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Abstract 31 

Disease heterogeneity poses a significant challenge for precision diagnostics in both clinical and 32 
sub-clinical stages. Recent work leveraging artificial intelligence (AI) has offered promise to 33 
dissect this heterogeneity by identifying complex intermediate phenotypes – herein called 34 
dimensional neuroimaging endophenotypes (DNEs) – which subtype various neurologic and 35 
neuropsychiatric diseases. We investigate the presence of nine such DNEs derived from 36 
independent yet harmonized studies on Alzheimer's disease (AD1-2)1, autism spectrum disorder 37 
(ASD1-3)2, late-life depression (LLD1-2)3, and schizophrenia (SCZ1-2)4, in the general 38 
population of 39,178 participants in the UK Biobank study. Phenome-wide associations revealed 39 
prominent associations between the nine DNEs and phenotypes related to the brain and other 40 
human organ systems. This phenotypic landscape aligns with the SNP-phenotype genome-wide 41 
associations, revealing 31 genomic loci associated with the nine DNEs (Bonferroni corrected P-42 
value < 5x10-8/9). The DNEs exhibited significant genetic correlations, colocalization, and causal 43 
relationships with multiple human organ systems and chronic diseases. A causal effect (odds 44 
ratio=1.25 [1.11, 1.40], P-value=8.72x10-4) was established from AD2, characterized by focal 45 
medial temporal lobe atrophy, to AD. The nine DNEs and their polygenic risk scores 46 
significantly improved the prediction accuracy for 14 systemic disease categories and mortality. 47 
These findings underscore the potential of the nine DNEs to identify individuals at a high risk of 48 
developing the four brain diseases during preclinical stages for precision diagnostics. All results 49 
are publicly available at: http://labs.loni.usc.edu/medicine/.  50 
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Main 51 

Disease heterogeneity2,3,5–10 has been a significant challenge for precision medicine11, including 52 
precision neuroscience. A new era powered by artificial intelligence (AI) and large-scale, multi-53 
omics biomarkers may enable us to quantify individualized liability for various brain 54 
diseases12,13. Recent work has leveraged semi-supervised clustering methods (Fig. 1a and 55 
Supplementary eMethod 1) to tackle this challenge. These methods characterize the disease 56 
heterogeneity by constructing a mapping or transformation from a reference group (e.g., healthy 57 
controls) to a target group (i.e., patients with a specific disease). In clinical neuroscience, these 58 
methods can quantify deviation from typical brain structure measured by T1-weighted magnetic 59 
resonance imaging (MRI)1–4. They represent disease-related neuroanatomical heterogeneity via k 60 
low-dimensional categorical subtypes associated with specific patterns of brain change relative 61 
to the reference group. Instead of focusing on the k categorical subtypes, we investigated their 62 
corresponding continuous phenotypes14, given that brain diseases develop along a continuous 63 
spectrum. Each neuroanatomical pattern's level of expression, therefore, serves as a dimensional 64 
AI-derived biomarker pertinent to the respective disease. 65 

Previous heterogeneity research has primarily focused on within-disease 66 
heterogeneity2,3,5–10. However, this approach neglects the shared etiology, genetics, and clinical 67 
manifestations among different brain diseases. Conversely, while several studies have 68 
investigated the shared genetic components across various brain diseases, they have overlooked 69 
the important aspect of disease heterogeneity within each condition15,16. As such, a broad 70 
perspective is required to simultaneously investigate disease heterogeneity, spanning multiple 71 
neurodegenerative and neuropsychiatric disorders. This holistic approach aids in understanding 72 
the commonalities and interrelationships between these brain diseases and multi-organ systems 73 
of the human17,18. Such an effort could simultaneously capture neurobiological heterogeneity 74 
within disorders and explain shared features, mechanisms, and risk factors across disorders. 75 
Ultimately, unraveling neurobiological heterogeneity within neuropsychiatric syndromes and 76 
explaining co-morbidity among them promises to accelerate more effective diagnosis, treatment, 77 
and prevention strategies. 78 

Recent work leveraging AI-derived biomarkers identified using semi-supervised learning 79 
has offered novel ways to capture complex neuroanatomical heterogeneity within disease 80 
populations2,3,5–9. However, whether these biomarkers are present in the general population, 81 
potentially simultaneously, remains unknown. Here, we sought to measure the presence of 82 
multiple AI-based signatures in the general population, delineate common mechanisms among 83 
them, and shed light on their relationship with numerous human organ systems17,18. To do this, 84 
we capitalized on nine imaging biomarkers recently derived from regional gray matter (GM) 85 
volumetrics derived from several large-scale disease-focused consortia, including ADNI19 for 86 
Alzheimer's disease (AD1-2), ABIDE20 for autism spectrum disorder (ASD1-3), LLD3 for late-87 
life depression older than 65 years old (LLD1-2), and PHENOM4 for schizophrenia (SCZ1-2). 88 
We first conceptualized these biomarkers as the dimensional neuroimaging endophenotype 89 
(DNE), seeking to test the endophenotype hypothesis in psychiatry21–23, which suggests that such 90 
measurable intermediate biomarkers (i.e., the endophenotypes) serve as intermediate phenotypes 91 
between genetics and clinical symptoms of the disease. They are thought to be more closely 92 
related to the underlying etiology (or genetics) than the complex clinical symptoms or the disease 93 
itself.  94 

In this study, we evaluated the manifestation of the nine DNEs in the general population 95 
using the extensive and comprehensive multi-omics data available in the UK Biobank study24 96 
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(UKBB, Method 1), collected from more than 500,000 participants in the United Kingdom. The 97 
pre-trained AI models (Method 2) from the four disease populations were applied to the 39,178 98 
participants with brain MRI25 and genetic26 data from the UKBB general population. To 99 
delineate the phenotypic landscape of the nine DNEs, we first tested whether the 100 
neuroanatomical patterns of the nine DNEs are present in the UKBB general population. 101 
Subsequently, we conducted a phenome-wide association study (PWAS, Method 3) to establish 102 
associations between the nine DNEs and additional 611 UKBB phenotypes, including brain 103 
imaging-derived phenotypes (IDPs), traits related to multiple human organ systems, cognition, 104 
and lifestyle factors. To depict their genetic architecture, we performed a genome-wide 105 
association study (GWAS, Method 4) linking the nine DNEs to 6,477,810 quality-checked 106 
common single nucleotide polymorphisms (SNPs). Furthermore, we conducted analyses to 107 
investigate genetic correlations, colocalization, and causal relationships between the nine DNEs, 108 
nine human organ systems, and several chronic diseases. Finally, we assessed the ability of the 109 
nine DNEs and their corresponding PRSs to predict 14 systemic disease categories and mortality 110 
(Method 5).  111 

 112 
Results 113 

Our analytic framework involves computational genomics, statistical methods, and machine 114 
learning to elucidate the phenotypic landscape and genetic architecture of the nine DNEs, as 115 
illustrated in Fig. 1.  116 
  117 
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Figure 1: Study workflow  118 

 119 
a) The concept of semi-supervised learning methods used in this study (Method 1). These AI 120 
methods model the patterns and transformations from the healthy control (CN) to the patient 121 
(PT) domain, thus capturing variations related to underlying disease pathology. Nine DNEs 122 
previously published1–4 from four disease-focused, case-control studies were investigated, 123 
including ADNI19 for Alzheimer's disease (AD1-2), ABIDE20 for autism spectrum disorder 124 
(ASD1-3), LLD3 for late-life depression older than 65 years old (LLD1-2), and PHENOM4 for 125 
schizophrenia (SCZ1-2). b) The expression of the nine DNEs in the UK Biobank (UKBB) 126 
general population. The trained models were then applied to the UKBB population to quantify 127 
the expression of the neuroanatomical patterns of the nine DNEs at individual levels; a higher 128 
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DNE score indicates a greater expression (manifestation/presence) of the respective 129 
neuroanatomical pattern. For example, the blue samples express predominantly AD2, whereas 130 
the pink sample express predominantly SCZ2. The kernel density estimate for each DNE is 131 
shown. c) Phenome- and genome-wide analyses performed in this study for the nine DENs. 132 
phenome-wide association studies (PWAS) were conducted to associate the nine DNEs with 133 
phenotypes across nine organ systems, cognition, and lifestyle factors. Genome-wide association 134 
studies (GWAS) were performed to investigate associations between the nine DNEs and 135 
common genetic variants (SNPs). Finally, the nine DNEs and their polygenic risk scores 136 
predicted 14 disease categories (ICD-10-based) and mortality. 137 
 138 
All nine DNEs are evident in the general population  139 

