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Abstract 38 

Objectives: Inflammatory cytokines that signal through the JAK- STAT pathway, especially 39 

interferons (IFNs), are implicated in Sjögren’s Disease (SjD). Although inhibition of JAKs is 40 

effective in other autoimmune diseases, a systematic investigation of IFN-JAK-STAT signaling 41 

and effect of JAK inhibitor (JAKi) therapy in SjD-affected human tissues has not been reported.  42 

Methods: Human minor salivary glands (MSGs) and peripheral blood mononuclear cells 43 

(PBMCs) were investigated using bulk or single cell (sc) RNA sequencing (RNAseq), 44 

immunofluorescence microscopy (IF), and flow cytometry. Ex vivo culture assays on PBMCs and 45 

primary salivary gland epithelial cell (pSGEC) lines were performed to model changes in target 46 

tissues before and after JAKi.   47 

Results: RNAseq and IF showed activated JAK-STAT pathway in SjD MSGs. Elevated IFN-48 

stimulated gene (ISGs) expression associated with clinical variables (e.g., focus scores, anti-SSA 49 

positivity). scRNAseq of MSGs exhibited cell-type specific upregulation of JAK-STAT and ISGs; 50 

PBMCs showed similar trends, including markedly upregulated ISGs in monocytes. Ex vivo 51 

studies showed elevated basal pSTAT levels in SjD MSGs and PBMCs that were corrected with 52 

JAKi. SjD-derived pSGECs exhibited higher basal ISG expressions and exaggerated responses to 53 

IFNβ, which were normalized by JAKi without cytotoxicity.   54 

Conclusions: SjD patients’ tissues exhibit increased expression of ISGs and activation of the JAK-55 

STAT pathway in a cell type-dependent manner. JAKi normalizes this aberrant signaling 56 

at the tissue level and in PBMCs, suggesting a putative viable therapy for SjD, targeting both 57 

glandular and extraglandular symptoms. Predicated on these data, a Phase Ib/IIa randomized 58 

controlled trial to treat SjD with tofacitinib was initiated. 59 

  60 
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Key messages (total 3-5 sentences) 61 

What is already known on this topic? 62 

• Upregulation of interferons (IFNs) has been reported in patients with SjD; however, a 63 

systematic investigation of their role at a cellular and tissue level in humans is lacking. 64 

What this study adds? 65 

• Our findings conclusively show that the IFN-JAK-STAT pathway is activated in the 66 

salivary glands and PBMCs in patients with SjD  67 

• Specific cells in the MSGs (infiltrating lymphocytes, epithelial, antigen presenting cells, 68 

and endothelial cells) and in PBMCs (monocytes, NK cells, and dendritic cells) drive this 69 

IFN signature.  70 

• We pinpoint cells responsive to JAK inhibition and illustrate in patient tissues that JAK 71 

inhibitors may be beneficial in SjD by uncoupling the pathogenic cytokine milieu and 72 

resultant epithelial tissue damage and dysfunction central to SjD.  73 

How this study might affect research, practice, or policy? 74 

• SjD lacks an approved, efficacious and targeted therapy. Several large clinical trials have 75 

been unsuccessful due in part to a lack of biologically relevant endpoints or predictive 76 

biomarkers. We establish a multimodal testing platform using human tissues from SjD 77 

patients to identify actionable targets and to directly test treatment effects. Our data suggest 78 

that blocking the IFN-JAK-STAT pathway by using JAKi is a rational therapy for SjD. 79 

Moreover, these data can also serve as biological endpoints for clinical trials 80 

[NCT04496960]. 81 

 82 
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Introduction 84 

 Despite being the second most common systemic autoimmune rheumatic disease, 85 

Sjögren’s Disease (SjD) lacks a precise etiology or an approved and efficacious therapy that 86 

meaningfully manages symptoms or alters disease progression.1 Concerted efforts have been 87 

expended toward identifying the pathogenic mechanisms of SjD; these efforts have led to the 88 

development and testing of many medications to treat SjD.2 However, few agents met their primary 89 

endpoints until very recently, and only limited biological data accompany these studies.2 90 

One of the reasons for these limitations could be the heterogeneous clinical presentation of 91 

patients with SjD. Chronic inflammatory lymphocytic infiltration of the exocrine glands leading 92 

to dysfunction and ultimate destruction of the tissue is characteristic of SjD. Most SjD patients 93 

present with symptoms involving the salivary and lacrimal glands. Other tissues that can be 94 

affected include: the skin; the respiratory tract nervous system, kidneys, and the vagina, along with 95 

systemic symptoms including fatigue, widespread musculoskeletal pain, and polyarthritis.3 4  96 

Many of the inflammatory cytokines implicated in SjD pathogenesis, in particular Type-I 97 

and Type-II interferons (IFNs), interleukins (IL)-6, IL-7, IL-12, and IL-21, signal through the 98 

