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SUMMARY 23 

Crimean-Congo Hemorrhagic Fever (CCHF) is a severe tick-borne viral disease with high 24 

mortality rates and significant public health implications. Despite its global prevalence, the 25 

mechanisms underlying its pathogenesis remain poorly understood, and effective diagnostic and 26 

therapeutic tools are limited. Metabolomics, as a powerful tool for exploring host-pathogen 27 

interactions, offers a promising avenue for identifying biomarkers and elucidating disease 28 

mechanisms. In this study, we investigated the metabolic alterations in CCHF patients using non-29 

targeted metabolomics to enhance understanding of disease pathogenesis, improve diagnostic 30 

capabilities, and identify potential therapeutic targets. A nationwide analysis was conducted on 31 

the blood serum of 29 CCHF patients and 10 healthy controls, employing Nuclear Magnetic 32 

Resonance (NMR) spectroscopy. Serum samples were collected over four consecutive days, and 33 

metabolic profiling was performed using Partial Least Squares Discriminant Analysis (PLS-DA) 34 

and Variable Importance in Projection (VIP) scoring to identify key metabolic pathways and 35 

compounds. Significant disruptions in metabolic pathways were observed in CCHF patients, 36 

particularly in purine and pyrimidine metabolism, the TCA cycle, and redox-related processes. 37 

Elevated levels of metabolites such as S-adenosyl homocysteine (SAH), guanosine triphosphate 38 

(GTP), inosine monophosphate (IMP), adenosine monophosphate (AMP), carnosine, 2'-39 

deoxyuridine, nicotinamide adenine dinucleotide phosphate (NADP+), and maleate were 40 

identified. These metabolites demonstrated potential as biomarkers for disease severity and 41 

progression, with distinct metabolic profiles observed between moderate and severe cases. This 42 

study provides the first comprehensive metabolomic analysis of CCHF, highlighting critical 43 

metabolic pathways disrupted during infection. The findings underscore the utility of NMR-44 

based metabolomics for identifying biomarkers that facilitate early diagnosis, prognosis, and 45 
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therapeutic development. These results pave the way for future research to validate the identified 46 

biomarkers and explore targeted treatment strategies to improve patient outcomes in this severe 47 

viral infection. 48 

1. Introduction 49 

Crimean-Congo Hemorrhagic Fever (CCHF) is a severe viral infection with substantial 50 

implications for public health in a wide range of countries in Asia, Africa, Southern Europe and 51 

the Middle East. CCHF is caused by CCHF virus (CCHFV) belonging to the genus of 52 

Orthonairovirus, and the family of Nairoviridae being one of deadliest viruses of its kind with 53 

reported mortality rate of 3-30% (1). CCHFV is transmitted to humans through tick bites of 54 

infected ticks, contact with blood or tissues of infected livestock, or contact with infected 55 

patients (2). The exact course of pathogenesis of CCHF is not clearly known however it is 56 

divided into four phases: incubation, pre-haemorrhagic, haemorrhagic and convalescence [2]. 57 

CCHF is classified as a severe hemorrhagic fever with a short  incubation period of 1-3 days  58 

although longer incubation periods have been documented [3].  The onset of infection is often 59 

sudden and includes symptoms, fever, diarrhea, vomiting, nausea, myalgia, back and abdominal 60 

pain followed by an hemorrhagic phase where severe bruises, uncontrollable bleeding at the 61 

body orifices are observed and in severe cases, deterioration of kidneys, liver and lungs [4]. 62 

Deaths associated with the infection mostly occur between 5-14 days from the start of the 63 

viremic phase [5]. In terms of treatment, early hospitalizations and early administration of 64 

therapeutics are shown to reduce both severity and mortality of CCHF [6]. Hence, lack of early 65 

detection of CCHF is one of the leading factors causing the particular high mortality rate of 66 