We tested whether the neuroanatomical patterns defined in the four disease populations could be 140 
found in the general population. We applied the DNE models pre-trained for each disease 141 
population to the UKBB general population to measure the degree of expression of each DNE at 142 
the individual level.  143 

We first summarize the neuroanatomical patterns of the nine DNEs (Fig. 2a and Method 144 
3b). The original patterns identified in the disease populations1–4 manifest in the general 145 
population. AD1 exhibits a pattern of brain atrophy (i.e., negative correlation) across various 146 
brain volumes, while AD2 involves focal atrophy of the medial temporal lobe and hippocampus. 147 
ASD1 captures a pattern of mildly lower GM volumes in several subcortical regions, including 148 
the pallidum, amygdala, and putamen, whereas ASD2 reflects a pattern of relatively larger GM 149 
volumes (i.e., positive correlation) in subcortical regions. ASD3, conversely, is characterized by 150 
relatively larger GM volumes in several cortical areas, including the insula.  LLD1 (positive 151 
correlation) and LLD2 (negative correlation) are characterized by widespread patterns of 152 
regional GM volumes, including the middle frontal gyrus, the insula, and the thalamus. For 153 
schizophrenia, a widespread pattern of reduced brain volumes (e.g., insula) is associated with 154 
SCZ1, whereas SCZ2 displays increased volumes of the putamen and pallidum. The details of 155 
the P-value, sample sizes, and β values of the linear regression are presented in Supplementary 156 
eFile 1 (from disease-specific populations1–4) and 2 (from UKBB). 157 

Compared to the disease populations, the neuroanatomical patterns of the nine DNEs 158 
displayed remarkable deviations in the general population. These deviations were characterized 159 
by significant over- and under-expression, except for ASD2, after correcting for multiple 160 
comparisons using the Bonferroni method (Fig. 2b). For instance, AD1, characterized by diffuse 161 
brain atrophy in the ADNI data, showed a significant under-expression (i.e., a smaller mean of 162 
the DNE score) in the general population. Conversely, the subcortical atrophy pattern originally 163 
identified in ASD1 from the ABIDE data displayed a significant over-expression (i.e., a larger 164 
mean of the DNE score) in the participants from the general population.  165 

These results provided compelling evidence that the nine DNEs are present in the general 166 
population. The contrast in their expression (i.e., over- and under-expression) between the 167 
disease-specific and UKBB general populations is expected and underscores their potential 168 
relevance as sub-clinical or vulnerability quantitative indices. 169 
 170 
The nine DNEs exhibit phenotypic associations with traits beyond the brain 171 

To delineate their phenotypic landscape, we associated the nine DNEs with 611 phenotypes in 172 
UKBB. To avoid circularity, the PWAS did not include the 119 GM ROIs derived from T1-173 
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weighted MRI, from which the nine DNEs were derived. Out of the 611 additional clinical traits 174 
spanning multiple organ systems, cognition, and lifestyle factors, we discovered 1818 significant 175 
associations after applying the Bonferroni correction (P-value < 0.5/611) (Fig. 2c, 176 
Supplementary eFile 2, and Method 3c). 177 
 Of the 1818 significant associations, 91% were related to the brain. For example, the 178 
mean intracellular volume fraction in the superior frontal-occipital fasciculus derived from the 179 
multi-shell NODDI28 model was significantly associated with AD1 [b=-0.67±0.02, -log10(P-180 
value) > 300]. Multiple DNEs were significantly associated with the biological age gap (BAG: 181 
AI-predicted age minus chronological age) of the brain [e.g., SCZ2: b=0.19±0.01, -log10(P-182 
value)=50.10]. Furthermore, 2% of the phenotypes related to the musculoskeletal system were 183 
associated with the nine DNEs. The nine DNEs were also largely associated with many 184 
phenotypes related to mental health (1%). For example, the neuroticism score was significantly 185 
associated with LLD2 [b=-1.09x10-2±2.42x10-3, -log10(P-value)=5.20] (Supplementary eFile 3). 186 

We conducted two sensitivity analyses to validate the main PWAS results (Method 3c). 187 
We obtained high concordance rates in split-sample (98.03%) and sex-stratified analyses 188 
(93.98%). Detailed results can be found in Supplementary eText 1 and Supplementary eFile 4 189 
and 5 for split-sample and sex-stratified analyses. 190 
 As anticipated, 91% of the significant associations were linked to the brain, given that the 191 
DNEs were derived from regional brain volumetrics in brain disease-specific populations. 192 
However, it is noteworthy that these phenotypic associations extended beyond the brain, 193 
providing evidence for the significant associations between the brain and the rest of the body.   194 
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 195 
Figure 2: Phenome-wide associations of the nine DNEs 196 

 197 
a) The neuroanatomical patterns of the nine DNEs were manifested in the UKBB general 198 
population and were concordant with the patterns initially derived from the original disease 199 
populations1–4,. A linear regression model was applied to the 119 gray matter regions of interest 200 
(ROIs) derived from T1-weighted MRI data while accounting for various covariates (Method 201 
3b). We present the b coefficients of the ROIs that withstood the Bonferroni correction. Positive 202 
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correlations are depicted using warm reddish colors, while cold blue colors represent negative 203 
correlations. For AD2, we showed the sagittal view to visualize the hippocampus and medial 204 
temporal lobe. b) The nine DNEs are over-expressed (i.e., a higher mean of the DNE score in the 205 
population) and under-expressed (i.e., a lower mean of the DNE score) in the general population 206 
compared to the disease populations. The kernel density estimates of the nine DNEs are shown 207 
for both the training dataset (gray-colored in patients) and the independent test dataset from the 208 
UK Biobank (UKBB). Significant differences that survived the Bonferroni corrections between 209 
the training and independent test datasets (two-sampled t-test) are denoted with the symbol *. c) 210 
Phenome-wide associations (PWAS) between the nine DNEs (left panel) and 611 phenotypes 211 
(middle panel) are dominated by brain phenotypic measures. The length of each rectangle block 212 
indicates the percentage of associations for each DNE or phenotype category. The right panel 213 
shows representative phenotypes linked to multiple phenotype categories with the highest 214 
statistical significance after the Bonferroni correction (P-value<0.05/611). A thicker colored line 215 
corresponds to a higher value of -log10(P-value). The symbols "+" and "-" represent positive and 216 
negative correlations.  217 
 218 
Genome-wide associations identify 66 genomic loci associated with the nine DNEs  219 

At the genome-wide significance level (P-value<5x10-8), GWAS (Method 4a) identified 10, 8, 220 
5, 21, 9, 1, 3, 3, and 6 genomic loci significantly associated with AD1, AD2, ASD1, ASD2, 221 
ASD3, LLD1, LLD2, SCZ1, and SCZ2, respectively (66 in total, Fig. 3a, and Supplementary 222 
eFile 6). At a more stringent significance level (P-value<5x10-8/9), 31 loci passed the Bonferroni 223 
correction. Notably, 41 loci are novel – their top lead SNP was not associated with any clinical 224 
traits in the EMBL-EBI GWAS Catalog29, as annotated in Fig. 3a (Method 4c, query date: 2nd 225 
June 2023, via FUMA version: v1.5.4). To support the robustness of our GWAS, we estimated 226 
the intercept of linkage disequilibrium score regression (LDSC)30 and obtained intercepts of 227 
1.003, 1.0314, 0.9969, 1.0155, 1.0129, 1.0131, 1.0166, 1.0109, 1.0127 for the nine DNEs. All 228 
intercepts were close to 1, indicating no substantial genomic inflation in our GWASs. The 229 
Manhattan and QQ plots of the nine GWASs are presented in Supplementary eFigure 2-10. 230 

All DNEs are significantly heritable (0.24<h2<0.66, P-value<1x10-10) after Bonferroni 231 
correction (Fig. 3a, Supplementary eTable 1, and Method 4b). We employed the GCTA31 232 
software to estimate h2, acknowledging that previous research32,33 has demonstrated variations in 233 
the magnitude of h2 estimates based on the choice of methods.  234 