Janus Kinases (JAK)-Signal Transducer and Activator of Transcription (STAT) pathway.5 99 

However, a comprehensive understanding of IFN signaling and the involvement of the JAK-STAT 100 

pathway in SjD tissues is lacking. Clarification of cell types driving disease pathogenesis in the 101 

peripheral blood and in the salivary glands will facilitate the development of targeted therapies for 102 

SjD. 103 

In this study, we aimed to characterize JAK-STAT pathway utilization in SjD-affected 104 

tissues and establish a human-tissue-based experimental rationale for examining the efficacy of 105 

JAK inhibitors (JAKi) in SjD participants. We used an ‘omics’ platform to identify high-potential 106 
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tractable pathways in the affected tissue compartments in SjD. We first performed ‘bulk’ RNA 107 

sequencing (RNAseq) on minor salivary glands (MSGs) from patients with SjD and demonstrated 108 

activation of the JAK-STAT pathway. These findings were corroborated using immunofluorescent 109 

staining (IF) of salivary glands, and flow cytometry analysis of the salivary glands and peripheral 110 

blood mononuclear cells (PBMCs) from patients with SjD. Using single cell RNAseq (scRNAseq), 111 

we were able to identify cells in the glands and peripheral blood that upregulate IFNs through the 112 

JAK-STAT pathway in MSGs and then confirmed these findings using flow cytometry and ex vivo 113 

culture assays. Finally, we used patients’ tissues and primary cell models to show that JAKi can 114 

correct this altered pathway activation without cytotoxicity as a high-potential targeted therapy for 115 

SjD.  116 

 117 

Materials and Methods 118 

Subjects and ethical approval  119 

Study subjects provided informed consent prior to the initiation of any study procedure, 120 

and they were evaluated and classified comprehensively according to 2016 American College of 121 

Rheumatology (ACR) and the European League Against Rheumatism (EULAR) classification 122 

criteria.6 Comparator group included subjects who did not meet 2016 ACR-EULAR criteria (non-123 

SjD) or healthy volunteers (HV).7 All subjects were screened for evidence of systemic 124 

autoimmunity and received comprehensive oral/sialometric, rheumatological, and 125 

ophthalmological investigations. Clinical investigations were conducted in accordance with the 126 

Declaration of Helsinki principles. All studies using human samples were approved by the NIH 127 

IRB (15-D-0051, NCT00001390; 11-D-0172, NCT02327884, or 94-D-0018, NCT00001196; PI-128 

Warner).  129 
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Patient and Public Involvement 130 

Patients or the public were not involved in the design, or conduct, or reporting, or dissemination 131 

plans of our research. 132 

Human Salivary Gland RNA Sequencing 133 

Bulk RNA sequencing was performed as previously described.8 RNAseq data that passed quality 134 

control was deposited in dbGaP: phs001842.v1.p1. 135 

Single Cell RNA Sequencing of the MSGs and PBMCs 136 

MSG biopsies and PBMCs were processed for scRNAseq as previously described (supplemental 137 

table 1).9 10 scRNAseq data sets were analyzed in Python using Scanpy.  138 

Immunofluorescence microscopy and analysis on MSGs 139 

Detection of JAK1 and JAK3 in MSG. FFPE MSG sections were processed following standard 140 

procedures. Sections were blocked, incubated in antibodies, and mounted (supplemental table 2).  141 

Immunofluorescence in primary cell culture assays. Primary salivary gland epithelial cells 142 

(pSGECs) were plated on chamber slides and stimulated as indicated, then stained with antibodies 143 

(supplemental table 2). Images were acquired on Nikon A1 HD (Nikon) confocal microscope 144 

and processed with CellProfiler in ImageJ (Broad Institute).11  145 

Flow cytometry  146 

Freshly biopsied MSGs were dissociated as described above. Multicolor flow cytometry was used 147 

to quantify the phosphorylation status of pSTATs in gated cell subset populations (supplemental 148 

table 2 and supplemental method 1, 2).  149 

Assessment of serum proteome 150 
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Proteomic profiles were measured in serum (50L) using the SOMAscan Assay V1.3 (SomaLogic, 151 

Inc.) at the Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, 152 

National Institutes of Health as previously reported.12 153 

RNA isolation and RT-qPCR 154 

Standard Taqman assays (supplemental table 3) were performed to measure relative gene 155 

expression. 156 

Statistical Analysis for Difference in Immune Cell Populations/Cytokines  157 

Statistical methods were employed using GraphPad Prism (GraphPad), MATLAB, or -R as 158 

described, and the type and nature of the data were considered when assessing differences in mean 159 

values and variances across biological and experimental replicates. A p-value of <0.05 was 160 

considered statistically significant. 161 

 162 

Results 163 

Genes in the JAK-STAT and Type-I IFN pathways are upregulated in MSGs from patients with 164 

SjD 165 

To understand the transcriptome wide impacts of SjD on the MSGs, we first performed 166 