CCHF.  67 
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There are several challenges of diagnosing CCHF infection particularly before the hemorrhagic 68 

phase of the infection and patients who are not suspected of being bitten by infected ticks or 69 

contacted with infected livestock. CCHF is comparatively uncommon in specific regions, which 70 

may lead healthcare providers to initially overlook it as a potential diagnosis. Likewise, there are 71 

documented cases of difficulties diagnosing CCHF, both because of the latter but also the 72 

absence of a universally applicable diagnostic kit for surveillance and diagnosis of all CCHFV 73 

strains [7]. Standard blood tests such as hemogram, biochemical analysis and physical 74 

examination at the beginning of hospitalization is applied on all patients who are suspected to be 75 

infected with CCHF although the results are often relevant for short term prognostic factors as 76 

biochemical values change often quickly. For more comprehensive and standard diagnostic 77 

methods, viral antigen and nucleic acid amplification tests are employed [8]. The initial 78 

symptoms of CCHF, such as fever, headache, and muscle aches, are rather non-specific hence 79 

diagnosing CCHF early by differential diagnosis can be difficult [5]. However biomarkers, 80 

essentially biomolecules, may provide a measure of specific diseases or their stages due to their 81 

varying concentrations. Bio markers are instrumental in diagnosing and monitoring the 82 

progression of viral infections. The associated changes in their levels, often indicative of the 83 

disease, are typically attributed to the host's immune reaction and the disturbance of key 84 

biochemical routes in reaction to the infectious process. In this sense, omics studies and 85 

biomarkers could be used for both analysis and diagnosis of CCHF and for characterizing better 86 

treatment strategies of hospitalized patients swiftly is crucial to pinpoint optimal treatment 87 

strategies for treating CCHF [9]. 88 

So far there is only one omics study which investigates host-viral response and pathogenesis of 89 

CCHF utilizing transcriptomics and proteomics methods [10]. Led by this gap in the literature, 90 
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we conducted a nationwide analysis of metabolomes of patients hospitalized due to CCHF. 91 

Turkey has over 10,000 cases of CCHF with an average fatality rate of 5%, making it a critical 92 

public health concern affecting people living in rural areas as ticks are widespread in these 93 

regions [11]. In our present investigation, we employed Nuclear Magnetic Resonance (NMR) 94 

spectroscopy exploratory metabolomics to investigate the overall temporal variations in plasma 95 

metabolites during a seasonal outbreak of CCHF infection. We employed PLS-DA statistical 96 

analysis of the blood serum metabolome of CCHF patients and categorized certain metabolomes 97 

linked to metabolic dysregulation caused by CCHF.  Preliminary results from our study suggest 98 

that specific metabolic markers can be identified in the serum of CCHF patients pointing to 99 

metabolic dysregulation, which may allow for earlier diagnosis and more targeted treatment 100 

strategies. Additionally, being the first study to categorize alterations of patient metabolome 101 

during CCHF viremic phase may be valuable for efforts to develop therapeutics or targeted 102 

treatment strategies to reduce the severity and high mortality rate of CCHF. 103 

2. Materials and methods 104 

Monitoring of CCHF diagnosed patients and collection of the samples from the patients: 105 

Patients who were diagnosed with CCHF were selected from Çorum Hitit University Hospital. 106 

The first sample collection was conducted in April 2022, and blood samples were collected daily 107 

using Ethylenediaminetetraacetic acid (EDTA) tubes. In current metabolomics studies, opinions 108 

regarding the appropriate determination of sample size can considerably vary. However, 109 

numerous statistical analyses have underscored that a substantial sample size, for achieving 110 

meaningful results, around 30 samples [12]. In this study, serum specimens were procured from 111 

29 patients (n=29) diagnosed with CCHFV infection, as well as from 10 healthy control group. 112 

CCHF patients also admitted to the hospital with an infection diagnosis were subclassified into 113 
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two categories based on their blood test values and symptoms: moderate (n=24) and severe 114 