We further investigated the significant genomic loci by mapping them to protein-235 
encoding genes and examining their functional implications through expression quantitative trait 236 
loci (eQTL) mapping. Supplementary eFigure 1 presents the regional Manhattan plot for the 237 
most significant genomic locus associated with each DNE. For example, we identified a locus 238 
associated with ASD2 (top lead SNP: rs3068507 at 20q11.21) and a neighboring locus associated 239 
with SCZ1 (top lead SNP: rs6088962 at 20q11.21), both of which mapped to the MYLK2 gene 240 
(Supplementary eFigure 1d and h). MYLK2 encodes a myosin light chain kinase primarily 241 
expressed in adult skeletal muscle. 242 

We conducted six sensitivity analyses to validate the main GWAS results (Method 4a). 243 
Overall, we obtained high concordance rates in split-sample, sex-stratified  (63.26-92.54%), and 244 
longitudinal GWAS analyses (100%, N=1116), but the concordance rates were relatively low in 245 
non-European ancestry GWAS, independent ADNI GWAS, and six case-control GWAS34–39 of 246 
neurodegenerative and neuropsychiatric disorders from the psychiatric genetic consortium. Refer 247 
to Supplementary eText 2 and Supplementary eTable 2 for details. The sample sizes for the 248 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 24, 2023. ; https://doi.org/10.1101/2023.08.16.23294179doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.16.23294179
http://creativecommons.org/licenses/by-nc/4.0/


 

10 
 

non-European (N=4783) and ADNI (N=1555) samples are small; the case-control GWAS from 249 
the psychiatric genetic consortium may overlook the heterogeneity within each disease. Detailed 250 
results are presented in Supplementary eText 2 for the sensitivity results, Supplementary eFile 251 
7-12 for replicated SNPs/loci, and Supplementary eFigures 2-10 for Manhattan and QQ plots 252 
and the LDSC intercepts. In addition, all GWAS results are also publicly available in the 253 
MEDICINE web portal: http://labs.loni.usc.edu/medicine/. In conclusion, our GWASs identified 254 
many novel genomic loci that previous case-control GWASs might have missed. 255 
 256 
The genetic associations of the nine DNEs parallel their phenotypic associations 257 

We performed a phenome-wide look-up analysis (Method 4d) to understand the phenotypic 258 
associations of these identified genomic loci in the literature.  259 

In total, 2525 clinical traits were associated with genetic variants in our GWAS, 260 
including traits linked to multiple organ systems, cognition, and lifestyle factors (Fig. 3b and 261 
Supplementary eFile 13). The genomic loci were largely associated with clinical traits of the 262 
brain (53%), musculoskeletal (17%), immune system (6%), neurodegenerative (1%), and 263 
neuropsychiatric (1%) diseases. For example, AD2 genomic loci were largely associated with 264 
traits related to the brain (565 out of 781, e.g., IDPs), musculoskeletal (133/781, e.g., standing 265 
height), immune (17/781, e.g., reticulocyte count), cognition (15/781, e.g., cognitive 266 
performance), lifestyle factors (13/781, e.g., smoking), and neurodegenerative traits (1/781, i.e., 267 
neurofibrillary tangles).  268 

The findings closely align with the phenotypic associations observed in Fig. 2c, 269 
reinforcing that the DNEs share genetic determinants linked to organs beyond the brain, lifestyle 270 
factors, and cognition.   271 
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Figure 3: Genome-wide associations of the nine DNEs 272 

 273 
a) Genome-wide associations identified 66 (10, 8, 5, 21, 9, 1, 3, 3, 6 for the nine DNEs) genomic 274 
loci (P-value<5x10-8) associated with the nine DNEs. Using the top lead SNP, we denoted the 41 275 
novel genomic loci – not associated with any clinical traits in the EMBL-EBI GWAS Catalog. 276 
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The left legend indicates the significant SNP-based heritability (h2) for the nine DNEs; the right 277 
legend represents the SNP density of our genetic data throughout the human genome. GWAS 278 
was performed using the Genome Reference Consortium Human Build 37 (GRCh37). b) 279 
Phenome-wide association query of the previously identified genomic loci (left panel) in the 280 
EMBL-EBI GWAS Catalog (via FUMA 1.4.2) shows a brain-dominant genetic architecture. We 281 
categorized all clinical traits (middle panel) into several high-level categories linked to multiple 282 
organ systems, neurodegenerative and neuropsychiatric disorders, lifestyle factors, etc. We then 283 
show the keyword cloud plots for each category (right panel).   284 
 285 
The genetic correlation of the nine DNEs  286 

To understand the shared genetic underpinnings, we estimated the genetic correlation30 (gc) 287 
(Method 4e) between the nine DNEs, the BAG of nine human organ systems, and six brain 288 
diseases (AD, attention-deficit/hyperactivity disorder, autism spectrum disorder, bipolar, 289 
obsessive-compulsive disorder, schizophrenia; Supplementary eTable 2) from the psychiatric 290 
genetic consortium.  291 

We first estimated the gc between each pair of DNEs (Fig. 4a). Numerous DNEs 292 
exhibited strong genetic correlations with each other. Among these, the highest positive genetic 293 
correlation was obtained between ASD2 and SCZ1 (gc=0.57±0.04); the highest negative genetic 294 
correlations were obtained between ASD2 and ASD1 (gc=-0.55±0.04), and between ASD3 and 295 
SCZ1 (gc=-0.51±0.05). We also observed a substantial alignment between the phenotypic 296 
correlation (pc) and the genetic correlation of pairwise DNEs, supporting the long-standing 297 
Cheverud's Conjecture40. However, we identified two exceptions where the observed phenotypic 298 
and genetic correlations exhibited opposite directions. ASD1 and ASD3 showed a negative 299 
phenotypic (pc=-0.39±0.08) but a positive genetic correlation (gc=0.21±0.05); ASD1 and LLD1 300 
showed a negative phenotypic (pc=-0.34±0.09) but a positive genetic correlation (gc=0.16±0.07) 301 
(Supplementary eTable 3). This implies that non-genetic factors may exert opposite influences 302 
on the two DNEs. 303 
 Between the nine DNEs and the BAGs across nine human organ systems, we found 304 
significant genetic correlations between AD1 (gc=0.23±0.05), ASD1 (gc=0.44±0.05), LLD2 305 
(gc=0.24±0.07), SCZ1 (gc=0.26±0.06), and the brain BAG, and between ASD1 and the eye BAG 306 
(gc=0.19±0.07) (Fig. 4b and Supplementary eTable 4).  307 

Finally, we also found a marginally significant genetic correlation between AD2 and AD 308 
(gc=0.22±0.12), AD1 and bipolar disorder (BIP, gc=-0.08±0.04), and ASD3 and BIP 309 
(gc=0.09±0.04) using GWAS summary statistics from the psychiatric genetic consortium (Fig. 4c 310 
and Supplementary eTable 5). 311 
 In summary, the nine DNEs demonstrate substantial genetic correlations among 312 
themselves and with organ systems beyond the brain, including the eye. These findings highlight 313 
the interconnectedness of the neuroanatomical patterns and genetic determinants across multiple 314 
body systems and diseases, suggesting shared underlying etiological factors and potential 315 
pleiotropic effects.  316 
 317 
The genetic colocalization of the nine DNEs  318 

To seek the shared causal variants between two clinical traits (e.g., AD1 vs. LLD2), we 319 
performed Approximate Bayes Factor colocalization41 analyses (Method 4f) between the nine 320 
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DNEs (Fig. 4d), with the nine BAGs (Fig. 4e), and the six brain disorders from the psychiatric 321 
genetic consortium (Fig. 4f).  322 

Among the nine DNEs, we detected 53 causal variants (SNPs) exhibiting significant 323 
colocalization signals. We showcased the shared causal variant (rs2790099 at 6p21.1) between 324 
ASD2 and SCZ2 with a PP.H4.ABF=0.92. This causal SNP was mapped to the RUNX2 gene. 325 
The loss of function in RUNX2 causes a rare autosomal dominant skeletal disorder – 326 
cleidocranial dysplasia42, but it was implicated in ASD or SCZ in previous literature. 327 

Between the nine DNEs and nine BAGs, we identified 16 causal variants (SNPs) 328 
exhibiting significant colocalization signals. We showcased the shared causal variant (rs5848503 329 
at 3p22.1) between ASD2 and the brain BAG with a PP.H4.ABF=0.95. One mapped gene in this 330 
locus is the MOPB gene, which encodes the myelin-associated oligodendrocytes basic protein 331 
and is actively involved in the structural constituent of the myelin sheath and nervous system 332 
development. This gene was previously implicated in ASD using single-cell genomics43, SCZ44, 333 
amyotrophic lateral sclerosis, and Parkinson's disease45.  334 