‘bulk’ RNAseq on SjD and HV MSGs (figure 1A). Unsupervised clustering generally segregated 167 

SjD from HV MSGs based on differentially expressed genes (DEGs) (figure 1B, C). MSGs from 168 

SjD subjects were transcriptionally more active. Immune pathway genes, including ISGs (e.g., 169 

IFI44L, IFI44, MX1, CXCL13), were upregulated in SjD whereas canonical salivary genes were 170 

downregulated (figure 1B, C). Pathway enrichment analysis identified the JAK-STAT Pathway as 171 

one of the top significantly and differentially utilized pathway in SjD (figure 1D). Gene 172 

enrichment analysis showed consistent and direct regulation of the JAK-STAT pathway signaling 173 
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through IL7/IL15/IL21 via JAK3 (supplemental figure 1B). We examined the mRNA expression 174 

of JAK genes and found that JAKI had the highest expression in all MSGs whether they were from 175 

SjD or HV. However, when comparing MSGs from SjD to those from HV, JAK2 and JAK3, but 176 

not JAK1 or TYK2, expression was differentially increased (supplemental figure 1C).  177 

Although the bulk RNAseq was unable to reliably detect Type-I IFN transcripts, these data 178 

demonstrated increased IFNG (supplemental figure 1D). Thus, we employed surrogate readouts 179 

of Type-I and Type-II IFN gene expression using validated composite Type-I (21-gene)13 14 and 180 

Type-II (8-gene)15-17 IFN scores to demark patients with enhanced JAK-STAT pathway signaling. 181 

Calculated Type-I and Type-II IFN scores18 revealed 2-fold and 2.5-fold mean increases, 182 

respectively, in SjD patients’ MSGs compared to HV glands (p=0.0033 and p=0.0009, 183 

respectively; figure 1E, G). Of the 24 SjD subjects, 17 (71%) had elevated Type-I or Type-II ISG 184 

scores; 7 exhibited elevations in both Type-I and Type-II IFN ISGs; while 5 each exhibited 185 

elevated Type-I or Type-II ISGs. Seven did not show significant elevation of either and were 186 

enriched for anti-SSA antibody negative subjects (5/7) (figure 1E, G). Type-I and Type-II ISG 187 

scores exhibited modest, positive, statistically significant correlation, but not all the variance was 188 

explained.  189 

Increased lymphocytic infiltration, quantified as a focus score (FS), is an independent 190 

predictor of deterioration of exocrine gland function.19 SjD is related to both loss of epithelial cells 191 

and greater inflammation in the glands. The Type-I and Type-II IFN scores from our bulk RNAseq 192 

positively correlated with FS in the glands; however, Type-II IFN exhibited a stronger correlation 193 

than Type-I IFN (R^2=0.24, p=0.0031 and R^2=0.65, p<0.0001, respectively; figure 1F, H). Our 194 

data suggests that Type-II IFN signature serves as a surrogate for IFNγ produced by T cells in the 195 

glands; while Type-I IFN signaling is appreciably more disease-specific and integrates the 196 
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contributions of the epithelial cells, dendritic cells, and monocytes in the MSG. Moreover, it is 197 

well-documented that there is positive crosstalk between Type-I IFNs (α and β) and Type-II IFN 198 

(γ) receptor signaling. In our cohort most patients exhibited elevated Type-I signaling. Thus, we 199 

focused on Type-I signaling in subsequent experiments, acknowledging that signaling in vivo/in 200 

situ is far more complex. 201 

These findings confirm that SjD pathogenesis involves IFN-JAK-STAT pathway. 202 

However, “bulk” RNAseq does not precisely and robustly predict the compositional cell types or 203 

infer the cell states changes contributing to these phenomena in SjD-affected MSG.  204 

 205 

Expression of JAK1 and JAK3 in the salivary glands is cell type-specific  206 

To pinpoint the cell types and expression levels of JAK1 and JAK3 in the MSG, we used 207 

IF, whole slide imaging and analysis, and tSNE visualization (figure 2A). These results revealed 208 

the expected cellular proportion changes in the MSGs. Keratin-18 expression was restricted to 209 

epithelial structures (+6%, p<0.001; figure 2B, C and supplemental figure 2A-C). Per-cell JAK1 210 

expression was mildly elevated in immune cells in SjD, while per-cell JAK3 expression showed 211 

both SjD-specific increased per-cell expression in epithelial cells and infiltrating immune cells in 212 

SjD (+35%, p<0.0001 and +15%, p<0.0001, respectively; figure 2C). It is generally assumed that 213 

high IFN signaling is driven by infiltration of immune cells; however, the IF and RNAseq results 214 

independently confirm that signaling is directed in part by the involved epithelium.  215 

 216 

Increased phosphorylated STAT proteins in SjD MSGs confirm activation of JAK-STAT 217 

pathway  218 
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To directly confirm the activation status of the JAK-STAT pathway in MSGs, we measured 219 

the frequency of pSTAT proteins by flow cytometry in freshly biopsied and dissociated MSGs 220 

