhabitants in the east of Germany. Participants were recruited in an age and sex-
stratified manner.22 9,600 participants were in the age group between 40 and 79 years and 400 
between 18 and 39 years.  This dataset includes detailed genotypic and phenotypic information 
of participants along with data from a comprehensive examination program that included 
structured medical interviews, physical and medical examination, questionnaires and cognitive 
tests including socio-economic status, family medical history, lifestyle, diet, psychological 
information and sleep.22 Over 9,300 people underwent retinal imaging with OCT scans using 
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Heidelberg Spectralis SD-OCT and high quality 45 degree macula centered non-mydriatic 
fundus imaging using Nidek AFC-230 digital-fundus camera. Of them, 6837 participants were 
genotyped using the Axiom-CEU microarray. Data were imputed to 1000Genomes phase 3 
reference.23 Prior to participation, all participants provided written informed consent. The study 
was approved by the Ethics Committee of the Medical Faculty of the University of Leipzig and 
was conducted in accordance with the Declaration of Helsinki.  
 
Genetic relatedness:  
Array genotype curation process was performed using best practice approaches refined in GTEx 
consortium. Briefly, participants with unresolved differences between genotype-inferred and 
reported sex were excluded. Samples with genotyping call rate <97% were removed while 
variant with call rate < 97% and minor allele frequency (MAF) < 0.01 were removed. We 
applied Principal Component Analysis (PCA) to linkage disequilibrium (LD)-pruned (r2<0.1 in 
200kb windows) genetic markers and the k-nearest neighbors algorithm to predict the ancestral 
background of participants using ancestral labels from the 1000 Genomes Project Phase 3 
reference panel as previously described.13,24 The degree of shared ancestry among pairs of 
UKBB participants was estimated from the kinship coefficient calculated using KING software 
from a subset of markers weakly aligned to ancestral background, to avoid inflation of the 
estimate amongst those with mixed ancestry as previously described.13,24 This method has been 
found to have excellent correlation with inference methods implemented in PLINK.25 Identity by 
descent (IBD) was calculated as twice the kinship coefficient. Pairs with IBD > 0.1875 (halfway 
between the expected IBD for third- and second-degree relatives) but < 0.98 were considered 
related, while those with non-calculable IBD were considered unrelated.12 The upper threshold 
was chosen to remove duplicates.13,24 For the LIFE-Adult dataset, relatedness was calculated in 
R using an implementation of the estimator for pairwise relatedness of Wang26 which is 
comparable to IBD.       
 
Image pair labeling: 
3612 pairs of images (from 2299 different pairs of subjects) from UKBB and 322 pairs of images 
from LIFE-Adult were labeled as related based on calculated IBD > 0.1875 but < 0.98 as defined 
above. They were supplemented with an equal number of unrelated pairs, which were generated 
by taking one of the related pairs’ FP and another one randomly sampled from the rest of the data 
with a non-calculable IBD for UKBB and IBD < 0.05 for LIFE-Adult. In this work, non-
calculable IBD refers to an IBD lower than 0.0884, the lowest calculated IBD in the UKBB 
cohort. Figure 1 showcase examples of three FPs from both UKBB and LIFE, (i) and (ii) being 
related, while (i) and (iii) being unrelated. 
 
Dataset preparation  
UKBB dataset 
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In the UKBB dataset, we had a total of 2299 pairs of related subjects. We created an 80-20 split 
over this dataset, where 20% related pairs are held out for testing (460 pairs in total) and 80% for 
training and validation (train-val) (1839 pairs in total) . The train-val set was further divided into 
10 splits for ten-fold cross validation (each with 183/184 pairs of subjects). All splits were done 
at subject level, thus ensuring no subject overlap occurs across the different folds. See 
Supplemental Figure 1a for more information. We finally train 10 different models, where for 
each model, one-fold is used for validation and the other nine folds combined for training. We 
report the average performance over all 10 models.  
 