(n=5). Four blood serum samples from patients each consecutive day (n=116 samples) and a 115 

single sample from the control group (n=10 samples) was taken. These blood samples were then 116 

subjected to centrifugation for 5 minutes at 3000g to separate the sample into plasma, white 117 

blood cell, and red blood cell phases. The plasma phase was extracted and subjected to 118 

metabolite extraction using multiple approaches: single methanol extraction, triple alcohol 119 

extraction, Methanol-chloroform, Acetone, Acetonitrile, and Ultrafiltration. Cold methanol-120 

chloroform was chosen as the most effective extraction and used for extraction of all samples. 121 

Only the polar metabolites in the plasma were investigated, while proteins and apolar compounds 122 

were removed from the plasma samples. Overall in this study, we utilized a rigorous approach to 123 

sample collection, preparation, and analysis to investigate polar metabolites in the plasma of 124 

CCHF patients [13]. 125 

Ethical Statement: The study was approved by Koç University Committee on Human Research 126 

(01.12.2021/ 2021.436.IRB2.079) and all the procedures performed in this study involving 127 

human participants were in accordance with the ethical standards of the institutional research 128 

committee ethical standards. A written informed consent was obtained from all patients. 129 

NMR sample preparation: 4 mL ice-cold methanol-chloroform (1:1) mixture was added to 2 130 

mL serum for methanol-chloroform extraction. The mixture was vortexed for 30 seconds and 131 

incubated for 10 minutes on ice. After incubation the mixture was centrifuged at 4500g at 4°C 132 

for 30 minutes. The methanol phase was collected and dried using a vacuum concentrator. The 133 

dried samples were dissolved in 550 uL D2O based NMR sample solution (50 mM PBS (pH 7.4), 134 

20mM NaCl, 1 mM DSS) for standardized sample preparation. 135 
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NMR data collection, processing and statistical analysis: 500 MHz Bruker Ascend magnet 136 

with BBO paired resonance probe and Avance NEO console was used for NMR data collection. 137 

1D NOESY-presat (noesygppr1d) pulse sequence was used for data collection. Each NMR data 138 

spectrum is composed of 4K screening and 32K complex data points. Spectrum widths were set 139 

to 9615.4 Hz. Bruker Topspin 4.2.0 software was used for NMR data processing. Data was 140 

divided into 0.02 ppm data packages along with their normalization coefficients. The dataset, 141 

which comprises data packets with a resolution of 0.02 ppm, was analyzed using the 142 

MetaboAnalyst 5.0 online metabolomics statistical analysis software.  Henceforth the data will 143 

be referred to as (Bin.x.xx [ppm]) data packets and the day of when sample was taken. All data 144 

points were normalized using the average centering normalization method. Following this 145 

normalization, the dataset underwent statistical analysis using Partial Least Squares Discriminant 146 

Analysis (PLS-DA). PLS-DA is a classification and discrimination technique based on the 147 

Partial Least Squares (PLS) regression method. This method is widely utilized to determine the 148 

differences between classes, particularly in high-dimensional and multivariate datasets. PLS-DA 149 

is a commonly employed method in analyzing complex biological systems, such as 150 

metabolomics studies. The VIP Projection variable importance score plot is a graph that is 151 

utilized to assess the outcomes of PLS-DA and determine the most significant variables in the 152 

analysis. VIP scores quantify the importance of each variable (e.g., metabolites) in classification 153 

and aid in identifying the most critical features. VIP scores are computed based on the 154 

contribution of each variable to the components (latent variables) in the PLS-DA model. The 155 

values begin at 1, and higher VIP scores indicate that the variable is more important for 156 

classification. Variables with VIP scores greater than 1 are generally deemed significant, 157 

although this threshold may vary in practice. The VIP score plot displays the VIP scores of the 158 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted December 7, 2024. ; https://doi.org/10.1101/2023.08.16.23294178doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.16.23294178


 

8 
 

variables on the vertical axis, while the variables themselves or their indices are shown on the 159 

horizontal axis. This graph facilitates the identification of important variables visually and helps 160 

focus on the variables that require prioritization in the analysis. In the VIP score graph, the peaks 161 

at the relevant ppm values that make up the data packages (Bin.x.xx) have been examined in 162 

more detail and the metabolites to which they belong have been identified. For this operation, 163 