Between the nine DNEs and six brain diseases from the psychiatric genetic consortium, 335 
we identified 7 causal variants (SNPs) exhibiting significant colocalization signals. We 336 
showcased the shared causal variant (rs9257566 at 6p22.1) between ASD3 and SCZ with a 337 
PP.H4.ABF=-0.82. In this locus, multiple olfactory receptor (OR) genes and the dysfunction of 338 
the olfactory system were implicated in SCZ46,47 and ASD48,49. For instance, the OR2J2 and 339 
OR2J3 genes are two protein-coding genes in copy number variants associated with SCZ using 340 
microRNA data50. The causal SNP (rs9257566) was associated with SCZ and brain IDP, such as 341 
white matter microstructural measures (Supplementary eFigure 11). The sensitivity checks on 342 
the prior probability (p12) for the three illustrations are shown in Supplementary eFigure 12a-343 
c. The causal variant, cytogenetic region, and their colocation signal direction (based on β 344 
coefficients) are presented in Supplementary eFigure 13a-c and Supplementary eFile 14, 15, 345 
and 16, respectively.  346 

The genetic colocalization of the nine DNEs revealed causal genetic variants, indicating 347 
that the same genomic regions may causally influence the expression of these dimensional 348 
neuroimaging endophenotypes. The colocalization findings strengthen the notion that these 349 
DNEs share a fundamental genetic architecture. 350 

 351 
The causal relationship of the nine DNEs  352 

We applied bidirectional two-sample Mendelian randomization analyses51 (Method 4g) to depict 353 
a causal network between the nine DNEs, the eight BAGs (excluding the brain BAG), and eleven 354 
chronic diseases spanning the whole-body system.  355 

For each pair of DNEs, as the GWAS populations completely overlapped, conducting 356 
two-sample Mendelian randomization was not feasible52. Alternatively, the split-sample GWAS 357 
did not yield sufficient statistical power due to the limited number of instrumental variables (VI) 358 
available (< 6 SNPs). 359 

Among the nine DNEs and eight BAGs, we found potential causal effects of the eye 360 
BAG on LLD1 [P-value=4.57x10-3, OR (95% CI) = 1.14 (1.04, 1.24), number of SNPs=16], the 361 
cardiovascular BAG on ASD3 [P-value=6.04x10-3, OR (95% CI) = 1.16 (1.04, 1.29), number of 362 
SNPs=34], and the pulmonary BAG on LLD2 [P-value=1.98x10-3, OR (95% CI) = 1.14 (1.04, 363 
1.25), number of SNPs=49]. No significant causal signals persisted after the Benjamini-364 
Hochberg correction in the inverse analyses (Fig. 4g). Details of the results, including all five 365 
different Mendelian randomization estimators, are shown in Supplementary eFile 17.  366 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 24, 2023. ; https://doi.org/10.1101/2023.08.16.23294179doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.16.23294179
http://creativecommons.org/licenses/by-nc/4.0/


 

14 
 

Between the nine DNEs and eleven chronic diseases, encompassing brain-related 367 
conditions and diseases affecting other organs, we identified a potential causal effect from AD2 368 
to AD (but not the reversed direction) using the GWAS summary statistics from the psychiatric 369 
genetic consortium – the largest sample size (N=1,126,536) in the AD case-control study [P-370 
value=1.74x10-4, OR (95% CI) = 1.25 (1.11, 1.40), number of SNPs=7] (Fig. 4h and 371 
Supplementary eFigure 17). Details of the results, including all five different Mendelian 372 
randomization estimators, are shown in Supplementary eFile 18. 373 

The Mendelian randomization results further emphasize the potential benefits of overall 374 
organ health for brain-related conditions. This highlights the interconnectedness between various 375 
organ systems and the brain, underscoring the significance of a holistic health and disease 376 
prevention approach.   377 
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Figure 4: The genetic correlation, colocalization, and causal networks of the nine DNEs 378 

 379 
a) The genetic correlation between two DNEs (gc, lower triangle) mirrors their phenotypic 380 
correlation (pc, upper triangle). Red-shadowed rectangles highlight two exceptions. The symbol 381 
* indicates significant results after the Benjamini-Hochberg correction. The symbol # indicates 382 
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nominal significance. b) genetic correlations between the nine DNEs and nine biological age 383 
gaps (BAG) for nine human organ systems17. Solid arrow lines (from the exposure to the 384 
outcome variables) indicate significant causal relationships after the Benjamini-Hochberg 385 
correction; dotted arrow lines show nominal significance (P-value<0.05). c) genetic correlations 386 
between the nine DNEs and six neurodegenerative and neuropsychiatric disorders. d) genetic 387 
colocalization was evidenced at one locus (6p21.1) between ASD2 and SCZ1. The signed 388 
PP.H4.ABF (0.92) denotes the posterior probability (PP) of hypothesis H4, which suggests that 389 
both traits share the same causal SNP (rs2790099). A positive PP indicates concordant b values 390 
for both DNEs, while a negative PP implies opposite b values. e) genetic colocalization was 391 
evidenced at one locus (3p.22.1) between ASD2 and brain BAG: PP.H4.ABF=0.95 with the 392 
cause SNP rs5848503. f) genetic colocalization was evidenced at one locus (6p.22.1) between 393 
ASD3 and SCZ case-control GWAS38 from the psychiatric genetic consortium (European 394 
ancestry): PP.H4.ABF=-0.82 with the cause SNP rs9257566. g) the causal network of the nine 395 
DNEs with the eight BAGs using bidirectional Mendelian randomization. h) the causal network 396 
of the nine DNEs with the eleven chronic diseases (e.g., AD, ADHD, BIP, and SCZ from the 397 
psychiatric genetic consortium). The symbols + (OR>1 and gc>0) and – (OR<1 and gc<0) 398 
represent a positive relationship between the two traits. Abbreviation: AD: Alzheimer's disease; 399 
ADHD: Attention-deficit/hyperactivity disorder; ASD: autism spectrum disorder; BIP: bipolar 400 
disorder; SCZ: schizophrenia; OCD: Obsessive-compulsive disorder; RA: rheumatoid arthritis; 401 
CD: Crohn's disease; T2D: type 2 diabetes; IBD: inflammatory bowel disease; PBC: Primary 402 
biliary cirrhosis. 403 
 404 
The nine DNEs and their PRSs significantly improve prediction for 14 systemic diseases 405 

and mortality  406 

We investigated the added prediction power of the nine DNEs and their respective PRS (Method 407 
4h) for 14 systemic diseases based on the ICD-10 code and mortality outcomes (i.e., the date of 408 
death). The definition of the patient and healthy control groups and the mortality outcome are 409 
presented in Method 5. As anticipated, the prediction performance across all tasks was modest, 410 
considering that the DNEs were derived from specific disease populations. However, the DNEs 411 
can significantly enhance prediction performance when combined with other commonly 412 
available features (e.g., age and sex). 413 
 In addition to commonly available features, such as age and sex, we found that AD1, 414 
ASD1, LLD1, SCZ1, and SCZ2 provided additional prediction power (i.e., incremental R2) for 415 
many disease categories (Method 5a). Across the 14 disease categories, the DNEs showed 416 
higher incremental R2 in mental and behavioral disorders (ICD-10 code: F) and diseases linked to 417 
the central nervous system (ICD-10 code: G) than other disease categories, proving that the nine 418 
DNEs in the general population capture brain disease-related effects. Combining all nine DNEs 419 
further improved the incremental R2, especially in mental and behavioral disorders (R2=1.01%, 420 
P-value=1.74x10-5) and diseases linked to the central nervous system (R2=0.63%, P-421 
value=1.33x10-5) (Fig. 5a). Detailed results are shown in Supplementary eTable 6. Results 422 
using only the PRS target population are presented in Supplementary eFigure 18. 423 

Compared to the nine DNEs, the nine PRSs provided smaller additional prediction power. 424 
For example, the PRS for ASD3 explained an additional 0.05% of the variance (incremental R2) 425 
in diseases associated with the blood and immune systems (P-value=0.03), as well as neoplasms 426 
(P-value=0.04). Combining all nine PRSs improves the incremental R2, particularly in mental 427 
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and behavioral disorders (R2=0.3%, P-value=0.047). No results survived the multiple 428 
comparisons using the Benjamini-Hochberg method (Fig. 5b). Detailed results are shown in 429 
Supplementary eTable 7. 430 

