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Abstract

Objective:. Missing data is a significant challenge in medical research. In lon-
gitudinal studies of Alzheimer’s disease (AD) where structural magnetic res-
onance imaging (MRI) is collected from individuals at multiple time points,
participants may miss a study visit or drop out. Additionally, technical is-
sues such as participant motion in the scanner may result in unusable imaging
data at designated visits. Such missing data may hinder the development of
high-quality imaging-based biomarkers. Furthermore, when imaging data
are unavailable in clinical practice, patients may not benefit from effective
application of biomarkers for disease diagnosis and monitoring.

Methods:. To address the problem of missing MRI data in studies of AD,
we introduced a novel 3D diffusion model specifically designed for imputing
missing structural MRI (Recovery of Missing Neuroimaging using Diffusion
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models (ReMiND)). The model generates a whole-brain image conditional
on a single structural MRI observed at a past visit or conditional on one past
and one future observed structural MRI relative to the missing observation.

Results:. Experimental results show that our method can generate high-
quality individual 3D structural MRI with high similarity to ground truth,
observed images. Additionally, images generated using ReMiND exhibit rel-
atively lower error rates and more accurately estimated rates of atrophy over
time in important anatomical brain regions compared with two alternative
imputation approaches: forward filling and image generation using varia-
tional autoencoders.

Conclusion:. Our 3D diffusion model can impute missing structural MRI
data at a single designated visit and outperforms alternative methods for
imputing whole-brain images that are missing from longitudinal trajectories.

Keywords: Diffusion model, Missing image imputation, Longitudinal
study, Magnetic resonance imaging, Alzheimer’s disease

1. INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder char-
acterized by a decline in cognitive abilities, including memory, language and
problem-solving abilities [1]. The accurate prediction of progression from
normal cognition to mild cognitive impairment (MCI) and subsequently to
AD will become increasingly important for patient care and resource allo-
cation as early interventions and treatments for the disease are developed
[2]. The diagnosis of AD involves a variety of modalities, including clinical
evaluations, neuropsychological testing, biomarker analysis, and brain imag-
ing [2, 3, 4]. Brain imaging techniques, such as magnetic resonance imaging
(MRI), can provide information about changes in brain structure or function
that occur as AD progresses [5]. MRI feature-based classification and pre-
diction algorithms have a high potential for early detection of characteristic
AD patterns in brain structure and activity [6]. In research studies that use
repeated longitudinal imaging to measure brain changes over time, planned
imaging scans may be missing due to participant dropout, technical issues
during image acquisition, or participant unwillingness to undergo imaging,
resulting in the absence or incompleteness of imaging data trajectories for
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some study participants [7, 8]. The study’s validity and power can both be
significantly impacted by the effects of missing imaging data.

Longitudinal studies frequently suffer from missing data due to the mul-
tiple rounds of data collection over time that increase the chance of non-
response and participant attrition [9]. In studies of older adults, there is
a high risk of missing data due to the susceptibility of this population to
physical and cognitive decline, illness, and death [10], which may impact
completion of assessments. The presence of missing data poses several chal-
lenges for longitudinal studies of AD, such as reducing the sample size overall
or disproportionately in the AD-affected group, introducing selection bias,
and reducing statistical power for estimating and evaluating the effect of
imaging biomarkers [11]. Researchers in AD have made efforts to impute
longitudinal missing data by applying various techniques, such as forward
filling, linear filling, K-Nearest Neighbor, multiple kernel learning, and re-
current neural networks [7, 12, 13, 14, 15]. However, the majority of existing
methods generated image-derived phenotypes (IDPs) rather than imputing
the entire missing image. In this work, we employ a diffusion model to gen-
erate an entire 3D image conditional on one or more observed images from
an individual’s imaging trajectory.

The denoising diffusion probabilistic model (DDPM or diffusion model for
short) [16], is a new class of generative models that utilizes a latent variable
framework to reverse a diffusion process, wherein Gaussian noise is gradu-
ally added to alter the data distribution to the noise distribution. Diffusion
models are applied to tasks such as image, audio, and graph production,
as well as conditional generation tasks such as in-painting, super-resolution,
and picture editing [17]. Diffusion models have demonstrated exceptional
performance in various tasks [18, 19, 20, 17] and are well suited to our lon-
gitudinal imputation problem in three respects. First, the diffusion model
shows promising results when synthesizing natural images and has rivaled
state-of-the-art models such as generative adversarial nets and variational
autoencoders [21, 22]. Second, diffusion models have more flexible condition
configurations to create images conditional on other features [23, 24], while
conventional generative models may require additional annotations. Third,
the diffusion model has the ability to generate images in the temporal dimen-
sion, such as video-related tasks that predict the future frame conditioned
on the past frame [25]. Longitudinal MRI image imputation is analogous to
image generation in the temporal dimension. To address this, we have devel-
oped a novel approach called ReMiND (Recovery of Missing Neuroimaging
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with Diffusion models) for 3D MRI imputation in longitudinal studies of AD.
ReMiND focuses on generating missing images at a designated single visit by
conditioning on one or more observed images from other time points. The
overall pipeline of the proposed ReMiND approach is illustrated in Fig. 1.
The main contributions of this research are as follows:

1. Unlike previous studies that utilized multiple imaging modalities to
impute missing imaging data, our work focuses on imputing missing
MRI images in the temporal dimension using images from the same
modality at other time points, specifically in the context of AD.