(figure 2A). In general, flow cytometry exhibited cellular proportion changes consistent with the 221 

IF results in the glands (figure 2D). The frequency of pSTAT1, pSTAT3(Ser727) and pSTAT6 222 

proteins were higher at baseline in SjD epithelial cells compared to non-SjD (2.0-fold, p=0.017; 223 

2.9-fold, p=0.028; and 6.9-fold, p=0.1080, respectively; figure 2E), directly supporting elevated 224 

activation of the JAK-STAT pathway in SjD epithelial cells. Moreover, the frequency of pSTAT 225 

proteins on immune cells showed a similar pattern in SjD-affected MSGs (1.4-fold, p=0.3749; 2.6-226 

fold, p=0.068; and 1.2-fold, p=0.3499, respectively; figure 2E), with appreciably less significant 227 

differences.  228 

 229 

High IFN signature and activated JAK-STAT pathway in SjD MSGs is due to salivary gland 230 

epithelial and infiltrating immune cells 231 

Our results implicate coordinated interactions between the epithelium and the immune 232 

infiltrate (i.e., autoimmune epithelitis).3 To better understand the transcriptional impact of SjD on 233 

each cell type, we then analyzed single cell transcriptomes from MSGs from SjD and non-SjD 234 

subjects. Leiden clustering of scRNAseq data identified 11 clusters of cells representing the 235 

general cell types in the MSGs (figure 3A and supplemental figure 3A, C). Expectedly, compared 236 

to non-SjD MSGs—and consistent with both the IF and flow cytometry results—the proportion of 237 

seromucous acinar cells was reduced and immune cell infiltration was increased in SjD (figure 238 

3B). Examining the top ten DEGs in each of the cell types demonstrated that SjD cells were 239 

dominated by ISGs (figure 3C). A Type-I IFN score was calculated for all cells in SjD and non-240 

SjD and was increased in all cells in SjD patients' glands (figure 3D). Moreover, seromucous 241 
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acinar cells showed increased expression of multiple JAK genes, while ductal cells had increased 242 

expression of JAK3 and TYK2 (figure 3E and supplemental figure 3C, D). These results 243 

independently confirm our bulk and proteomics data and suggest that disease-specific utilization 244 

of this pathway in unique cell types. 245 

 246 

Sera from SjD have increased IFN Signature 247 

As a prototypic systemic autoimmune disease, additional non-exocrine organs are also 248 

commonly affected in SjD. To estimate proteomic changes in the circulation, Somalogic aptamer-249 

based 1.3K target proteomics was performed. Most proteins were significantly upregulated in sera 250 

from SjD patients compared to controls (figure 4B). Consistent with MSGs data, inflammation 251 

and IFN regulated proteins were upregulated in sera. A validated 4-protein IFN score demonstrated 252 

a significant increase of IFN-stimulated proteins in SjD patients’ sera compared to both non-SjD 253 

and HV sera (p<0.0001; figure 4C). These data indicate that IFN signatures in the glands are 254 

recapitulated in the blood and suggest similar pathogenic mechanisms affecting both tissue 255 

compartments.2 256 

 257 

scRNA of PBMCs identify cells with activated JAK-STAT pathway 258 

To better understand the transcriptional impact of SjD on each cell type in the peripheral 259 

blood, single-cell transcriptomes from PBMCs from SjD and non-SjD subjects were analyzed. 260 

scRNAseq identified 10 unique general types by Leiden clustering (figure 4D and supplemental 261 

figure 4A, B). DEG analysis showed upregulation of many ISGs (e.g., IFI44L, IFIT3, ISG15, MX1, 262 

and IFI6) in SjD PBMCs (supplemental figure 4C). Functional annotation analysis revealed that 263 

upregulated genes were mostly associated with immune and inflammatory responses, especially 264 
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‘innate immunity against virus’ and ‘Type-I IFN responses’ (figure 4E). Type-I IFN scores were 265 

projected on to each cell and were higher in SjD PBMCs compared to controls (figure 4F). 266 

Monocytes had the highest expression of ISGs in SjD, followed by dendritic cells, and then NK 267 

cells (figure 4F).  268 

 269 

Increased phosphorylated STAT proteins in SjD PBMCs confirmed activation of JAK-STAT 270 

pathway in blood 271 

 To directly estimate the activation of the JAK-STAT pathway in the blood, the frequencies 272 

of pSTAT proteins were measured by flow cytometry of PBMCs from patients with SjD and HVs. 273 