Next, to generate pairs for the unrelated cohort, we used all subjects which were not related to 
any other subject in the UKBB dataset (Supplemental Figure 1a). Similar to the related cohort, 
the unrelated cohort had no subjects overlapping across the 10 different folds. The age difference 
distribution of the pairs in the related and unrelated cohorts was statistically significant (Figure 
2). To prevent the model from learning spurious correlations with the age of related and 
unrelated cohorts, we age-matched the two by sampling the second FP from the rest of the data 
such that the age difference in the unrelated pair was within ±1 year of the age difference of 
corresponding related pair (Supplemental Figure 1b). Figure 2 shows the age distribution of 
the age matched and non-age matched cohorts for both UKBB as well as LIFE-Adult dataset. 

  
LIFE-Adult dataset 
We identified 448 subjects (224 pairs of subjects from 218 families) out of 7669 participants in 
LIFE-Adult who were related with IBD > 0.1875. Similar to the UKBB dataset, we randomly 
selected unrelated controls (using IBD < 0.05) by sampling from over 6000 participants, matched 
by sex and age relative to the cases.  
 
The complete LIFE-Adult dataset was first used as an external test set on models trained entirely 
on UKBB dataset. Next, the LIFE-Adult dataset was divided into 10 splits (each split consisting 
of 64/66 pairs of subjects). These splits were subsequently used in the 10-fold cross validation 
when we transfer learn on LIFE-Adult, using the best performing model trained on UKBB. 
Transfer learning is a commonly used technique in machine learning where knowledge gained 
from one task is utilized for a different, but related task. In this case, we used the model weights 
learnt after training on the UKBB dataset to fine-tune over the LIFE-Adult dataset. 
 
Siamese Convolutional Network and Classifier 
Convolutional Neural Networks (CNNs) are artificial intelligence models largely used for image 
classification, object detection and segmentation.27 Siamese Neural Networks are a special class 
of CNNs wherein we can compute similarity between two input images by comparing feature 
vector outputs from two identical branches of the network that share parameters. In this analysis, 
we used DenseNet121 networks as backbones for the identical branches in our Siamese network 
(see Figure 3 for an overview of our approach).28 Densenet121 is a CNN architecture that 
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consists of four blocks with 6, 12, 24 and 16 layers each, where each later block has access to 
information from all the previous blocks through dense connections, thus ensuring maximum 
information flows to the penultimate layer and ultimately resulting in a robust feature extractor. 
The output feature vectors (q and p) corresponding to the two input images are extracted from 
each DenseNet121 branch and compared using Euclidean Distance (ED). A smaller value of ED 
(compared to a set threshold) implies pairs are related, and unrelated otherwise.   
 
The Siamese network is trained with the Adam optimization algorithm and contrastive loss, 
which is designed to separate unrelated pairs of images and unite related pairs of images in 
output feature space.29,30 The contrastive loss function is given by: 

𝐿!"#$%&'$   =   $(1  −  𝑌) 
1
2 𝑑,

) 

  +  (𝑌)
1
2max

(0,𝑚 − 𝑑)) 

 
, where Y is the relatedness label, d is the computed Euclidean Distance and m is a 
hyperparameter used to control the extent of separation between classes.  
 
As a result of this contrastive loss, related pairs of images are expected to produce a smaller 
Euclidean Distance between the output arms of the Siamese network as compared to unrelated 
pairs. An optimal threshold for Euclidean Distance can then be computed using Youden Index to 
differentiate between related and unrelated pairs during inference.31 The model was trained with 
a learning rate of 0.0001 and early stopping to avoid overfitting with a patience of 4 epochs 
while monitoring the validation loss.32 To standardize right and left eyes, all left eye images 
underwent a horizontal flip as a preprocessing step, which were then resized to a standard size of 
320 x 320.  
 

The raw Euclidean Distance obtained with the Siamese network was further combined with an 
indicator for inferred ancestry in the two fundus photographs. This integration was achieved 
using a Gradient Boosting Classifier, which combined the Euclidean Distance with inferred 
ancestry to produce a final probability of genetic relatedness.33 This classifier was trained with 
100 boosting estimators and a learning rate of 0.1.  
 