NMR spectra have been reopened, and the metabolites to which the peak in the relevant ppm 164 

region belongs have been determined using the Chenomx software. It is thought that some peaks 165 

might belong to metabolites not found in the database, and the molecules these peaks belong to 166 

have not been identified. Further investigation and characterization may be required to fully 167 

understand these unidentified peaks and their role in the overall metabolic profile, ensuring that 168 

the final analysis provides an accurate reflection of the biological system under investigation. 169 

Metabolomic pathway visualization: All metabolic pathways visualized using Metastate 170 

software Version BETA (https://metastate.bio) (Metastate Bio Inc.). Metastate algorithm 171 

employs the Kyoto Encyclopedia of Genes and Genomes (KEGG) database as its foundational 172 

input source. Software systematically retrieves details pertaining to biological pathways, 173 

chemical compounds, and molecular reactions of interest. Software curates and assembles a 174 

dynamic graphical representation of the data. 175 

3. Results 176 

In this study, 29 patients diagnosed with Crimean-Congo Hemorrhagic Fever (CCHF) and 10 177 

healthy individuals serving as control subjects were included. The control group had a mean age 178 

of 50.1 years (range: 40–64 years), while the CCHF patient group had a slightly higher mean age 179 

of 50.5 years, with a wider age range of 22–77 years. A total of 126 blood samples were 180 
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collected for analysis. Serum samples were prepared using methanol extraction, followed by 181 

Nuclear Magnetic Resonance (NMR) spectroscopy. The metabolite profiles obtained were 182 

subjected to comprehensive statistical analysis. This analysis incorporated data from all collected 183 

samples over four consecutive days and categorized them into moderate, severe, and control 184 

groups for comparative evaluation. Detailed procedures are described in the Materials and 185 

Methods section. 186 

Partial Least Squares Discriminant Analysis (PLS-DA) was employed to develop a model 187 

incorporating the primary components (latent variables) of the dataset. The model focused on the 188 

first five components, which were pivotal for data classification and accounted for most of the 189 

dataset's variance. The corresponding score plots, presented as two-dimensional graphs, illustrate 190 

the pairwise comparisons of these components (Figure 1a). 191 

The PLS-DA score plot (Figure 1b) clearly differentiates between healthy and diseased 192 

individuals. PLS-DA, well-suited for handling high-dimensional data, effectively identifies the 193 

key variables responsible for distinguishing health states. This approach revealed a distinct 194 

separation based on variations and correlations within the biomarker data. To further explore the 195 

critical contributors to this separation, the Variable Importance in Projection (VIP) scores were 196 

analyzed. The PLS-DA VIP score plot (Figure 1c) highlights the variables with the most 197 

significant influence on the discrimination process, with the top 15 variables identified. VIP 198 

scores provide insights into the relevance of each variable, aiding in the identification of 199 

biomarkers that significantly differ between healthy and diseased states. 200 

Figure 1c demonstrates that some data buckets exhibit lower concentration values (indicated in 201 

blue) in the control group, which progressively increase over time. Furthermore, the identified 202 
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compounds displayed a marked increase in concentration, as corroborated by enhanced signals 203 

from their respective data buckets (Figure 1d). 204 

Statistical analysis was performed across three distinct groups, incorporating samples collected 205 

over four days from both patient groups. While patient samples were successfully distinguished 206 

from the control group, no significant differences were observed between the moderate and 207 

severe disease groups. Key metabolites found to be elevated in the patient groups compared to 208 

controls included SAH, GTP, carnosine, maleate, 2-deoxyuridine, IMP, AMP, and NADP+. 209 

As a secondary approach to data analysis, metabolite profiles were evaluated using samples 210 

collected on days 1 and 2 of hospitalization, representing the early stages of infection. Patients 211 

were categorized into severe and moderate groups based on clinical severity, while blood 212 

samples from healthy individuals were used as the control group for statistical comparisons 213 