We assessed the prediction ability of support vector machines (SVM) at the individual 431 
level to classify the 14 disease categories (Method 5b). The highest performance was observed 432 
for eye diseases (ICD-code: H0-5). The inclusion of PRSs, DNEs, and the combination of both, 433 
along with age and sex as features, resulted in improved classification accuracy for mental and 434 
behavioral disorders. For example, the accuracy increased from 0.51 to 0.55 and 0.57 for features 435 
of age and sex, 9 DNESs, and 9 PRs, incrementally (Fig. 5c). These findings highlight the added 436 
value of incorporating the nine DNEs and PRSs in predicting these disease categories. Detailed 437 
results are shown in Supplementary eTable 8. 438 

Finally, we evaluated the prediction power of the nine DNEs and PRSs for mortality risk 439 
prediction using the Cox regression. Among these, SCZ1, SCZ1-PRS, ASD1, and AD1-PRS 440 
were significantly associated with the risk of mortality (Fig. 5d and Supplementary eTable 9a). 441 
Adding SCZ1, AD1-PRS, ASD1, and SCZ1-PRS to age and sex further improved the prediction, 442 
but the performance decreased afterward (Fig. 5e). Lastly, incorporating the nine DNEs from the 443 
second scan of 1348 participants into the model slightly increased the statistical significance and 444 
the HR (Supplementary eTable 9b and c)  445 
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Figure 5: Additional prediction power of the nine DNEs and PRSs for 14 systemic diseases 446 
and mortality outcomes 447 

 448 
a) The incremental R-squared (R2) values of the nine DNEs for predicting 14 systemic disease 449 
categories were assessed using the entire UKBB sample, with N=39,178 participants as 450 
independent test data. The results focusing only on the PRS target population (N=15,891) can be 451 
found in Supplementary eFigure 18. The details to derive R2 are presented in Method 5a. 452 
"ALL" indicates the incremental R2 contributed by combining the nine DNEs. b) The incremental 453 
R2 of the PRS of the nine DNEs to predict 14 systemic diseases based on the ICD-10 code using 454 
only the PRS target sample. c) In the PRS target sample, disease classification accuracy from the 455 
independently hold-out test data (N=5581) was assessed using nested cross-validated support 456 
vector machines in the training/validation/test data (N=10,000) by fitting various sets of features 457 
(Cov indicates age and sex). d) The SCZ1, SCZ1-PRS, AD1-PRS, and ASD1 show significant 458 
associations with the risk of mortality in the PRS target sample. Age and sex were included as 459 
covariates in the Cox proportional hazard model. e) The nine DNEs and PRSs were cumulatively 460 
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included as features in cross-validation for mortality risk prediction. The symbol * indicates 461 
significant results that survived the Benjamini-Hochberg correction. The symbol # indicates 462 
nominal significance. HR: hazard ratio; CI: concordance index.   463 
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Discussion 464 

This study investigated the manifestation of nine disease-related brain endophenotypes – derived 465 
from four case-control studies via semi-supervised AI methods – in the general population of 466 
39,178 participants in UKBB. We assessed commonalities and differences among the nine 467 
DNEs, their genetic correlates in the general population, their relationships with the multiple 468 
human organ systems, and their predictive capacity for 14 systemic disease categories and 469 
mortality. Our findings demonstrate the clinical applicability of the nine AI-derived DNEs in 470 
identifying high-risk individuals within the general population prone to developing the four 471 
major brain disorders. 472 
 473 
Shared neuroanatomical patterns and genetic determinants across the four brain diseases 474 

in the general population 475 

Understanding the etiology of neurodegenerative and neuropsychiatric diseases is a complex and 476 
ongoing challenge in medical research15,16,34,36–39,53. Our results suggest that shared underlying 477 
mechanisms and genetic factors may contribute to these disorders' development and progression 478 
in the general population. This notion of shared etiology across the four major neurodegenerative 479 
and neuropsychiatric diseases, namely ASD, SCZ, LLD, and AD, has garnered considerable 480 
attention and reshapes our understanding of these conditions15,16.  481 
 Despite the inherent heterogeneity among neuroanatomical patterns observed in different 482 
brain diseases (Fig. 2a), a notable commonality exists regarding their manifestations, which 483 
might emanate from underlying mechanisms sharing neuropathologic characteristics and 484 
pathways. As an illustration, AD1, LLD2, and SCZ1 exhibited a negative correlation (brain 485 
atrophy) with global cortical volume (e.g., bilateral insula and middle frontal gyrus). This aligns 486 
with expectations, considering that the UKBB population includes individuals primarily from 487 
mid to late life (above 45 years), evidenced by the brain chart of the human lifespan54. From an 488 
etiological standpoint, various factors can contribute to the global cortical volume reduction 489 
within the general population, with late-onset neurodegenerative and neuropsychiatric disorders 490 
and aging exerting a significant impact. Likewise, ASD2 and SCZ2 exhibited a positive 491 
association with the basal ganglia, including the globus pallidum. This could imply the existence 492 
of potential protective genetic or environmental factors that collectively contribute to the concept 493 
of "brain reserve", which might mitigate volume loss in a portion of the general population. 494 
Notably, we previously revealed that individuals predominantly expressing SCZ2 exhibited 495 
higher levels of education4 and higher rates of remission compared to the group primarily 496 
influenced by SCZ1. Alternatively, these volume increases might reflect neuropathologic 497 
mechanisms, such as disrupted connectivity, which are not necessarily associated with 498 
neurodegenerative and neurodevelopmental components related to relatively lower brain 499 
volumes. 500 

Overall, the commonalities in neuroanatomical patterns across brain diseases can be 501 
attributed to several factors. First, shared genetic factors may influence brain structure and 502 
function26,55,56, contributing to similar neuroanatomical alterations across different diseases. For 503 
example, in one recent meta-analysis of 193 studies57, the authors found a common brain 504 
network defined by positive connectivity to the anterior cingulate and insula and negative 505 
connectivity to the posterior parietal and lateral occipital cortex among six psychiatric disorders. 506 
Genetically, this was largely evidenced by our genetic correlation (Fig. 4a) and colocalization 507 
results (Fig. 4d). For instance, ASD2 showed prominent positive genetic overlap with SCZ1. 508 
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Historically, there has been a long-standing association between ASD and SCZ, leading to the 509 
notion that autism could be a form of "childhood schizophrenia"58. This conceptual link between 510 
the two conditions has been debated and discussed. Previous case-control neuroimaging studies 511 
demonstrated divergent structural and functional brain patterns in individuals with ASD 512 
compared to those with SCZ59, largely ignoring the neuroanatomical heterogeneity within each 513 
condition. Genetic variants that impact key signaling pathways, synaptic function, and neuronal 514 
connectivity60,61 could influence multiple disease phenotypes, leading to overlapping 515 
neuroanatomical patterns. We performed additional MAGMA gene-set analysis62 to test the 516 
genetic similarity between ASD2 and SCZ1. The most significant biological pathway underlying 517 
ASD2 is the negative regulation of locomotion (GO 0040013, P-value=2.27x10-5, β=0.22±0.02), 518 
implicated in biological processes that stop, prevent, or reduce the frequency, rate, or extent of 519 
locomotion of a cell or organism. The most significant biological pathway for SCZ1 is the 520 
negative regulation of neurotransmitter transport (GO 0051589, P-value=1.41x10-5, 521 
β=0.22±0.02), involved in biological processes that downregulate the directed movement of a 522 
neurotransmitter into, out of, or within a cell. In particular, the latter supports the involvement of 523 
dopamine and glutamate, two major neurotransmitters in the central nervous system, in 524 
schizophrenia63, and the gross abnormalities of serotonin and dopamine transporter bindings in 525 
autism patients64.  526 

AD1 also shared genetic similarities with LLD1, both characterized by spatially extensive 527 
brain atrophy and increased brain age. Previous studies found a higher prevalence of depressive 528 
symptoms and LLD in individuals with AD compared to the general population65–67. The 529 
relationship between AD and LLD likely involves multiple factors and may be bidirectional. On 530 
the one hand, LLD may increase the risk of developing AD or accelerate the progression of 531 
cognitive decline in individuals already affected by AD. On the other hand, AD-related changes 532 
in the brain, such as neuroinflammation and neurochemical imbalances, may worsen depressive 533 
symptoms in individuals with LLD.  534 