2. We have developed a novel 3D diffusion model specifically designed for
MRI image generation. The model effectively preserves global infor-
mation of the whole MRI image through the incorporation of local-
continuous slices. As a result, the model produces high-quality and
plausible 3D structural MRIs.

3. The proposed model imputes the missing 3D MRI images directly
rather than imputing 2D slices or image derived phenotypes (IDPs).
The availability of imputed whole-brain MRI will allow researchers to
derive any summary measures of choice using any software of choice
without having to adapt or re-run an imputation procedure specific to
a certain IDP or software pipeline.

4. The proposed model conditions on a limited set of images (either past or
both past and following visits) to generate the missing image for each
subject, which is specifically tailored for the analysis of longitudinal
data.

These developments collectively contribute to the advancement of longitudi-
nal MRI image imputation and analysis techniques for AD research.

2. METHODS

2.1. Denoising Diffusion Probabilistic Models (DDPM)

DDPM [16] is a form of latent variable model that approximates the
real data distribution x0 ∼ pdata with a diffusion process q(xt|xt−1), t ∈
{1, . . . , T}, and a denoising process pθ(xt−1|xt) parameterized by weights θ.
The diffusion process transmits pdata to a standard normal distribution with
a T -step Markov chain:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI),
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where the observed image x0 ∈ Rd is assumed to be a draw from pdata and
β1, β2, · · · , βT is a fixed variance schedule. The forward sampling at arbitrary
time step t is defined as

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I),

where αt = 1−βt and ᾱt =
∏t

s=1 αs. Then, a denoising process parameterized
by weights θ is leveraged to match the diffusion process at each timestep t
with the following transition kernel:

pθ(xt−1|xt) = N (xt−1; µ̃θ(xt, t), β̃tI),

where

µ̃θ(xt, t) =

√
ᾱt−1βt

1− ᾱ
x̂0 +

√
αt(1− ᾱt−1)

1− ᾱt

xt,

β̃t =
1− ᾱt−1

1− ᾱt

βt.

µ̃θ(xt, t) and β̃t are the mean and the variance of the posterior distribution
pθ(xt−1|xt). x̂0 refers to the estimated x0 at timestep t

x̂0 =
xt −

√
1− ᾱtϵθ(xt, t)√

ᾱt

,

and ϵθ is a neural network trained to predict noise ϵ, e.g., the UNet [26].
The learning objective of DDPM is to optimize the variance bound of pθ(x0)
which can be simplified as the “noise-prediction” loss as in [16]:

L(θ) = Et,x0∼pdata,ϵ∼N (0,I)

[
||ϵ− ϵθ(

√
ᾱx0 +

√
1− ᾱtϵ, t)||2

]
2.2. Recovery of Missing Neuroimaging with Diffusion models (ReMiND)

In this section, we formulate the longitudinal MRI imputation problem
as a generation task conditioned on one or more adjacent MRI images of the
designated missing visit. For a given subject S ∈ {1, . . . , N}, we define the
longitudinal record of S as a set of (Image,Existence) pairs arranged in order
of visiting timepoint:

Record(S) = {(xS,1, eS,1), · · · , (xS,r, eS,r), · · · , (xS,R, eS,R)},

where R refers to the number of records contained in Record(S) if the data
were fully observed, i.e., R = |Record(S)|, and xS,r ∈ RL×H×W refers to the
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3D structural MRI image at the r-th visit with resolution L×H×W . eS,r is
the indicator of existence, i.e., eS,r = 0 means xS,r is missing; eS,r = 1 means
xS,r exists in the data. Without loss of generality, we assume the r-th image
is missing, i.e., eS,r = 0, and its adjacent visits exist, i.e., eS,r−1 = eS,r+1 = 1.
We impute xS,r by taking its adjacent neighbors as conditions:

Cp = xS,r−1,Cp,f = concat(xS,r−1,xS,r+1),

where Cp refers to the condition over the past visit and Cp,f refers to the
condition over both the past visit and the following visit. concat(·, ·) is the
concatenate operation.