(Figure 2). This focused analysis aimed to investigate metabolite changes during the initial phase 214 

of the disease. In addition to compounds identified in the initial analysis, novel metabolites with 215 

significant increases on days 1 and 2 were detected, suggesting their potential involvement in the 216 

pathogenesis of Crimean-Congo Hemorrhagic Fever (CCHF). 217 

A comprehensive metabolomic analysis of blood serum from CCHF patients revealed distinct 218 

metabolite patterns corresponding to infection severity. Partial Least Squares Discriminant 219 

Analysis (PLS-DA) score plots and Variable Importance in Projection (VIP) scores (Figure 3) 220 

highlighted notable differences in metabolite profiles between severe and moderate cases. In 221 

severe CCHF infections, metabolites such as AMP, IMP, and NAAD were significantly elevated 222 

in the serum, whereas these compounds were less prominent in samples from patients with 223 
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moderate infection. Conversely, GTP was markedly increased in the moderate infection group 224 

but was not significantly detected in the severe group. 225 

Overall, these findings highlight substantial metabolic differences between moderate and severe 226 

CCHF infections, pointing to critical pathways potentially involved in CCHF pathogenesis. 227 

These results underscore the importance of early-stage metabolite profiling to enhance our 228 

understanding of disease mechanisms and identify potential biomarkers for severity 229 

stratification. 230 

4. Discussion 231 

 232 

In this study, we present the first non-targeted metabolomics analysis of Crimean-Congo 233 

Hemorrhagic Fever (CCHF) to enhance the understanding of its pathogenesis, improve 234 

diagnostic capabilities, and aid in the development of potential therapeutic interventions. Using 235 

Nuclear Magnetic Resonance (NMR) spectroscopy, we identified significant increases in key 236 

metabolites, including S-adenosyl homocysteine (SAH), guanosine triphosphate (GTP), 237 

carnosine, maleate, 2'-deoxyuridine (2'-dU), inosine monophosphate (IMP), adenosine 238 

monophosphate (AMP), and nicotinamide adenine dinucleotide phosphate (NADP+), in the 239 

blood serum of CCHF patients. These findings suggest that these metabolites may play critical 240 

roles in the pathogenesis of CCHF and serve as important biomarkers for early detection and 241 

monitoring of disease progression. 242 

Metabolomics has emerged as a powerful tool for studying host-pathogen interactions by 243 

revealing metabolic alterations induced by viral infections. To date, only one prior omics study 244 

utilizing mass spectrometry (MS) has investigated the interaction between the host and CCHF 245 
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virus (CCHFV). Both NMR and MS are widely used in metabolomics, with each method 246 

offering distinct advantages depending on the research objectives. NMR spectroscopy is 247 

particularly suitable for non-targeted metabolomics due to its superior reproducibility, minimal 248 

sample preparation, and ability to analyze complex biofluids. It also provides consistent spectra 249 

across different instruments and laboratories, making it highly reliable for diagnostic and 250 

prognostic studies. On the other hand, MS offers higher sensitivity and is often preferred for 251 

targeted metabolomics studies. 252 

The utility of NMR metabolomics has been demonstrated in the analysis of host metabolic 253 

changes induced by various viral infections, including HIV, dengue virus (DENV), and 254 

chikungunya virus. Moreover, metabolomics approaches have been successfully applied to study 255 

other viral hemorrhagic fevers, such as Ebola, Marburg, and dengue, yielding promising results 256 

for early diagnosis and prognosis prediction. Similarly, our findings underscore the potential of 257 

NMR metabolomics in elucidating the complex metabolic interactions between CCHFV and its 258 

host. The observed metabolic changes in CCHF patients offer new insights into the mechanisms 259 

of disease pathogenesis and highlight potential pathways for targeted therapeutic interventions. 260 