The frequencies of basal pSTAT proteins, pSTAT1, pSTAT3(Ser727) and pSTAT6, were higher 274 

in SjD patients compared to HVs (2.0-fold, p=0.007, 2.3-fold, p=0.046, and 1.3-fold, p=0.044, 275 

respectively; figure 5 and supplemental figure 5). Of note, pSTAT3(Ser727), but not 276 

pSTAT3(Tyr705) was significantly upregulated in SjD patients. In aggregate, these findings 277 

indicate that enhanced Type-I IFN response in PBMCs could be involved in both the systemic 278 

aspect of SjD and local inflammation after infiltration into the MSGs. Our results suggest that we 279 

could employ this tissue as a surrogate model for assessing if identified drugs are biologically 280 

effective for SjD or stratify patients amenable to pathway targeting, a priori. 281 

 282 

Tofacitinib inhibits Type-I IFN response in PBMCs 283 

Based on our transcriptomic and proteomic data, SjD pathogenesis may be selectively 284 

dependent on JAK3 and JAK1 in both immune and epithelial compartments. Thus, we tested the 285 

effectiveness of the JAK3/JAK1 semi-selective inhibitor, tofacitinib, in ex vivo/in vitro assays 286 

(figure 6A). Treatment with 5 M tofacitinib blocked STATs phosphorylation status induced by 287 
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IFNβ stimulation in PBMCs in all cell subsets without inducing cytotoxicity (figure 6B and 288 

supplemental figure 6A, D). scRNAseq showed that 5 μM tofacitinib downregulated 109 DEG, 289 

nearly all of which were ISGs, and no genes were upregulated. Tofacitinib suppressed the IFNβ-290 

induced IFN signature to baseline levels (figure 6C, D and supplemental figure 6B). Cell clusters 291 

with sufficient number of representation of samples and cells in each treatment group cluster were 292 

analyzed for top DEG by pseudobulk analysis. T cells and monocytes exhibited greater numbers 293 

of downregulated ISGs in the context of tofacitinib inhibition. ISGs were among the top DEG in 294 

all subsets after IFNβ stimulation and tofacitinib normalized this response; cell type-specific 295 

effects were less dominant (figure 6E). A similar direction of effect was shown in PBMCs treated 296 

with 5M tofacitinib without IFNβ stimulation, though there was appreciable inter-individual 297 

variability in responsiveness to tofacitinib (supplemental figure 6C). These data provide clear 298 

and direct evidence, using affected human tissues from SjD patients, that in vitro tofacitinib can 299 

abrogate basally activated JAK-STAT signaling and suggest that responsiveness to JAK inhibition 300 

is somewhat SjD-selective. These results raised the question as to whether a similar correction 301 

could be achieved in glandular epithelial cells.  302 

 303 

Tofacitinib, a JAK inhibitor, reduces Type-I IFN response in primary salivary gland epithelial 304 

cells  305 

To model the glandular epithelial response to Type-I IFN and blockade by tofacitinib, we 306 

used primary salivary gland epithelial cells derived and cultured from SjD and HV. Tofacitinib at 307 

5M concentration did not induce apoptosis or necrosis in pSGEC (supplemental figure 7A, B). 308 

Tofacitinib mitigated IFNβ-induced pSTAT1 proteins in both the nucleus and cytosol in pSGECs 309 

as assessed by IF (0.78-fold, p<0.0001; 0.84-fold, p<0.0001, respectively; figure 7B), and dose-310 
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dependently decreased IFNβ-induced ISGs mRNA expression (CXCL10: 0.002-fold, p=0.023; 311 

ISG15: 0.03-fold, p=0.003; MX1: 0.01-fold, p=0.009; figure 7C and supplemental figure 7C). 312 

Of note, SjD-derived pSGECs exhibited an enhanced response to IFNβ stimulation (e.g., CXCL10: 313 

33.6-fold, p=0.032; figure 7C). pSGECs treated with tofacitinib without IFNβ stimulation showed 314 

a trend towards decreased expression of ISGs, though this was not statistically significant 315 

(supplemental figure 7D). These results suggest that i) responsiveness to JAK inhibition is 316 

activation-dependent and SjD-selective, and ii) while activation is not retained in pSGECs in vitro, 317 

pSGECs do retain SjD-specific enhanced responsiveness to IFN stimulation20 supporting the 318 

robustness of this model system.   319 
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Discussion: 320 

Current strategies for managing SjD are ineffective in limiting disease progression or 321 

preventing the long-term decline in quality of life. Recent successes of early stage randomized 322 

controlled trials in SjD (BAFF-R, TACI, CD40, CD40L21) offer renewed optimism to patients and 323 

providers. Given the multiple intersecting pathogenic pathways driving varied clinical 324 

presentations in SjD, and a paucity of successful trials, there is continued need for biologically 325 

relevant, effective, and targeted therapeutics. Rational repurposing of approved drugs offers an 326 

exciting path to accelerate the approval of safe and effective medications for patients with SjD. To 327 

this end, we established a multimodal testing platform using human tissues from SjD patients to 328 

identify actionable targets and to directly test biological effects. Specifically, we hone-in on Type-329 