Since we aim to recover missing images from neighboring visits where
imaging is available, we formulate the longitudinal imputation method as a
conditional image generation task. Specifically, ReMiND aims to approxi-
mate the distribution of a missing image, xS,r

0 , with a parameterized con-
ditional distribution, pθ(x

S,r
0 |C). In the form of diffusion and denoising

transitions, ReMiND matches q(xS,r
t−1|x

S,r
t ,xS,r

0 ) with pθ(x
S,r
t−1|x

S,r
t ,C) at each

timestep t, where xS,r
0 = xS,r and C = Cp or Cp,f .

To achieve this, the denoising process is re-written as:

pθ(x
S,r
t−1|x

S,r
t ,C) = N (xS,r

t−1; µ̃θ(x
S,r
t , t,C),

1− ᾱt−1

1− ᾱt
βtI),

where

µ̃θ(x
S,r
t , t,C) =

√
ᾱt−1βt

1− ᾱ
· x

S,r
t −

√
1− ᾱtϵθ(x

S,r
t , t,C)√

ᾱt

+

√
αt(1− ᾱt−1)

1− ᾱt

xS,r
t .

The diffusion process of ReMiND is the same as a DDPM except we replace
the desired data distribution with q(xS,r

0 ). In this way, the learning objective
of ReMiND is:

L(θ) = E
t,xS,r

0 ∼q(xS,r
0 ),ϵ∼N (0,I)

[
||ϵ− ϵθ(

√
ᾱxS,r

0 +
√
1− ᾱtϵ, t,C)||2

]
. (1)

Henceforth, we denote the model that only relies on the past visit as ReMiND-
P, i.e., C = Cp, and the model that relies on both the past visit and the
following visit as ReMiND-PF, i.e., C = Cp,f .

During training, Eq. (1) requires that xS,r be recovered from random noise
if the condition C is given during the denoising process at each timestep.
Once the ReMiND model has converged over Eq. (1), ϵθ will capture the
spatial-temporal dynamics across the missing image and its longitudinal
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neighboring images. Therefore, for imputation, as long as the condition
is provided as prior information, the denoising process will gradually gener-
ate the desired missing image. In this work, we only consider models that
condition on the immediate adjacent visits, i.e., Cp and Cp,f , since these
two conditions represent two commonly encountered missingness patterns in
real longitudinal data. Our method can also easily be generalized to im-
pute missing visits that occur within longer visit trajectories, i.e., multiple
past/following visits as conditions.

Normally, modeling high-resolution 3D structural MRIs requires high-
capacity 3D convolutional neural networks [27, 28]. However, these models
are computationally intensive. For instance, the resolution of MRI used in
our application is 256×256×172 voxels, which requires enormous GPU mem-
ory for training and is generally computationally infeasible for such models.
Furthermore, high-capacity models are known to generalize poorly on small-
scale datasets such as those available from AD research studies where the
number of study participants and images per participant are limited [29].
Although 2D convolutional networks are likely computationally feasible for
AD applications, they can only involve at most two dimensions during com-
puting, which leads to locally non-continuous 3D MRI generations.

In this paper, we mitigate these issues via a parameter-efficient train-
ing paradigm by splitting 3D MRIs into uniform local-continuous clips and
training 2D convolutional neural networks over these clips. Concretely, for
a given 3D structural MRI with the shape of x ∈ RL×H×W , it has length L,
width W , and height H. We split x into K segments uniformly along the
L-axis. Each segment has a resolution of L

K
×H ×W . During model train-

ing, we first randomly select one image slice with shape H ×W , from each
segment. Then, we concatenate each selected slice with J slices immediately
before it and J slices immediately after it as the local-continuous clip, which
achieves the shape of K(2J + 1)×H ×W for each clip. These clips are the
basic units for model training and only one clip will be fed into the model at
each optimization step. In other words, instead of randomly selecting slices
from segments, we construct local-continuous clips by selecting three consec-
utive slices (i.e., we use J=1) from each segment. Theoretically, there will
be K(2J +1) slices for each clip and L

K(2J+1)
clips for each 3D MRI. We feed

these 3D clips into the model and finally reassemble the outputs into the 3D
MRI with the original shape, i.e., L×H ×W .

The reason we construct local-continuous clips in this way is two-fold:
1) slices within each clip are uniformly drawn from all segments across the
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entire L-axis. It indicates that all clips encompass the global information of
the whole 3D MRI, which aids the completeness of generations; 2) combining
slices with their immediate neighbors preserves local information and over-
comes the insufficient modeling of 2D convolutional networks. In this way,
our method yields smooth and continuous 3D images.