By focusing on metabolite profiles in CCHF, this study demonstrates the value of NMR-based 261 

metabolomics in addressing the gaps in knowledge surrounding this severe disease. Our findings 262 

not only advance the understanding of CCHF pathogenesis but also provide a foundation for 263 

further research aimed at identifying effective biomarkers and therapeutic targets. These results 264 

emphasize the critical role of metabolomics in uncovering host-pathogen dynamics and 265 

improving clinical outcomes in viral infections. 266 
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Among the notable metabolites detected, S-adenosyl homocysteine (SAH) emerged as a 267 

significant intermediate in the metabolic pathways of CCHF patients. SAH, a precursor to 268 

homocysteine and adenosine, serves as the substrate for the enzyme SAH hydrolase, a critical 269 

component of the S-adenosylmethionine (SAM/AdoMet) regeneration cycle (Figure 4a). 270 

Elevated SAH levels were observed in CCHF patients early during hospitalization, underscoring 271 

its potential relevance in the disease’s pathogenesis. This observation aligns with findings from a 272 

genomic study linking Methylenetetrahydrofolate reductase (MTHFR) polymorphisms to a 273 

predisposition for milder forms of CCHF [18]. Since MTHFR plays a central role in folate 274 

metabolism and methylation processes, these results suggest that disruptions in methylation 275 

pathways during the viremic phase could serve as prognostic indicators for CCHF severity. 276 

SAM is a key methyl donor in various cellular methylation reactions, including those involved in 277 

5' RNA capping, a process critical for viral replication and transcription [19]. Evidence from 278 

other viral families, such as flaviviruses [20], and Ebola, whose L protein exhibits 279 

methyltransferase activity, indicates that methylation mechanisms can influence RNA cap 280 

structure and internal adenosine-2'-O-methylation [21]. These parallels highlight the potential 281 

importance of methylation pathways in CCHF pathogenesis. The additional complexity of RNA 282 

methylation in some viral families suggests that SAM-related domains within viral replication 283 

complexes could represent promising therapeutic targets. 284 

Our findings emphasize the need for further research into SAM-related pathways to unravel their 285 

implications for viral replication and host-pathogen interactions in CCHF. These pathways not 286 

only provide insight into disease mechanisms but also present opportunities for the development 287 

of targeted therapeutic interventions, particularly those aimed at disrupting key methylation 288 

processes critical for viral survival. 289 
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GTP, AMP, and inosine monophosphate (IMP) are key nucleotides involved in purine 290 

metabolism, essential for energy production and nucleic acid synthesis (Figure 4b). Elevated 291 

levels of GTP and IMP are well-documented indicators of viral infections, particularly among 292 

viruses in the Orthornavirae kingdom. In the context of CCHF, the increase in these purine 293 

metabolites aligns with the known mechanism of action of broad-spectrum antivirals like 294 

Ribavirin. As a nucleotide analog, Ribavirin targets the substrate-binding site of the IMPDH 295 

enzyme, thereby reducing RNA synthesis in infected cells by downregulating GTP synthesis 296 

[22]. Monitoring these metabolites could provide valuable insights into the efficacy of antiviral 297 

treatments. Additionally, quantifying shifts in GTP and IMP concentrations offers a potential 298 

strategy to optimize therapeutic interventions in clinical trials, enhancing the effectiveness of 299 

antiviral agents targeting purine metabolism [23]. 300 

Carnosine (β-alanyl-L-histidine) (Figure 4c), a dipeptide with antioxidant, anti-glycation, and 301 

anti-inflammatory properties, was also significantly elevated in CCHF patients. Predominantly 302 

found in skeletal muscle and the brain, increased carnosine levels may reflect a compensatory 303 

response to oxidative stress, infection-induced cell death, or muscle mass reduction due to 304 

hospitalization. Carnosine has demonstrated antiviral potential against Zika, dengue, and SARS-305 

CoV-2, reducing viral replication and alleviating symptoms. While its therapeutic utility against 306 