10-fold Cross-Validation 
For the UKBB dataset, we performed a 10-fold cross validation, where nine folds were used for 
training and one for validation. We finally compute average AUROC along with 95% confidence 
interval (CI) over the 10-folds. Final testing on the held-out UKBB test set as well as on the full 
external LIFE-Adult dataset was done using model ensembling, wherein we averaged the 
normalized Euclidean Distances obtained from the 10 models and then calculated the AUROC. 
 
Additionally, we also experimented by fine-tuning the best model (closest in performance to 
model ensembling) from UKBB over the LIFE-Adult dataset after reducing the learning rate by 
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1/10 and updating all model weights during the fine-tuning process. In order to conduct this fine-
tuning experiment on LIFE-Adult, we divided LIFE-Adult into 10 folds (similar to UKBB 10-
fold cross validation) and reported the average AUROC and 95% CI for the LIFE-Adult dataset.   
 
Model Interpretability 
For better visualization of the underlying factors influencing predictions from the Siamese 
model, we employ an occlusion map technique, wherein different regions of the input image are 
selectively occluded to observe the corresponding change in the output.34 This produces a 
heatmap, where regions of the image are highlighted in proportion to the extent of change in 
output ED by occluding those regions, thereby offering post-hoc interpretability of the AI model. 
Although occlusion maps are well defined and used in the single image classification setting, we 
extend it to our pairwise learning task by simultaneously occluding corresponding patches of size 
32 x 32 on both FPs to observe areas that lead to the highest magnitude of change in the 
computed Euclidean Distance.  
 
To understand the relative contribution of fundus vasculature pattern on model prediction, we 
used a UNet trained on the DRIVE, ChaseDB and STARE retinal fundus photograph databases 
on the training, validation, and test splits (https://lmb.informatik.uni-
freiburg.de/people/ronneber/u-net/).35 The resulting segmentations (Supplemental Figure 2a) 
were used as inputs to the Siamese network in place of the fundus photographs in the 
classification task. 
 
Statistical analyses & Software Tools  
Statistical analyses were performed using NumPy and Pandas. The Euclidean Distance between 
the outputs of the arms of the Siamese network was taken as the final prediction to compute the 
Area under the Receiver Operator Curve (AUROC) curve of the model with a binary indicator of 
relatedness as the ground truth label. The model was evaluated by calculating sensitivity and 
specificity at different ED thresholds and subsequently plotting the AUROC curve, all of which 
were calculated using the inbuilt scikit-learn metrics. For inference, an optimal threshold was 
chosen via Youden Index to differentiate between related and unrelated pairs. All the pairs with 
ED less than the cut-off for the optimal Youden Index were classified as related and the rest as 
unrelated. Average AUROC and 95% confidence interval reported over the 10-folds of UKBB 
and LIFE-Adult validation sets were computed using the scipy stats package. 
 
We also plotted a Uniform Manifold Approximation and Projection (UMAP) for UKBB versus 
LIFE-Adult dataset (Figure 4) using Python UMAP library, where the image features were 
reduced to 2 dimensions. UMAP is a dimension reduction technique that can be used for high-
dimensional model feature visualization or other general non-linear dimension reduction.      
 
Results 
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Table 1 summarizes age-matched cohort characteristics for train+val and test sets of UKBB as 
well as the LIFE-Adult dataset. The distribution of age for both non-age matched and age-match 
cohorts of UKBB and LIFE-Adult datasets and the distribution of IBD scores for the related 
cohort for the two datasets is shown in Figure 2. 
 
Model Performance 
For the age-matched UKBB dataset, the Siamese network yields a mean AUROC of 0.9103 
(95% CI = 0.9028,0.9177) on the 10-fold cross validation and 0.9262 on the held-out UKBB test 
dataset using the ensemble model (Figure 5a). Figure 5b shows a violin plot illustrating the 
separation of the two classes in output feature space for the model trained on the age matched 
dataset. The mean and standard deviation of the ED predictions for the related class on the test 
set were 19.09 and 11.86, while corresponding values for the unrelated class were 40.17 and 
14.46 (Supplementary Table 1). Figure 6b shows two examples of incorrect classifications by 
the model. 
 