I IFN signaling through the JAK-STAT pathway.  330 

The activation of the IFN pathway in SjD patients' peripheral blood has been reported22, 331 

but the specific cell types driving this upregulation in blood or in the glands remain poorly detailed. 332 

Using transcriptomic and functional approaches on peripheral blood and MSG tissue from SjD 333 

patients, our data revealed enhanced IFN signaling via JAK-STAT in both compartments, 334 

emphasizing the therapeutic potential of this pathway. We identified cell subsets driving this 335 

activated state: monocytes, NK cells and DCs in PBMCs and infiltrating immune cells and salivary 336 

gland epithelial cells in MSGs. Our data confirm SjD-specific upregulation of ISGs and JAK-337 

STAT pathway in salivary glands and blood, aligning with previous reports.23 These cytokines, 338 

via Janus Kinases, initiate and enhance inflammation in SjD salivary glands.2 24-28 Similar to a 339 

previous report, the elevated IFN signatures in MSG correlated with clinical variables including 340 

focus score and enrichment in autoantibody-positive subjects.29  341 
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To understand the upstream effects in SjD-affected MSG, we measured JAK genes and 342 

protein expression in the glands at single cell resolution. Among the JAK genes expressed in the 343 

MSGs, JAK1 was most abundant and ubiquitously expressed in both SjD and non-SjD. However, 344 

JAK3 mRNA and protein expression was only elevated in SjD. Using IF on MSGs, JAK1 protein 345 

localized to immune and epithelial cells with a very slight increased expression (~6%) in SjD 346 

immune cells likely due to increased expression in APCs as found in scRNAseq. Confirming our 347 

bulk and scRNAseq data, IF showed that JAK3 protein was increased in i) the ductal and acinar 348 

epithelium in SjD involved by focal lymphocytic inflammation, and ii) in inflammatory cells 349 

within inflammatory foci. A previous report showed JAK1 staining in ductal cells, and to a lesser 350 

extent in acinar cells, in HV and SjD patients.30 We extend the understanding of JAK-STAT 351 

signaling in the gland by showing the novel finding of disease-specific dependence of JAK3 352 

signaling in the ductal epithelium. These data provide guidance for rational drug selection (i.e., a 353 

JAK3/JAK1 targeting drug such as tofacitinib) whereby the epithelium and disease-specific 354 

immune infiltrates show evidence of dependence on JAK-STAT signaling through JAK3/JAK1 in 355 

SjD.  356 

Deciphering the JAK-STAT pathway involvement in SjD is an exciting area of 357 

investigation. We and others have demonstrated significantly increased IL21 and IL-21-inducible 358 

genes: JAK3 and STAT1 in SjD via RNAseq of MSGs.31 pSTAT1 in SjD MSG biopsies has been 359 

associated with IFN-α, IFN-γ, and IL-6 stimulation.32 33 Very recently, pSTAT1 was shown to 360 

confer histopathological value in MSGs with or without lymphocytic foci34; however, these 361 

findings are based on weak intensity immunohistochemical staining of pSTAT1 without rigorous 362 

quantification. We now directly confirmed that pSTAT1 and pSTAT3(Ser727) are elevated in the 363 

epithelial and immune cells in the MSGs by phospho-flow cytometry from SjD subjects. It has 364 
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been reported that STAT protein expression is increased in immune cells of MSG.32 33 35 365 

Furthermore, our transcriptomic (bulk and sc) results show that STATs gene expressions are 366 

upregulated in SjD, and our proteomic data establishes that the levels of pSTATs are higher in SjD 367 

MSG than controls. These data further confirm that activated JAK-STAT signaling is a potentially 368 

targetable pathogenetic factor for SjD. 369 

Our data supports that activation of IFN pathway in SjD is a systemic phenomenon and not 370 

constrained to the salivary glands.36 Enhanced IFN response in PBMCs could be involved in both 371 

the systemic features of SjD and local inflammation after infiltration into MSGs. T cells could 372 

proliferate locally in the salivary glands, but much of their infiltration is from migration from the 373 

circulation.36 In PBMCs from SjD subjects, pSTAT1 frequency was significantly higher compared 374 

to controls and was more of a general phenomenon across multiple cell subsets. On the other hand, 375 

pSTAT3(Ser727), but not -(Tyr705), were more frequently phosphorylated in SjD T cells, NK 376 

cells, and monocytes (supplemental figure 5). pSTAT3(Ser727) has been suggested to contribute 377 

to oxidative phosphorylation in the mitochondria with an effect that is independent of 378 

STAT3(Tyr705) phosphorylation.37 Davies et al.38 showed increased responses from B cells in 379 

peripheral blood from patients with SjD to TLR-7 and -9 agonism were dependent upon 380 

phosphorylation of STAT3 at the Ser727 site. It has been reported that Tyr705 phosphorylation is 381 

essential for STAT dimerization, nuclear translocation and DNA binding, whereas C-terminal 382 