CCHF remains to be established, these findings highlight the need for further investigation into 307 

its potential as a treatment option. 308 

2'-Deoxyuridine (2'-dU), an intermediate in thymidylate synthesis (Figure 4d), also showed 309 

significant elevation in CCHF patients. This metabolite, a precursor for DNA synthesis, plays a 310 

role in antiviral therapies, such as Edoxudine, which target DNA viruses [24–26]. Variants of 2'-311 

dU, such as BVDU, have shown efficacy against Herpes simplex virus type 1 (HSV-1) and 312 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted December 7, 2024. ; https://doi.org/10.1101/2023.08.16.23294178doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.16.23294178


 

15 
 

varicella-zoster virus (VZV) [27]. While 2'-dU is typically associated with DNA virus activity, 313 

its elevated levels in CCHF patients may suggest broader disruptions in pyrimidine metabolism, 314 

potentially linked to the metabolic dysregulation observed in this study. 315 

Nicotinamide adenine dinucleotide phosphate (NADP+) serves as a critical cofactor in enzymatic 316 

reactions, primarily within the pentose phosphate pathway, where it supports fatty acid synthesis 317 

and the regeneration of reduced glutathione. Its role in redox reactions also underscores its 318 

importance in the antioxidant defense system. Elevated NADP+ levels in CCHF patients could 319 

reflect increased metabolic activity related to energy production and nucleotide synthesis. This 320 

hypothesis is further supported by the observed overlap in the elevations of NADP+, GTP, IMP, 321 

and AMP, indicating a coordinated upregulation of energy metabolism pathways. The significant 322 

increase in these metabolites in severe cases (Figure 3) underscores their potential relevance in 323 

disease progression and severity. 324 

Maleate (cis-butenedioic acid), a dicarboxylic acid and trans-isomer of fumaric acid, plays a role 325 

in nicotinate and nicotinamide metabolism [29]. Elevated maleate levels in CCHF patients 326 

suggest underlying metabolic disruptions. Previous studies have demonstrated that maleate can 327 

inhibit the tricarboxylic acid (TCA) cycle, lower ATP levels, and impair enzymatic activity, 328 

leading to systemic metabolic imbalances. These findings warrant further investigation into the 329 

potential implications of maleate in the pathophysiology of CCHF [30]. 330 

In summary, these metabolomic findings reveal significant disruptions in purine, pyrimidine, and 331 

energy metabolism pathways in CCHF patients. Metabolites such as GTP, IMP, AMP, carnosine, 332 

2'-dU, NADP+, and maleate provide valuable insights into the pathogenesis of the disease and 333 

highlight potential biomarkers for disease progression and therapeutic targets. 334 
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 335 

 336 

 337 

Conclusion  338 

In this study, we conducted a nationwide analysis of blood serum metabolites from patients 339 

hospitalized due to Crimean-Congo Hemorrhagic Fever (CCHF), employing Nuclear Magnetic 340 

Resonance (NMR) spectroscopy as a novel approach to investigate host-pathogen interactions 341 

and the pathogenesis of CCHFV. Our findings revealed significant alterations in several key 342 

metabolites, including S-adenosyl homocysteine (SAH), guanosine triphosphate (GTP), inosine 343 

monophosphate (IMP), adenosine monophosphate (AMP), 2'-deoxyuridine (2'-dU), nicotinamide 344 

adenine dinucleotide phosphate (NADP+), carnosine, and maleate. Notable changes were 345 

observed in pathways related to the TCA cycle, nucleic acid synthesis, and redox-associated 346 

coenzymes, highlighting the systemic metabolic impact of CCHFV infection. 347 

The elevation of metabolites such as SAH underscores the potential impact of methylation 348 

processes on CCHF pathogenesis and prognosis, linking viral replication to host epigenetic 349 

regulation. Similarly, the observed disruptions in purine metabolism, particularly the increased 350 

levels of GTP and IMP, suggest potential therapeutic implications, as these pathways are 351 

targeted by antiviral agents like Ribavirin. The role of other metabolites, such as carnosine and 352 

maleate, indicates a systemic response to oxidative stress and cellular damage, providing further 353 

insight into the host’s metabolic adaptation during infection. 354 
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Our findings align with prior metabolomics studies on other viral hemorrhagic fevers and 355 

highlight the utility of NMR-based metabolomics for uncovering biomarkers that may facilitate 356 

early diagnosis, prognosis prediction, and therapeutic development. The distinct metabolic 357 

profiles observed between moderate and severe CCHF cases further emphasize the relevance of 358 

these biomarkers in stratifying disease severity and monitoring treatment efficacy. 359 