3. EXPERIMENTS

3.1. Dataset and Preprocessing

To illustrate the utility of ReMiND, we leverage longitudinal MRI data
that are publicly available from the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) [30], which was initiated in 2003 with the goal of facilitating
the study of AD. In brief, ADNI enrolled participants between the ages of 55
and 90 who were recruited at 57 sites in the United States and Canada. The
dataset we use comprises T1-weighted MRI from participants who provided
data to ADNI on at least two separate visits between September 2005 and
May 2017, with a fixed interval of 6 months between each visit. The sam-
ple sizes of each clinical diagnosis that we used for training, validation, and
testing are presented in Table 1.

Table 1. Distribution of observations used for ReMiND-P and ReMiND-PF models
overall and stratified by clinical status including cognitively normal (CN), mild cognitive
impairment (MCI), and Alzheimer’s disease (AD). Each value is the sample size followed
by the percentage of total observations in the corresponding column.

ReMiND-P ReMiND-PF
Status Training Validation Testing Training Validation Testing

CN 371 (31%) 47 (31%) 42 (28%) 237 (31%) 31 (32%) 29 (26%)
MCI 650 (54%) 78 (52%) 88 (59%) 435 (57%) 54 (55%) 67 (61%)
AD 188 (16%) 26 (17%) 19 (13%) 95 (12%) 13 (13%) 14 (13%)
ALL 1209 151 149 767 98 110

We pre-processed the T1-weighted images by following the ANTs lon-
gitudinal cortical thickness pipeline [31]. For each subject, we first built
a single-subject template (SST) using all longitudinal images belonging to
that subject followed by rigid registration of each image into the SST space.
Next, we rigidly registered each SST to a global template and aligned all
within-subject images to the global template by applying the warps from the
corresponding SST registration. To reduce computational costs, we rescaled
each axial slice from 256x256 to 128x128 voxels, resulting in 170×128×128
resolution for each image. Finally, we applied min-max normalization to
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each image. Since the background voxels in each image have a value of 0,
the normalization procedure was considered to be applied exclusively to the
voxels within the skull/brain region.

3.2. Experiment Setting

We used T1-weighted MRI from 632 ADNI participants with clinical sta-
tus classified as: cognitively normal (CN), mild cognitive impairment (MCI),
or AD. We performed 10-fold cross-validation for model selection and eval-
uation. After randomly partitioning the data into 10 equal subsets, each
iteration of the 10-fold cross-validation utilized 80% for model training, 10%
for model validation, and the remaining 10% for testing. In each iteration,
the training set was used for model fitting, the validation set was used to
select values for hyperparameters, and the test set was used to evaluate the
model’s performance under the optimal set of hyperparameters identified by
the validation set. We trained separate imputation models for two settings:
(1) the ReMiND-P model imputes a missing image given the most recent
past visit, and (2) the ReMiND-PF model imputes a missing image given
the most recent past visit and the future visit that follows the missing time
point. We simulated missingness in the dataset for this study by manually
selecting some visits from the complete data. Specifically, for the ReMiND-P
model, every second visit was considered as a missing data point. On the
other hand, for the ReMiND-PF model, the middle visit was regarded as
missing data among every three observed timepoints. We refer to the se-
lected missing image, which actually exists in the dataset, as the “observed
image” in this study.

To assess the performance of the ReMiND models, we first calculated the
structural similarity index (SSIM) and the peak signal-to-noise ratio (PSNR)
to quantify the proximity of the imputed images to the observed images.
SSIM is an algorithm that checks the similarity between two images based on
three factors: luminance, contrast, and structure. It is designed to better suit
the human visual system and capture perceptual changes in the image. SSIM
ranges from -1 to 1, where 1 means perfect similarity [32]. PSNR is a ratio
that measures the amount of noise or distortion introduced by compression
or reconstruction. It is based on the mean squared error between the two
images. The higher the PSNR, the better the quality of the image [33].
We further compared regional brain volumes estimated using two common
pipelines: 1) the ANTs longitudinal cortical thickness pipeline [31] and 2)
FreeSurfer [34]. We employed the error rate and progression rate as metrics to

9

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 21, 2023. ; https://doi.org/10.1101/2023.08.16.23294169doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.16.23294169
http://creativecommons.org/licenses/by-nc-nd/4.0/


facilitate the comparison. The error rate, calculated as |ŷi − yi|/yi, compares
the volume estimation of a specific region from the imputed image ŷi to that
from the observed image yi. Lower error rate indicates better performance.
The progression rate, on the other hand, measures the rate of volume decline,
reflecting brain atrophy between adjacent visits. For imputed images, the
progression rate is computed as |ŷi − yi−1|/yi−1. Here, yi−1 represents the
volume of the previous visit, and |ŷi − yi−1| represents the change in brain
volume in imputed images at a specific visit compared to the previous one.
Similarly, the progression rate for observed images is |yi − yi−1|/yi−1. The
smaller difference between the progression rate using an observed image and
the progression rate using an imputed image signifies better performance.