Recognizing the shared etiology across the four brain diseases challenges traditional 535 
diagnostic boundaries and underscores the importance of a broader perspective on clinical 536 
presentations and underlying biological mechanisms. This understanding is important for 537 
developing targeted and personalized approaches to patient care, leading to more effective 538 
treatments and interventions. 539 

 540 
Beyond the brain  541 

Our findings strongly concur with a paradigm shift in treating brain diseases. While the 542 
conventional approach has predominantly concentrated on interventions targeting the brain, 543 
emerging evidence highlights the critical importance of considering the broader systemic and 544 
environmental factors that influence disease onset and progression1,17,18,68,69.  545 

Unraveling the intricate interconnections between the brain and other organ systems is 546 
crucial in broadening our understanding of brain diseases, as demonstrated by our findings and 547 
other findings17,69. The brain does not function in isolation but interacts with and is influenced by 548 
various physiological systems throughout the body. Our results showed a close genetic 549 
association and causality between the DNEs and the eye, cardiovascular, and pulmonary systems 550 
(Fig. 4b and g). These findings parallel previous literature. For instance, eye-related pathological 551 
changes have been revealed to mirror early signs of neurological and neuropsychiatric 552 
conditions70. The nervous and cardiovascular systems – the heart-brain axis – are intricately 553 
linked, with brain regions controlling heart function via sympathetic and parasympathetic 554 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 24, 2023. ; https://doi.org/10.1101/2023.08.16.23294179doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.16.23294179
http://creativecommons.org/licenses/by-nc/4.0/


 

22 
 

pathways71. Dysfunctions in one system can affect the other's function, resulting in brain and 555 
cardiovascular diseases. The immune system plays a crucial role in modulating inflammation and 556 
neuroinflammation, which are implicated in many brain disorders, such as AD72, SCZ73, and 557 
depression74. Similarly, the gut-brain axis highlights the bidirectional communication between 558 
the gut microbiota and the brain, with emerging evidence linking alterations in the gut 559 
microbiome to brain diseases such as Parkinson's disease75 and depression76. Understanding and 560 
targeting these systemic interactions can modulate disease processes and improve treatment 561 
outcomes. 562 

Furthermore, considering environmental and lifestyle factors is essential in treating brain 563 
diseases77. Our previous work17 has shown that the BAGs of nine human organ systems comply 564 
with Cheverud's Conjecture: the phenotypic correlation of two BAGs mirrors their genetic 565 
correlations. However, herein we showed that the phenotypic correlation between two DNEs 566 
(e.g., ASD1 vs. LLD1) did not reflect their underlying genetic correlation (Fig. 4a), indicating 567 
potentially strong environmental and lifestyle factors that exert opposite effects on the two 568 
DNEs. Furthermore, an interesting observation from our study was that the heritability estimate 569 
(h2) of early-onset diseases, such as ASD, was higher than that of late-onset diseases, such as 570 
LLD, within the three neuropsychiatric disorders. This finding suggests that genetic factors play 571 
a more prominent role in developing ASD at a younger age. In contrast, other factors, such as 572 
environmental influences, socioeconomic factors, and lifestyle choices, may have a stronger 573 
impact on developing LLD later in life. These differential heritability patterns shed light on the 574 
complex interplay between genetic and non-genetic factors in the etiology of neurodegenerative 575 
and neuropsychiatric disorders across different stages of life. These heritability patterns aligned 576 
with a previous study that examined multiple GWAS drawn from more than 200,000 patients for 577 
25 brain-associated disorders and 17 phenotypes16. 578 

In conclusion, going beyond the brain is crucial for understanding and treating brain 579 
diseases. By considering the connections between the brain and other organ systems, 580 
understanding the impact of environmental and lifestyle factors, and harnessing the power of 581 
advanced AI technologies, we can develop more effective and personalized approaches to 582 
prevent, diagnose, and treat brain diseases.  583 

 584 
AI-derived DNEs for precision diagnostics in the general population  585 

The present study leverages cutting-edge, semi-supervised AI methods78 and open science 586 
advancements to enhance our understanding of disease heterogeneity in neurodegenerative and 587 
neuropsychiatric disorders1–3,6,9. In this context, implementing these AI-derived DNEs at early 588 
disease or preclinical stages – in the general population – may facilitate the identification of 589 
individuals at risk, and the initiation of proactive interventions before the onset of noticeable 590 
symptoms, likely leading to more effective treatments and interventions and better outcomes.   591 

The proposed AI-derived DNEs capture intricate brain structure and function variations, 592 
often subtle and spatially complex, which traditional diagnostic methods and case-control studies 593 
may overlook. By quantifying the neuroanatomical patterns associated with specific brain 594 
disorders, DNEs may offer a personalized disease vulnerability assessment, inform interventions 595 
at early preclinical stages, and potentially prevent or delay the onset of symptoms. At the 596 
individual level, integrating genetic information (i.e., PRSs) with DNEs significantly improves 597 
prediction performance for 14 systemic diseases and mortality outcomes (Fig. 5). In addition, our 598 
Mendelian randomization analyses supported the well-established endophenotype hypothesis in 599 
genetic psychiatry21 – endophenotype in psychiatric disorders resides inside the causal pathway 600 
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from underlying genetics to their exo-phenotypes (i.e., the disease itself), thereby being closer to 601 
its etiology. We found that AD2, characterized by focal medial temporal lobe atrophy, exerted a 602 
causal relationship with AD. However, we did not find evidence of a reverse causal relationship, 603 
suggesting that the underlying genetics may influence the development of AD through the DNE, 604 
although it may not be the exclusive pathway contributing to the disease. This highlights the role 605 
of genetics in influencing the disease process, particularly through the identified DNE, shedding 606 
light on potential pathways and mechanisms involved in AD development.  607 

The present study has several limitations. Firstly, the genetic analysis focused exclusively 608 
on common genetic variants. Future investigations should explore the contribution of rare 609 
variants to these brain diseases. Secondly, it is important to recognize that our GWAS analyses 610 
predominantly involved participants of European ancestry, limiting the generalizability of the 611 
genetic findings to other populations with different ancestral backgrounds. Further research 612 
efforts are necessary to collect more diverse genetic data and include underrepresented ethnic 613 
groups to enhance the generalizability of the findings. Additionally, the validation of the nine 614 
DNEs would benefit from additional longitudinal analyses. Fortunately, ongoing efforts to 615 
collect longitudinal brain MRI data in UKBB79 hold promise for providing valuable insights to 616 
the scientific community and advancing the field of precision medicine. 617 

Together, our AI-derived DNEs have emerged as novel instruments for precision 618 
medicine. By capturing the complexity and heterogeneity of brain disorders, DNEs provide a 619 
better understanding of disease pathology, facilitate personalized risk assessment, and hold 620 
promise for targeted interventions and population selection.  621 
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Methods 622 

Method 1: Study populations 623 

Our previous studies used semi-supervised AI models to define the nine DNEs from four disease 624 
case-control populations. These populations consisted of 865 healthy controls (CN), 1096 625 
individuals with mild cognitive impairment (MCI), and 414 AD patients from ADNI19, 362 626 
typically developing controls and 307 patients with autism spectrum disorder (ASD) from 627 
ABIDE20, 495 healthy controls and 501 LLD patients from the LLD study3, and 364 healthy 628 
controls and 307 SCZ patients from PHENOM4. For more detailed information about the 629 
characteristics of the study populations, please refer to the original papers. 630 

The trained AI models were then applied to the UKBB general population as independent 631 
data. UKBB is a population-based study of approximately 500,000 people recruited between 632 
2006 and 2010 from the United Kingdom. The UKBB study has ethical approval, and the ethics 633 
committee is detailed here: https://www.ukbiobank.ac.uk/learn-more-about-uk-634 
biobank/governance/ethics-advisory-committee. The current study analyzed 39,178 multimodal 635 
brain MRI data from UKBB. T1-weighted MRI data were locally processed at the University of 636 
Pennsylvania; imaging-derived phenotypes (IDP) from diffusion and resting-state functional 637 
MRI were downloaded from UKBB. In addition, we processed the imputed genotype data24 from 638 
UKBB for GWAS analyses. Last, other clinical traits were also analyzed, including phenotypes 639 
related to nine human organ systems17,18. The current work was performed under application 640 
numbers 35148 and 60698. To unbiasedly evaluate the PRS and machine learning models, we 641 
defined the following populations: 642 