Ser727 phosphorylation is required for maximal transcriptional activity.39 The increased response 383 

was found to be correlated with Type-I IFN signature suggesting that pSTAT3(Ser727) plays a 384 

key role in IFN signaling in SjD patients and could be a potential molecule for targeted therapy or 385 

to monitor therapeutic effects of targeted therapies. These results support i) the independence of 386 
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Ser727 from Tyr705 on pSTAT3, and ii) possibly highlight patients with maximal pathway 387 

activation who may benefit from JAKi.  388 

JAKi have emerged as an important new class of oral therapy for several autoimmune 389 

diseases.40 41 Tofacitinib was the first oral JAK inhibitor approved for rheumatoid arthritis. It 390 

blocks JAK3 and JAK1 but also has a role in JAK2 and TYK2 inhibition.42-46 Our ex vivo 391 

experiments using pSGECs and PBMCs consistently demonstrated that tofacitinib treatment 392 

suppressed JAK-STAT pathway activation in a dose-dependent manner, as shown by 393 

downregulated pSTAT levels, decreased IFN signature and ISG expression. Of note, basal 394 

elevations in pSTAT levels were selectively controlled by tofacitinib in SjD patients’ PBMCs, but 395 

not controls. Similar to our results, recently baricitinib, a semi-selective inhibitor of JAK1 and 396 

JAK2, mitigated IFN-γ-induced CXCL10 production in salivary gland ductal cell line.30 397 

Cell type differences in responsiveness have been reported with regards to the potency of 398 

JAKi to inhibit cytokine signaling. A 3-fold difference was observed in the JAK1/TYK2-399 

dependent IFN-stimulated pSTAT1 between CD4+ T cells and monocytes, whereas the potencies 400 

were comparable for B and NK cells.47 For the reactivity of each pSTAT, JAK inhibition of 401 

JAK1/TYK2-mediated IFNα-driven pSTAT5 and pSTAT3 was more potent than pSTAT1, 402 

potentially demonstrating the reliance on TYK2 for regulating STAT1 phosphorylation.48 In our 403 

study, pSTATs (e.g., pSTAT1, pSTAT3(Ser727), pSTAT6) in T cells showed consistent 404 

sensitivity to JAKi treatment. Other cell subsets also demonstrated pSTAT specific sensitivity (B 405 

cells – pSTAT1; NK cells–pSTAT1/6). Our findings suggest that pathogenic inflammatory 406 

signaling through specific JAKs may identify selective therapeutic drug choice.  407 

Limitations of this study include relatively modest sample sizes used for fresh tissue 408 

analyses. The prospective use of fresh tissues poses logistical challenges including recruitment and 409 
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adequate tissue recovery for both clinical and research purposes. Despite these limitations, we 410 

demonstrate biologically meaningful changes in JAK-STAT pathway in glandular and peripheral 411 

blood samples and direct responsiveness to JAKi. These limitations are addressed by using 412 

multiple different experimental approaches to systematically and comprehensively evaluate the 413 

IFN-JAK-STAT pathway in SjD. 414 

In conclusion, SjD patients have increased IFN signature with activated JAK-STAT 415 

pathway which plays a key role in both the glandular and extraglandular pathogenesis of SjD. This 416 

activation is cell specific, with salivary epithelial cells and infiltrating immune cells driving the 417 

bulk of this signature in MSGs. The activated IFN-JAK-STAT signature is also seen in peripheral 418 

blood, highlighting the dysregulated systemic immune system in SjD. Modulation of the JAK-419 

STAT pathway, through JAKi was non-cytotoxic and effective ex vivo using human tissues. These 420 

results suggest tofacitinib as a potential therapeutic strategy for SjD patients and serve as the basis 421 

of an open and enrolling Phase Ib/IIa randomized controlled trial to treat SjD with tofacitinib 422 

(NCT04496960).  423 
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Figure Legends 590 

Figure 1: Bulk sequencing of minor salivary gland and IFN signature 591 

(A) Overview of MSG biopsy and whole transcriptomic analysis using RNAseq from 22 SjD and 592 

11 HV. (B) Heatmap illustrating the top 250 DEGs in MSG between SjD and HV highlighting 593 

multiple ISGs, cytokines, and interleukins, in the DEG. Immune pathway genes, including ISGs 594 

(e.g., IFI44L, IFI44, MX1, CXCL13), were upregulated whereas canonical salivary genes (e.g., 595 

BPIFB2, PIP, ZG16B) were down regulated in SjD. (C) Similarly, a volcano plot showing the 596 

DEGs between SjD and HV, in which some representative genes were highlighted. MSGs from 597 

SjD subjects were transcriptionally more active with 2773 upregulated versus 468 downregulated 598 

genes. (D) Pathway enrichment analysis identified JAK-STAT Pathway as one of the top three 599 

differentially utilized pathway amongst the 25 significantly enriched pathways in SjD at a p-600 

adj<0.01 (E, G) Calculated Type-I and Type-II IFN scores revealed 2 through 2.5-fold mean 601 

increases in SjD MSGs compared to HV. Differences in mean values were compared using the 602 