Furthermore, we studied the relative performance of ReMiND versus two
comparator models: naive imputation by forward filling (Naive) and impu-
tation using an autoencoder (AE). The Naive-P model simply predicted all
missing images to be the same as the past observed images. The Naive-
PF model predicted the missing images by averaging the adjacent past and
future images. AE models are widely used for image processing and gener-
ation [35, 36, 37, 38]. We trained AE models to take as input the past or
past and following visits and then minimize the ℓ2 loss between the output
(i.e., imputed image) and the target ”missing” MRI. Thus, AE-P refers to
taking the past visit as input and AE-PF refers to taking both the past visit
and the following visit as input to impute the missing MRI. We additionally
compared performance of each imputation method and processing pipeline
separately by clinical diagnosis group. However, training utilized data pooled
from all groups.

3.3. Implementation Details

We adopted a modified UNet [39] with larger capacity and additional
attention blocks. Models were trained in 200,000 steps with Adam [40] as
the optimizer. We followed the UNet architecture described in [16] except for
the model size, where we adopted the channel multiplier as 64 for ReMiND-P
and 128 for ReMiND-PF since ReMiND-PF consists of larger conditions. We
trained both ReMiND-P and ReMiND-PF in 200,000 steps with the Adam
optimizer [40]. The learning rate was set to 0.0001 and the batch size was
set to 16 during the training. We adopted the same U-Net architecture as
ReMiND for the AE models. Since the AE models tend to converge easily, we
trained the AEs until the loss stopped decreasing (around 20,000 steps) with
the learning rate set as 1e-4. All experiments were conducted on servers
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consisting of one Nvidia RTX 3090 GPU, one Intel i9-12900F CPU, and
32G RAM. PyTorch [41] was used as the deep learning framework in our
implementation.

4. RESULTS

4.1. Whole-Brain Imputed Images

To qualitatively evaluate the ReMiND-generated images, we visually com-
pared the imputed images with their corresponding observed images for one
subject in Fig. 2. The presented images were generated with the models con-
ditioned on both past and following images, as ReMiND-PF outperformed
the ReMiND-P model on the quantitative measures which we will report
next. To visually demonstrate the superior performance of the ReMiND-PF
method, we display corresponding slices from the images generated using the
Naive-PF and AE-PF models. For all methods, images were intentionally
generated with the skull on to prioritize flexibility in downstream analyses.
That is, researchers working with the imputed image could apply their brain
extraction method of choice.

As shown in Fig. 2, images generated with the ReMiND model are visually
more similar to the observed images compared to the other two imputation
methods. The Naive-PF imputed images have several blurry areas and im-
precise skulls due to averaging across rigidly-registered images from different
visits. Images imputed using the autoencoder model are marginally better
than those generated using the näıve approach but still exhibit undesirable
artifacts and fuzzy edges. Compared to the other methods, the ReMiND
model generated images with sharper edges and finer anatomical details in
critical gray matter regions for this individual. Based on the qualitative
comparison in Fig. 2, our method appears to capture important anatomical
structures such as the cortical gray matter with high integrity. The differ-
ing performance of the three imputation methods is further highlighted by
the error images of brain voxel-wise differences between the generated and
observed images. The Naive imputation exhibited the largest dissimilarity
between observed and imputed images, while ReMiND preserved fine struc-
tural details resulting in small voxelwise differences across the brain.

Table 2 quantifies the proximity of the imputed images to the observed
images at the target visit, considering images with skull voxels included.
Across all clinical statuses, ReMiND models outperformed the Naive and
AE models with respect to SSIM and PSNR values. This finding held both
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Table 2. Comparison of model performance averaged across 10 test sets. Performance was
measured with structural similarity index (SSIM) and peak signal-to-noise ratio (PSNR)
in decibels (dB) on the generated MRI images with skull voxels included in the calculation.
Performance was evaluated overall and separately by clinical group (CN, MCI, and AD). P
indicates the imputation method conditioned on the most recent past image. PF indicates
the imputation method conditioned on both the most recent past image and the closest
following image. AE indicates imputation using an autoencoder. Bold values indicate the
best performing imputation method for a given clinical diagnosis group within the P or
PF condition.