For the UKBB dataset, model corresponding to fold-2 was determined to be the best performing 
model from the tenfold cross validation (Supplementary Table 1), since it was closest to the 
ensemble model performance on the held out UKBB test set, with an AUROC of 0.9238. These 
ten models trained on UKBB when tested on the complete LIFE-Adult dataset resulted in an 
AUROC of 0.5815, using the ensemble model. The best forming model from fold-2 UKBB 
dataset alone resulted in an AUROC of 0.5545. The same model when fine-tuned over the LIFE-
Adult dataset, through a 10-fold cross-validation (like UKBB dataset) resulted in a mean 
AUROC of 0.5935 (95% CI = 0.549, 0.638) (Figure 1, Supplementary Table 2).  
 
To determine the potential cause for poorer performance on the LIFE-Adult dataset, we plotted a 
UMAP for UKBB versus LIFE-Adult (Figure 4), where the image features were reduced to 2 
dimensions. The UMAP demonstrated two distinct image clusters corresponding to UKBB and 
LIFE-Adult datasets, highlighting wide differences in the distributions of the two datasets. We 
tried improving model performance on LIFE-Adult dataset by applying local color normalization 
as well as color jitters to the images before training to discount the effects of the differences in 
the saturation and hue between UKBB and LIFE-Adult images (Figure 1), but the results did not 
improve. 
 
Model Interpretability using Occlusion Maps and Vessel Segmentation 
Figure 6a illustrates an occlusion map generated from the best performing age matched UKBB 
model. The occlusion map showcases that the optic nerve, and the surrounding area may be the 
most predictive of the model decision. Of note, in the related pairs of images, the occlusion of 
space corresponding to the optic nerve seemed to play a critical role in the output of the Siamese 
network whereas for unrelated pairs, the obtained heatmap is more diffused, indicating that a 
larger attention is placed on regions outside the optic nerve area. 
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In order to test how relevant the vascular structures independently are to predict generated 
relatedness, we trained the Siamese network on vessel segmentations in place of raw fundus 
photographs, resulting in an AUROC of 0.75 (Supplementary Figure 2). When the same model 
was tested on the LIFE-Adult study, the AUROC was 0.526. This drop-off suggests that that the 
optic nerve rather than major fundus vessel patterns may be a more salient region in the fundus 
photographs for the neural network’s genetic relatedness classification performance. 
Alternatively, the finer branching details of the vasculature, which were often not accurately 
shown in the segmentations, may play an important role in determining genetic relatedness. This 
is further supported by the occlusion maps which also highlighted regions outside the optic 
nerve. 
 
Final Classification 
When an indicator for inferred ancestry was incorporated into the prediction by combining it 
with the obtained Euclidean Distance using a gradient boosting classifier, the AUROC metric 
was 0.9324, demonstrating slight improvement over the raw Siamese network prediction. Figure 
5a shows the ROC curves for the combined classifier and the Siamese network respectively 
trained on the age matched UKBB dataset.  
 
Discussion 
We found that Euclidean Distances derived from a Siamese neural network were able to 
accurately determine genetic relatedness from two fundus photographs, with an AUROC of 0.93 
(addition of inferred ancestry showing marginal improvement in performance). The occlusion 
map produced by the model indicates that the optic nerve is highly predictive of the model’s 
decision. The UNet blood vessel segmentation did not improve prediction performance of the 
model. This may indicate that both the optic nerve as well as the finer branching of retinal 
vasculature, not always present in segmentation, may play an important role in determining 
genetic relatedness. 
 