This study paves the way for future investigations to validate these biomarkers in larger cohorts 360 

and explore the therapeutic potential of targeting the identified pathways. By advancing the 361 

understanding of CCHF pathogenesis, our results contribute to the development of more 362 

effective diagnostic and therapeutic strategies, ultimately improving patient outcomes in this 363 

severe viral infection. 364 
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 485 

486 

Figure 1  PLS-DA analysis of patient samples with severe and moderate infection level for four487 
consecutive days with the control group (S: severe, M: moderate, C: Control)   a. Matching score488 
plots for the first five components of the PLS-DA analysis of all samples. b. partial Least489 
Squares Discriminant Analysis score plot. c. Variable importance score plot in PLS-DA VIP490 
Projection. d.  corresponding compounds in detected increases on the spectra. Component 1:491 
accuracy=0.817, (R2=0.246, Q2=0.142), component 2:  accuracy=0.833, (R2=0.394, Q2=0.210),492 
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component 3:  accuracy=0.809, (R2=0.545, Q2=0.225), component 4:  accuracy=0.777,493 
(R2=0.644, Q2=0.250), component 5:  accuracy=0.769, (R2=0.782, Q2=0.205)  494 

 495 

496 

 497 

Figure 2  PLS-DA analysis of patient samples with severe and moderate infection level for first498 
two days with the control group matching score plots for the first five components of the PLS-499 
DA analysis of samples from day 1 and day 2 as labeled mild (M), severe (S) and compared with500 
the control group (C). b, partial Least Squares Discriminant Analysis score plot. c, Variable501 
importance score plot in PLS-DA VIP Projection. d,  corresponding compounds in detected502 
increases on the spectra. Component 1:  accuracy=0.0837, (R2=0.585, Q2=0.417), component 2:503 
accuracy=0.821, (R2=0.627, Q2=0.433),  component 3: accuracy=0.793, (R2=0.804, Q2=0.352) 504 
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506 

Figure 3 PLS-DA analysis of patient samples with moderate infection level for first two days507 
with the control group and PLS-DA analysis of patient samples with severe infection level for508 
first two days with the control group (S:severe, M: moderate, C:Control) a, partial Least Squares509 
Discriminant Analysis score plot. Component 1:  accuracy=0.983, (R2=0.821, Q2=0.739),510 
component 2:  accuracy=0.983, (R2=0.860, Q2=0.790),  component 3: accuracy=0.983,511 
(R2=0.954, Q2=0.829) b, Variable importance score plot in PLS-DA VIP Projection. c, partial512 
Least Squares Discriminant Analysis score plot. Component 1:  accuracy=0.950, (R2=0.857,513 
Q2=0.702), component 2:  accuracy=1, (R2=0,938, Q2=0.797),  component 3: accuracy=1,514 
(R2=0.982, Q2=0.824) d, Variable importance score plot in PLS-DA VIP Projection. e,515 
corresponding compounds in detected increases on the spectra. f,  corresponding compounds in516 
detected increases on the spectra.  517 
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 519 

 520 

521 
Figure 4 Main metabolic pathways of metabolites detected by metabolomics approach a. S-522 
Adenosyl-L-homocysteine and nearest neighbor in Cysteine and methionine metabolism b. GTP523 
and nearest neighbor in Purine metabolism c. Carnosine and nearest neighbor in Histidine524 
metabolism d. Deoxyuridine and nearest neighbor in Pyrimidine metabolism 525 
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