Model Images CN MCI AD ALL

SSIM (higher=better)

Naive-P w/ skull 0.705 ± 0.032 0.710 ± 0.013 0.747 ± 0.026 0.714 ± 0.015
AE-P w/ skull 0.730 ± 0.010 0.725 ± 0.015 0.735 ± 0.017 0.728 ± 0.011

ReMiND-P w/ skull 0.850 ± 0.010 0.848 ± 0.006 0.850 ± 0.011 0.850 ± 0.007

Naive-PF w/ skull 0.702 ± 0.061 0.695 ± 0.026 0.707 ± 0.016 0.701 ± 0.014

AE-PF w/ skull 0.728 ± 0.006 0.739 ± 0.018 0.746 ± 0.016 0.737 ± 0.013

ReMiND-PF w/ skull 0.886 ± 0.010 0.899 ± 0.010 0.900 ± 0.004 0.895 ± 0.002

PSNR (dB) (higher=better)

Naive-P w/ skull 22.169 ± 1.253 22.364 ± 0.551 23.704 ± 1.413 22.503 ± 0.692
AE-P w/ skull 25.013 ± 0.274 24.630 ± 0.442 24.837 ± 0.617 24.780 ± 0.319

ReMiND-P w/ skull 27.182 ± 0.549 26.939 ± 0.171 27.455 ± 0.966 27.101 ± 0.285

Naive-PF w/ skull 22.241 ± 2.691 22.112 ± 0.851 22.267 ± 0.280 22.255 ± 0.682

AE-PF w/ skull 24.805 ± 0.227 24.907 ± 0.343 25.002 ± 0.139 24.890 ± 0.273

ReMiND-PF w/ skull 29.192 ± 0.608 28.870 ± 0.455 28.819 ± 0.833 28.956 ± 0.406

when imputing conditional on the past image and conditional on the past
and following images. The ReMiND-PF model had both larger SSIM and
PSNR than the ReMiND-P model, suggesting the model performs better
when more than one time point is available to condition on for imputation. In
addition to testing the models on the whole testing dataset, we evaluated the
performance of all methods separately amongst groups of subjects categorized
as CN, MCI, and AD. We found only minor differences between the all-status
group and each clinical status group for both SSIM and PSNR. Our findings
suggest that the methods considered can effectively impute missing structural
MRI data for patients across the spectrum of clinical severity.

The results for images without the skull are provided in supplementary
material Table A.5. SSIM and PSNR values were higher when computed
on brain images without skull voxels compared to images with the skull
included. This is likely due to across-subject heterogeneity in extra-cerebral
voxels that display the neck and facial features. Since extra-cerebral regions
are not important for studying the effects of AD in the brain over time,
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Table 3. Comparison of the test performance of imputation methods with respect to
volumetric features extracted from whole-brain imputed images. Results were averaged
across the 10 test sets and averaged across all cortical regions defined by the Desikan-
Killiany-Tourville atla. Lower error rate indicates better performance. The values in ()
are differences between the observed progression rate (using observed images at both time
points) and the estimated progression rate using the imputed image at the latter time
point. Lower difference means better performance. P indicates past image. PF indicates
past and following images. The best test results across all methods and models are bolded.

Models Error Rate Error Rate Progression Rate Progression Rate
(ANTs) (FreeSurfer) (ANTs) (FreeSurfer)

Naive-P 0.0310 ± 0.0028 0.1877 ± 0.0033 0 0
(–) (–)

AE-P 0.0284 ± 0.0002 0.1078 ± 0.0004 0.0422 ± 0.0038 0.1358 ± 0.0030
(-0.0121) (-0.1328)

ReMiND-P 0.0228 ± 0.0003 0.0892 ± 0.0029 0.0361 ± 0.0033 0.1024 ± 0.0004
(-0.006) (-0.051)

Näıve-PF 0.0218 ± 0.0009 0.1393 ± 0.0032 0.0365 ± 0.0012 0.1842 ± 0.0031
(-0.0157) (-0.1332)

AE-PF 0.0192 ± 0.0008 0.0937 ± 0.0019 0.0231 ± 0.0009 0.0949 ± 0.0013
(-0.0023) (-0.0439)

ReMiND-PF 0.0178 ± 0.0002 0.0509 ± 0.0003 0.0226 ± 0.0006 0.0872 ± 0.0018
(-0.0017) (-0.0362)

evaluation of ReMiND and other methods should focus on metrics with the
skull removed.

4.2. Evaluation of Volumetric Features Extracted from Generated Images

We evaluated the performance of the proposed ReMiND models with
respect to volumetric features extracted using the longitudinal ANTs volume-
based cortical thickness estimation pipeline[42] and FreeSurfer’s pipeline [34].
Results are presented in Table 3. We primarily focused on 28 cortical regions
that have been shown to be associated with AD pathology in the brain.
Detailed region names are provided in the supplementary material Table A.4.
Results in Table 3 are based on the average across these 28 regions and are
also averaged across the 10 testing sets.