Our findings indicate high heritability of fundus features as well as conservation of optic nerve 
features among relatives. Prior work has demonstrated the high heritability of ocular structures, 
particularly the optic disc. Healey et al. previously found that heritability of the optic disc area 
was 0.73 and the optic cup area was 0.66.6 Han et al. similarly demonstrated high heritability of 
vertical cup-to-disc ratio, the presence of peripapillary atrophy to be highly heritable; this result 
was consistent with previous work.1,36 Indeed, to date, in GWAS studies several genes and 
single-nucleotide polymorphisms (SNPs) have been associated with optic disc area or vertical 
cup-to-disc ratio.37,38 The nearest  genes to the associated SNPs include CDKN2b-AS1, SIX6, 
BMP2, FLNB, amongst others. To this end, we found that in related pairs, the region 
surrounding the optic nerve seemed to play a major role in the output of the Siamese network, 
while in unrelated pairs, the heatmap is more diffused. We plan to extend our occlusion and 
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saliency analysis in future experiments to further understand what might be causing this 
observation. Future exploration in this area may shed light on novel pathways of glaucoma 
pathogenesis.  
 
While our model trained on vessel segmentations performed less well than the model trained on 
the entire fundus photograph, blood vessel patterns demonstrated reasonable concordance among 
related pairs with AUROC of 0.75. Retinal vascular features have been previously found to be 
highly associated with systemic diseases or their risk factors, like hypertension and coronary 
heart disease.39–41 These features include arteriole narrowing, branching patterns, and vessel 
tortuosity. Kirin et al. found several of these features to be heritable; arterial tortuosity and 
venular tortuosity were found to have a heritability of 0.55 and 0.21 respectively.42 Similarly, Liu 
et al. found heritability of central retinal arteriole equivalent and central retinal venule equivalent 
to be 0.21 and 0.34, indicating moderate heritability.43 While it is possible that vascular features 
may be less conserved among related individuals relative to the optic nerve features, the drop in 
accuracy of our model may also indicate that the smaller branching of retinal vessels, those not 
captured by our segmentation, may play an important role in determining genetic relatedness. 
 
There are several age-related diseases that have a vascular component and may impact the 
appearance of retinal vessels. Lemmens et al. previously found that retinal vasculature 
complexity increases with age.44 To assure that age differences were not driving the results we 
found, we tested our model using both an age matched and non-age matched unrelated cohort. 
We found that performance improved slightly on the test set after age matching the related and 
unrelated cohorts. Similarly, we found that adding inferred ancestry information to the ED 
computed from fundus photograph features also slightly improved the results. Previous research 
has found differences in optic disc size amongst different ethnic groups. However, the majority 
of individuals included in this study were of European descent, likely minimizing the impact of 
ancestry on the performance of the model.45 Overall, these findings indicate that while age and 
inferred ancestry can contribute to retinal features, there are other factors that are driving our 
model’s predictive accuracy.  
 
Our model demonstrated good internal validity with AUROC ranging from 0.89 to 0.924 on our 
10-fold cross validation experiments. However, The AUROC values on the LIFE-Adult dataset 
were lower than expected. We attribute this to two reasons. First, the optic disk in LIFE-Adult 
images is slightly to the left as compared to the UKBB images (Figure 1). Since all the features 
surrounding the optic disk and vessels were important, we did not do any random cropping or 
affine transformation while training and hence the model was not robust to the positioning of the 
optic disk. Second, the colorations and saturation of the LIFE-Adult images were quite different 
from the UKBB (Figure 1), which may have affected the performance of our model. More 
importantly, we noted that the low AUROC on LIFE-Adult was largely because the model was 
predicting most of the samples as related (reflected in Supplemental Table 2 where for each 
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Life-Adult fold, the calibrated average ED of unrelated samples is small and close enough to the 
average ED of related samples). There is not only low genetic differentiation among Europeans, 
but there is a close correspondence between genes and geographies in Europe.46 Since all the 
participants of the LIFE-Adult study were from the same town in Germany, the genetic 
differentiation among the participants might not have been sufficient for the model. This effect 
could be compounded by the considerable sample size limitation in LIFE-Adult following fine-
tuning. 
 
Our study is subject to several limitations. First, due to the limited number of related individuals 
in our dataset, we combined everyone with IBD >0.1875 into a binary variable of related vs 
unrelated pairs. In the future, use of a larger dataset may allow us to use a similar model to 
predict levels of genetic relatedness, allowing for better understanding of model decision 
making. Another limitation of our work was the inability to segment smaller, finer vessels. As a 
result, we may be underestimating the importance of blood vessel patterns in predicting genetic 
relatedness. Finally, the UKBB and LIFE-Adult are both composed of predominantly healthy 
individuals of primarily European ancestry and is not fully representative of other populations. 
Future work in more diverse datasets will be critical to confirm the reproducibility of this work 
in other populations. 
 