• Disease case-control populations: The four datasets used to train the AI models and 643 
define the nine DNEs from four brain diseases. 644 

• Independent UKBB general population (N=39,178): The UKBB population in which the 645 
trained AI models were applied to derive the nine DNEs.  646 

• PRS base/target population (split1/split2) (N=15,968): the UKBB population was 647 
divided into two splits (split1 vs. split2) in the split-sample GWAS. To derive the PRS, 648 
we used the GWAS from split1 as the base data and split2 as the target data. All disease 649 
and mortality prediction tasks involving PRS used only the PRS target population 650 
(N=15,968). 651 

 652 

Method 2: Semi-supervised AI methods to derive the nine DNEs 653 

The methodologies used in the current study to derive the nine DNEs belong to the semi-654 
supervised learning algorithms (Fig. 1a) pioneered by our group. Refer to a review for details of 655 
this type of modeling78. In particular, the current study employed the HYDRA27 and Surreal-656 
GAN14 models. 657 
 658 
(a): HYDRA: HYDRA leverages a widely used discriminative method, i.e., support vector 659 
machines (SVM), to seek the "1-to-k" mapping. The novelty is that HYDRA extends multiple 660 
linear SVMs to the non-linear case piecewise, thereby simultaneously serving for classification 661 
and clustering. Specifically, it constructs a convex polytope by combining the hyperplane from k 662 
linear SVMs, separating the CN group from the k subpopulation of the PT (patient) group. 663 
Intuitively, each face of the convex polytope can be regarded to encode each subtype, capturing a 664 
distinct disease effect (Supplementary eMethod 1a). 665 
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  666 
 667 
(b): Surreal-GAN: Surreal-GAN14 dissects underlying disease-related heterogeneity via a deep 668 
representation learning approach, instead of the discriminative SVM, under the principle of semi-669 
supervised clustering – the "1-to-k" mapping. The methodological advance of this method is that 670 
Surreal-GAN models disease heterogeneity as a continuous dimensional representation, enforces 671 
monotone disease severity in each dimension, and allows the non-exclusive manifestation of all 672 
dimensions in the same participant (Supplementary eMethod 1b).   673 
 674 
Method 3: Imaging analyses 675 

(a): T1-weighted MRI processing: All images were first corrected for magnetic field intensity 676 
inhomogeneity.80 A deep learning-based skull stripping algorithm was applied to remove extra-677 
cranial material. In total, 145 IDPs were generated in gray matter (GM, 119 ROIs), white matter 678 
(WM, 20 ROIs), and ventricles (6 ROIs) using a multi‐atlas label fusion method.81 The ROIs 679 
were fit to the four machine learning models to derive the nine DNEs. The imaging quality check 680 
is detailed in Supplementary eMethod 2. The other IDPs derived from other MRI modalities 681 
(i.e., diffusion and resting-state MRI) were downloaded from UKBB. 682 
 683 
(b): Neuroanatomical pattern of the nine DNEs: We assessed the neuroanatomical patterns 684 
exhibited by the nine DNEs within the general population. Since the DNEs were defined based 685 
on the 119 GM ROIs obtained from T1-weighted MRI scans, we aimed to test whether these 686 
patterns observed in the disease populations were manifested in the general population. To this 687 
end, we used a linear regression model in which each DNE was treated as the dependent 688 
variable, while the ROI, age, age-squared, sex, age x sex interaction, age-squared x sex 689 
interaction, intracranial volume, brain positions in the scan, and head motion were considered 690 
independent variables and covariates. We employed the Bonferroni method for multiple 691 
comparisons and reported significant results accordingly. 692 
 693 
(c): PWAS for the nine DNEs: We performed PWAS to associate the nine DNEs to each of the 694 
611 additional phenotypes (Supplementary eFile 1). PWAS excluded the 119 GM ROIs utilized 695 
to derive the nine DNEs to prevent any potential circular effects. Instead, the analysis 696 
incorporated IDPs from other modalities, such as diffusion and resting-state functional MRI. The 697 
same linear or logistic (for binary trait) regression models and multiple comparison corrections 698 
were employed.  699 
 To check the robustness of our PWAS results, we also performed two sensitivity checks: 700 
i) sex-stratified PWAS for males and females, and ii) split-sample PWAS by randomly dividing 701 
the entire population into two splits (sex and age did not significantly differ). 702 
 703 

Method 4: Genetic analyses 704 

We used the imputed genotype data for all genetic analyses, and our quality check pipeline 705 
resulted in 31,929 participants with European ancestry and 6,477,810 SNPs. First, we excluded 706 
related individuals (up to 2nd-degree) from the complete UKBB sample using the KING software 707 
for family relationship inference.82 We then removed duplicated variants from all 22 autosomal 708 
chromosomes. Individuals whose genetically identified sex did not match their self-709 
acknowledged sex were removed. Other excluding criteria were: i) individuals with more than 710 
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3% of missing genotypes; ii) variants with minor allele frequency (MAF) of less than 1%; iii) 711 
variants with larger than 3% missing genotyping rate; iv) variants that failed the Hardy-712 
Weinberg test at 1x10-10. To adjust for population stratification,83 we derived the first 40 genetic 713 
principle components (PC) using the FlashPCA software84. Details of the genetic quality check 714 
protocol are described elsewhere3,17,17,68. 715 
 716 
(a): GWAS: For GWAS, we ran a linear regression using Plink85 for each DNE, controlling for 717 
confounders of age, age-squared, sex, age x sex interaction, age-squared x sex interaction, the 718 
first 40 genetic principal components, total intracranial volume, three brain position parameters 719 
in the scanner, and head motion were included, as suggested by a previous study26. We adopted 720 
the genome-wide P-value threshold (5 x 10-8) and annotated independent genetic signals 721 
considering linkage disequilibrium (see below).  722 

To check the robustness of our GWAS results, we also performed several sensitivity 723 
checks: i) sex-stratified GWAS for males and females, ii) split-sample GWAS by randomly 724 
dividing the entire population into two splits (sex and age did not significantly differ), iii) 725 
comparison of the GWAS results using the 1348 participants (i.e., 1116 European ancestry) that 726 
were collected for baseline and longitudinal scans from UKBB, iv) non-European GWAS 727 
(N=4783), v) independent GWAS on ADNI whole-genome sequencing data (N=1555) on AD1 728 
and AD2, vi) concordance with six European ancestry GWAS from the psychiatric genetic 729 
consortium, including AD, ADHD, ASD, BIP, OCD, and SCZ (Supplementary eTable 2). 730 

 731 
(b): SNP-based heritability: We estimated the SNP-based heritability (h2) using GCTA31 with 732 
the same covariates as in GWAS.  733 
 734 
(c): Annotation of genomic loci: The annotation of genomic loci and mapped genes was 735 
performed via FUMA86. For the annotation of genomic loci, FUMA first defined lead SNPs 736 
(correlation r2 ≤ 0.1, distance < 250 kilobases) and assigned them to a genomic locus (non-737 
overlapping); the lead SNP with the lowest P-value (i.e., the top lead SNP) was used to represent 738 
the genomic locus. For gene mappings, three different strategies were considered. First, positional 739 
mapping assigns the SNP to its physically nearby genes (a 10 kb window by default). Second, 740 
eQTL mapping annotates SNPs to genes based on eQTL associations using the GTEx v8 data87. 741 
Finally, chromatin interaction mapping annotates SNPs to genes when there is a significant 742 
chromatin interaction between the disease-associated regions and nearby or distant genes86. The 743 
definition of top lead SNP, lead SNP, independent significant SNP, and candidate SNP can be 744 
found in Supplementary eMethod 3. 745 
 746 
(d): Phenome-wide association queries for the identified loci in the GWAS Catalog: We 747 
queried the candidate and significant independent SNPs within each locus in the EMBL-EBI 748 
GWAS Catalog (query date: 2nd June 2023, via FUMA version: v1.5.4) to determine their 749 
previously identified associations with any other traits. For these associated traits, we further 750 
mapped them into several high-level categories for visualization purposes.      751 
  752 
(e): Genetic correlation: We used the LDSC30 software to estimate the pairwise genetic 753 
correlation (gc) between each pair of DNEs, as well as between the nine DNEs and 9 BAGs of 754 
multiple organ systems from our previous work17 and 6 neurodegenerative and neuropsychiatric 755 
disorders from the psychiatric genetic consortium (Supplementary eTable 2). We used the 756 
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precomputed LD scores from the 1000 Genomes of European ancestry. To ensure the suitability 757 
of the GWAS summary statistics, we first checked that the selected study's population was 758 
European ancestry; we then guaranteed a moderate SNP-based heritability h2 estimate. Notably, 759 
LDSC corrects for sample overlap and provides an unbiased estimate of genetic correlation88. 760 
Benjamini-Hochberg procedure was performed to account for multiple comparisons.  761 
 762 
(f): Bayesian colocalization: We used the R package (coloc) to investigate the genetic 763 
colocalization signals between two traits at each genomic locus. We employed the Fully 764 
Bayesian colocalization analysis using Bayes Factors (coloc.abf). This method examines the 765 
posterior probability (PP.H4.ABF: Approximate Bayes Factor) to evaluate hypothesis H4, which 766 
suggests the presence of a single shared causal variant associated with both traits within a 767 
specific genomic locus. To determine the significance of the H4 hypothesis, we set a threshold of 768 
PP.H4.ABF>0.841. All other parameters (e.g., the prior probability of p12) were set as default. We 769 
also performed relevant sensitivity analyses to check the robustness of our findings. 770 
 771 
(g): Two-sample bidirectional Mendelian randomization: We could not perform causal 772 
inference between each pair of DNEs due to the overlapped populations and low sample sizes in 773 
split-sample analyses.  774 