We found the error rates were lower for PF models compared to P models
across all three methods (Naive, AE, and ReMiND). These results suggest
models that condition on past and following images perform better at the
task of generating accurate missing MRI images at the designated visits,
which is likely explained by the additional information of the subsequent
observed image. Under each experiment setting (P and PF), ReMiND models
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have the lowest error rates compared with two comparator methods, and the
Naive method had the highest error rates. Furthermore, ANTs-based error
rates were lower across all methods and experimental settings compared to
FreeSurfer which is an expected finding based on previous work [42].

The progression rates for Naive-P model are all zero in Table 3 because
the Naive-P model generates the missing image simply by carrying forward
the past image. The ReMiND-P model had lower differences in observed
and imputed progression than AE-P using both the ANTs and FreeSurfer
pipelines. Furthermore, ReMiND-PF models exhibited the lowest differences
between the observed and imputed progression rates for both volume esti-
mation pipelines. FreeSurfer-based differences were larger than ANTs-based
differences in progression rates.

In addition to results averaged across all 28 prioritized brain regions, we
report results from the hippocampus, parahippocampal region, and the third
ventricle individually in Fig. 3. The figure displays total estimated volume
(in mm3), error rate, and progression rate for all imputation methods and
both P and PF models. All results were averaged across 10 test sets. Not
surprisingly, the performance reflects the results in Table 3. ReMiND mod-
els outperform both comparator imputation approaches. Specifically, Fig. 3
(panels a-c) shows that ReMiND models exhibit smaller discrepancies be-
tween the estimated and observed values compared to Naive and AE models.
Fig. 3 (panels d-f) demonstrates that ReMiND-generated images have the
lowest error rates across methods, particularly when the FreeSurfer pipeline
is used to extract the volumes. The third row of Fig. 3 (panels g-i) demon-
strates that the ReMiND-P and ReMiND-PF models produce the smallest
differences between imputed and observed progression rates across imputa-
tion methods. Although the estimated volumes may not exhibit significant
visual distinctions, the observed differences in error rate and progression rates
in the plot are primarily influenced by the difference between the estimated
and observed values for each method.

5. CONCLUSIONS

In this study, we introduced an innovative diffusion model-based frame-
work for 3D longitudinal structural MRI imputation with an aim to generate
missing 3D brain images at a specific single visit. To achieve this, the 3D
image is partitioned into uniform local-continuous clips, with each clip con-
sisting of three consecutive slices of the MRI image. Notably, our method
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distinguishes itself from conventional approaches by employing sets of 3D
clips as input, thereby enhancing the proposed model’s ability to capture
comprehensive global information from the entire MRI dataset during the
training phase. The model utilizes single past or both past and following vis-
its in the temporal direction to impute missing structural MRIs. Experimen-
tal results showed that our model consistently outperformed two comparator
techniques: last image carried forward (i.e., forward filling) and imputation
using an autoencoder. The comparison of similarity metrics highlighted our
proposed model’s ability to accurately generate high-quality images for im-
puting missingness. We compared the volumes of a set of image derived
phenotypes (IDPs) estimated from the generated and observed images using
two different pipelines (ANTs and FreeSurfer). The relatively low error rates
and accurately estimated rates of change in volume over time demonstrated
that our proposed models can generate plausible whole-brain, 3D structural
MRI data. Importantly, by imputing full 3D images rather than IDPs di-
rectly, researchers can flexibly utilize the imputed images in downstream
statistical or predictive models, including using the generated images for fur-
ther imputation of missing data in the temporal dimension. The proposed
models alos has the potential to be beneficial for generating missing data in
various other medical imaging contexts.

Across all experiments, the ReMiND-PF model, which conditioned on
both past and future visits, outperformed the ReMiND-P model which solely
relied on the past timepoint. This may be due to the ReMiND-PF model’s
use of more information to generate images, highlighting the importance of
quantity and quality of available information for imputing missingness. We
evaluated the performance of the models on each clinical status group (CN,
MCI, AD) and a combined all-status group and found that both ReMiND-P
and ReMiND-PF performed well in all scenarios.

One limitation of our study lies in the utilization of either a single past
image or both past and following images as conditional information for miss-
ingness imputation while ensuring a 6-month interval between consecutive
visits. Future investigations could involve expanding the approach to incor-
porate multiple images with diverse visit interval timing. Additionally, there
is potential for further research on downstream analyses, such as using the
imputed imaging trajectories to develop models that predict the progression
of Alzheimer’s disease.
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Appendix A. Supplementary Material

Table A.4. The 28 regions on the cortical surface of the brain.