In conclusion, we demonstrate that a Siamese neural network can be used to accurately 
determine genetic relatedness from fundus photographs. Our novel findings suggest that deep 
learning can be used as an important tool to detect conserved genetic ocular features in different 
disease states. Future exploration in larger datasets may uncover critical novel biomarkers to help 
us better understand pathogenesis of ocular disease in related patients. 
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Table 1. Training Cohort characteristics for both UKBB and Life-Adult Datasets. 

Attribute Age matched (Train + Val) Age matched (Test) 

Related 
Cohort 

Unrelated 
cohort 

Related 
Cohort 

Unrelated 
cohort 

UKBB Dataset 

Total number of pairs 
(pairs/participants) 

3612/7224 3612/7224 903/1806 903/1806 

Image pairs from same gender 
(%/pairs) 

57.2/2066 50.2/1814 56.1/507 45.5/411 

Female participants 
(%/participants) 

59.2/4276 54.9/3964 56.6/1022 55.0/994 

Image pairs from same ancestry 
(predicted) (%/pairs) 

99.8/3606 83.8/3028 100/903 85.3/716 

Age (years), mean (SD) 56.6 (8.7) 56.6 (8.9) 56.7 (8.6) 56.5 (8.7) 

Age difference for image pairs 
(years), mean (SD) 

9.8 (8.5) 9.8 (8.4) 9.3 (8.1) 9.3 (8.2) 

LIFE-Adult Dataset 

Total number of pairs 
(pairs/participants) 

322/644 322/644   

Image pairs from same gender 
(%/pairs) 

49.37/159 49.37/159   

Female participants 
(%/participants) 

57.0/367 57.0/367   

Age (years), mean (SD) 55.7 (13.7) 55.7 (13.7)   

Age difference for image pairs 
(years), mean (SD) 

16.3 (11.0) 16.3 (10.9)   
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Figure 1. a) Image (i) and (ii) for a related pair from the UKBB dataset and (i) and (iii) is 
corresponding unrelated pair; b) Image (i) and (ii) for a related pair from the LIFE-Adult dataset 
and (i) and (iii) is corresponding unrelated pair 
 

 
(i)     (ii)     (iii) 

(a) 

 
(i)     (ii)     (iii) 

(b) 
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Figure 2. Identity by Descent (IBD) (top) and age difference distributions (bottom) of related 
and unrelated pairs from UKBB and LIFE-Adult datasets 
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Figure 3. Overview of the proposed algorithm.  
Pair of retinal fundus photographs (RFPs) are fed through the Siamese Network to output a 
Euclidean distance b/w the two RFPs. This distance combined with the inferred ancestry label is 
then fed to a gradient-booster classifier to finally output a relatedness score. 
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Figure 4. UMAP of UKBB versus LIFE-Adult images demonstrating two different populations.  
UMAP provides a lower dimension representation of the samples for better visualization 
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Figure 5. (a) ROC Curve for (i) the Siamese network and the final classifier combining 
Euclidean Distance and inferred ancestry and (ii) the tenfold cross validation on UKBB dataset; 
(b) Violin plot showing the distribution of Euclidean Distance scores for both classes in UKBB 
dataset. 
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Figure 6. (a) Occlusion maps generated on a pair of related images (left) and unrelated images 
(right) where yellow regions indicate higher importance for prediction (Threshold Euclidean 
Distance = 17.895151; lower predicted Euclidean Distance = higher relatedness while lower IBD 
= lower relatedness) (b) Misclassified Examples: Example of an unrelated pair classified 
incorrectly as related (top) and a related pair classified incorrectly as unrelated (bottom) for the 
UKBB dataset (Threshold Euclidean Distance = 17.895151; lower ED = higher relatedness while 
lower IBD = lower relatedness) 
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