We employed a bidirectional, two-sample Mendelian randomization using the 775 
TwoSampleMR package51 to infer the causal relationships between the nine DNEs and the eight 776 
BAGs across nine human organ systems (excluding the brain). The forward and inverse 777 
Mendelian randomization was performed between each trait pair by switching the exposure and 778 
outcome variables. We applied five different Mendelian randomization methods and reported the 779 
results of inverse variance weighted (IVW) in the main text and the four others (i.e., Egger, 780 
weighted median, simple mode, and weighted mode estimators) in the supplement.  781 
 We then performed Mendelian randomization between the nine DNEs and eleven chronic 782 
diseases spanning the whole-body system. These diseases include four diseases from the 783 
psychiatric genetic consortium (the ASD and OCD GWAS summary statistics did not provide 784 
the allele frequency information) and seven diseases unbiasedly curated in our previous work17. 785 
The included clinical traits in our Mendelian randomization are presented in Supplementary 786 
eTable 10. Benjamini-Hochberg correction was performed for all tested traits.  787 
 We performed several sensitivity analyses. First, a heterogeneity test was performed to 788 
check for violating the IV assumptions. Horizontal pleiotropy was estimated to navigate the 789 
violation of the IV's exclusivity assumption89 using a funnel plot, single-SNP Mendelian 790 
randomization approaches, and Mendelian randomization Egger estimator90. Moreover, the 791 
leave-one-out analysis excluded one instrument (SNP) at a time and assessed the sensitivity of 792 
the results to individual SNP. 793 
 794 
(h): PRS calculation for the nine DNEs: We calculated the PRS91 using the GWAS results 795 
from the split-sample analyses. The weights of the PRS were defined based on split1 data (base 796 
data), and the split2 GWAS summary statistics were used as the target data for PRS calculation. 797 
The QC steps for the base data are as follows: i) removal of duplicated and ambiguous SNPs for 798 
the base data; ii) clumping the base GWAS data; iii) pruning to remove highly correlated SNPs 799 
in the target data; iv) removal of high heterozygosity samples in the target data; v) removal of 800 
duplicated, mismatching and ambiguous SNPs in the target data. After rigorous QC, we used 801 
PLINK to generate PRS for the split2 population by adopting the classic C+T method (clumping 802 
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+ thresholding). To determine the "best-fit" PRS, we performed a linear regression using the PRS 803 
calculated at different P-value thresholds (0.001, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5), controlling for age, 804 
sex, intracellular volume, and the first forty genetic PCs. For each DNE-PRS, we chose the P-805 
value threshold with the highest incremental R2 (Supplementary eFigure 19). 806 
 807 

Method 5: Disease and mortality outcome prediction. 808 

We employed logistic regression to calculate the incremental R-squared (R2) statistics of the nine 809 
DNEs and PRSs to predict 14 disease categories (a), support vector machines to classify the 810 
healthy control participants from the disease groups (b), and Cox proportional hazard model to 811 
predict mortality outcomes (c). The patients for the 14 disease categories were defined based on 812 
the ICD-10 code from the UKBB website: https://biobank.ndph.ox.ac.uk/ukb/field.cgi?id=40001. 813 
The healthy control group included participants without any ICD-10-based disease diagnoses. 814 
The mortality outcome refers to the date of death: 815 
https://biobank.ndph.ox.ac.uk/ukb/field.cgi?id=40000.  816 
 817 

(a): Pseudo R-squared (R2) statistics of the logistic regression: We built a null model by 818 
including age, sex, intracranial volume, brain positions in the scan, and head motion as predictors 819 
and the disease as the outcome variable. The alternative model took the disease-specific DNE or 820 
PRS as one additional predictor. The incremental R2 was calculated as the difference between the 821 
pseudo R2 of the alternative model and that of the null model, implemented by the PseudoR2 822 
function from the DescTools R package (v 0.99.38). For the nine PRSs, we used the PRS target 823 
sample (N=15,891). For the nine DNEs, we calculated the incremental R2 using the entire UKBB 824 
sample (N=39,178) and the PRS target sample (N=15,891). 825 
 826 

(b): Support vector machines to classify patients vs. controls: Using the PRS target sample 827 
(N=15,891), we used 10000 participants in a nested cross-validation (CV) procedure (i.e., CV 828 
training/validation/test datasets) to select the hyperparameter C in SVM. In addition, we held out 829 
5581 participants as an independent test dataset. In Fig. 5c, we only presented the classification 830 
accuracy from the independent test dataset. The nested cross-validation (CV) procedure92 831 
involved an outer loop repeated 50 times, where 80% of the data was randomly selected for 832 
training and 20% for testing. Within each outer loop iteration, an inner loop used 80% of the 833 
training data for a 10-fold training/validation split. 834 
 835 
(c): Cox proportional hazard model to predict the date of death: To evaluate the predictive 836 
capacity of individual DNE and PRS for mortality risk, we employed a Cox proportional hazard 837 
model while adjusting for covariates such as age and sex. The hazard ratio (HR) was calculated 838 
and reported as the effect size measure that indicates the influence of each DNE or PRS on 839 
mortality risk. Furthermore, we incrementally added the most predictive DNE or PRS to the Cox 840 
model to determine when the model's performance reached saturation. The concordance index 841 
(CI) was utilized to assess the model's performance using a 5-fold cross-validation procedure. 842 
All survival analyses were conducted using the lifelines 0.25.7 Python package available online.  843 
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Data Availability 844 

The GWAS summary statistics corresponding to this study are publicly available on the 845 
MEDICINE knowledge portal (https://labs.loni.usc.edu/medicine) and the FUMA online 846 
platform (https://fuma.ctglab.nl/).   847 
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Code Availability 848 

The software and resources used in this study are all publicly available:  849 
• MEDICINE: https://labs.loni.usc.edu/medicine, web portal for dissemination 850 
• HYDRA: https://github.com/anbai106/mlni, DNEs for ASD1-3, LLD1-2, SCZ1-2 851 
• Surreal-GAN: https://github.com/zhijian-yang/SurrealGAN, DNEs for AD1-2 852 
• MLNI: https://github.com/anbai106/mlni, SVM classification 853 
• PLINK: https://www.cog-genomics.org/plink/, GWAS, PRS 854 
• FUMA: https://fuma.ctglab.nl/, gene mapping, genomic locus annotation 855 
• GCTA: https://yanglab.westlake.edu.cn/software/gcta/#Overview, heritability estimates  856 
• LDSC: https://github.com/bulik/ldsc, genetic correlation, partitioned heritability 857 
• TwoSampleMR: https://mrcieu.github.io/TwoSampleMR/index.html, MR 858 
• Coloc: https://chr1swallace.github.io/coloc/, Bayesian colocalization 859 
• Lifelines: https://lifelines.readthedocs.io/en/latest/, Survival analyses  860 
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