Amygdala Pallidum
Caudal Anterior Cingulate Paracentral
Caudal Middle Frontal Parahippocampal
Entorhinal Pars Orbitalis
Fourth Ventricle Pars Triangularis
Hippocampus Posterior Cingulate
Inferior Lateral Ventricle Rostral Anterior Cingulate
Inferior Parietal Rostral Middle Frontal
Inferior temporal Superior Frontal
Insula Superior Parietal
Isthmus Cingulate Superior Temporal
Lateral Ventricle Thalamus
Medial Orbitofrontal Third Ventricle
Middle Temporal Transverse Temporal
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Table A.5. Comparison of model performance averaged across 10 test sets. Perfor-
mance was measured with structural similarity index (SSIM) and peak signal-to-noise
ratio (PSNR) in decibels (dB) on the generated MRI images with the skull removed (i.e.,
voxels within the group template brain mask only). Performance was evaluated overall
and separately by clinical group (CN, MCI, and AD). P indicates the imputation method
conditioned on the most recent past image. PF indicates the imputation method condi-
tioned on both the most recent past image and the closest following image. AE indicates
imputation using an autoencoder. Bold values indicate the best performing imputation
method for a given clinical diagnosis group within the P or PF condition.

Model Images CN MCI AD ALL

SSIM (higher=better)

Naive-P skull removed 0.899 ± 0.015 0.899 ± 0.005 0.914 ± 0.007 0.901 ± 0.005
AE-P skull removed 0.913 ± 0.008 0.912 ± 0.006 0.911 ± 0.002 0.912 ± 0.006
ReMiND-P skull removed 0.974 ± 0.003 0.974 ± 0.001 0.974 ± 0.002 0.974 ± 0.001
Naive-PF skull removed 0.894 ± 0.025 0.886 ± 0.013 0.893 ± 0.008 0.890 ± 0.006
AE-PF skull removed 0.919 ± 0.006 0.914 ± 0.0002 0.916 ± 0.005 0.916 ± 0.002
ReMiND-PF skull removed 0.984 ± 0.002 0.982 ± 0.0004 0.983 ± 0.0009 0.983 ± 0.0002

PSNR (dB) (higher=better)

Naive-P skull removed 22.868 ± 0.754 24.644 ± 0.713 23.217 ± 0.632 23.217 ± 0.632
AE-P skull removed 25.911 ± 0.768 26.820 ± 0.314 26.962 ± 0.660 26.962 ± 0.660
ReMiND-P skull removed 29.078 ± 0.781 28.908 ± 0.458 28.824 ± 0.651 28.960 ± 0.434
Naive-PF skull removed 23.743 ± 2.957 22.537 ± 1.353 23.457 ± 1.026 23.097 ± 0.571
AE-PF skull removed 27.040 ± 0.590 26.613 ± 0.100 27.954 ± 0.662 27.792 ± 0.232
ReMiND-PF skull removed 31.786 ± 0.399 31.175 ± 0.218 31.857 ± 0.343 31.449 ± 0.090
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Figure 1. Pipeline of the proposed ReMiND model. For model training, ReMiND follows
the diffusion process of a DDPM by adding random noise on a designated MRI. Then,
ReMiND leverages parameterized neural networks during the denoising process to recover
the noise applied, with conditions over past visits or past and following visits. To generate
a missing MRI after the model is trained, ReMiND passes random noise through the
learned denoising process along with one or more observed images from other time points
in a subject’s longitudinal image trajectory. The denoising process is parameterized by
UNet-like neural networks, taking the concatenation of conditions and intermediate results
as input and predicting the added noise. FC Layer refers to Fully-Connected Layer. Group
Norm. refers to Group Normalization, which first aggregates activations into groups by
channels and then calculates group-wise normalization. Shortcut connection refers to a
branch where the source of the connection will be directly added to the end, which benefits
multi-scale modeling and gradient propagation. Residual block means there will be one
shortcut connection within this block.
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Figure 2. Qualitative comparison of observed images and imputed T1-weighted MRI which were gener-
ated by Naive-PF, AE-PF, and the proposed ReMiND-PF models. The first, third, and fifth rows show
the generated images from sagittal, coronal, and axial views, respectively. The second, fourth, and last
row shows the error maps of brain voxelwise differences between the observed and generated images. MAE
indicates the mean absolute error.
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Figure 3. Comparison of volumetric features for three brain regions estimated on ob-
served MRI images and MRI images generated from naive imputation, autoencoder, and
ReMiND models. Results were averaged across 10 test sets. Error bars show standard
errors across test sets. Estimated Volumes compare the observed volumes (represented as
black diamond) and the volumes estimated from images generated with different models
in panels a-c. Panels d-f present the comparison of error rates, where a lower value in-
dicates better performance. In panels g-i, the progression rate is depicted using imputed
images through bars, while the progression rate using observed images is represented by
black diamonds. The volumes were estimated and compared with ANTs and FreeSurfer
pipelines. P indicates the past image. PF indicates past and following images.
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