Mann-Whitney U-test at a p < 0.05 deemed significant. (F, H) The activated IFN signature noted 603 

in our bulk RNAseq positively correlated with FS in the glands. Spearman correlation analysis was 604 

used to assess the significance between correlated values at a p <0.05. MSG, minor salivary gland; 605 

RNAseq, RNA sequencing; SjD, Sjogren’s Disease; HV, healthy volunteer; DEGs, differentially 606 

expressed genes; ISG, interferon stimulated genes; FS, focus score. 607 

 608 

Figure 2: Immunofluorescence microscopy 609 

(A) Overview of MSG biopsy, image acquisition and flow cytometry. (B) MSG IF image showing 610 

upregulated expression of JAK1 and JAK3 in SjD epithelial and infiltrating immune cells. JAK3 611 

was especially enrich in ductal cells. Cellular proportion changes in the SjD MSGs showed greater 612 
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numbers of immune cells, less numbers of epithelial cells. (C) Mean fluorescence of KRT18, JAK1 613 

and JAK3 in SjD and non-SjD showing cellular proportion in the MSGs. Expression of JAK1 614 

localized to immune cells (+6%; p<0.0001, Mann-Whitney Test) but JAK3 expression was seen 615 

in both epithelial and infiltrating immune cells (35% and 15%, respectively; p<0.0001, Mann-616 

Whitney Test). (D) Cellular population change in 7 SjD and 6 non-SjD was characterized by flow 617 

cytometry showed reduced numbers of epithelial cells and increased numbers of infiltrating 618 

immune cells in SjD MSGs compared to controls. (E) Flow cytometry of MSG represented the 619 

frequency of pSTAT proteins: pSTAT1 (2.1-fold, p=0.017), pSTAT3(Ser727) (2.2-fold, p=0.031), 620 

and pSTAT6 (3.3-fold, p=0.112) were higher at baseline in SjD epithelial cells compared to non-621 

SjD. Although not reaching the threshold of statistical significance, the frequency of pSTAT 622 

proteins (i.e., pSTAT3(Ser727) (p=0.056)) on CD45+ cells showed a similar frequency of pSTAT 623 

proteins in the SjD MSG. P value was calculated using Welch’s test. MSG, minor salivary gland; 624 

IF, immune fluorescent; SjD, Sjogren’s Disease; KRT18, Keratin-18. 625 

 626 

Figure 3: Single cell RNAseq and pSTATs frequencies of MSG 627 

(A) UMAP embedding of the entire dataset colored by generated clusters labelled by cell type 628 

annotation. From all profiled MSG samples from 7 SjD and 5 non-SjD, Leiden clustering identified 629 

11 different cell clusters corresponding to mucous (MUC5B) and seromucous acinar cells (MUC7), 630 

ductal cells (S100A2), plasma cells (IGHA, IGHG1), fibroblasts (COL1A2), myoepithelial 631 

(KRT14), pericytes (ACTA2), B-cells (CD79A), antigen presenting cells (HLA-DRA, CD68), T-632 

lymphocytes (CD3D), and erythrocytes (HBB) (n=51736 cells). (B) Differential of cell density 633 

showing increased immune cell infiltration in SjD. (C) The top ten DEG in each of the cell types 634 

were dominated by ISGs including increased expression B2M, HLA-B, SAA1, IL32, and MGP. (D) 635 
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Differential expression of IFN score in SjD and non-SjD, immune cells showed the biggest fold-636 

changes in IFN score were in infiltrating immune cells (e.g., plasma cells: 700-fold, APCs: 400-637 

fold; T cells: 300-fold; seromucous cells: 250-fold; ductal epithelial cells: 250-fold) exhibited 638 

higher IFN scores. (E) Fold change expression of JAK-STAT genes on all cell types. JAK1 was 639 

the most ubiquitously expressed in MSGs and Seromucous acinar cells showed increased 640 

expression of all JAKs. UMAP, Uniform manifold approximation and projection; MSG, minor 641 

salivary gland; SjD, Sjogren’s Disease; DEG, differentially expressed genes. 642 

  643 

Figure 4: Single cell RNAseq and pSTATs frequencies of PBMC 644 

(A) Overview of using patient’s serum and PBMC for several assays. (B) Somalogic aptamer-645 

based 1.3K target proteomics analysis revealed most of proteins were significantly upregulated in 646 

serum from SjD in volcano plot showing protein expression, in which some representative genes 647 

were highlighted. (C) IFN regulated proteins were found to be upregulated in SjD serum 648 

(p<0.0001). P value was calculated using Kruskal-Wallis test. (D) UMAP embedding of the entire 649 

dataset colored by generated clusters labelled by cell type annotation. Leiden clustering identified 650 

10 different cell clusters from all profiled PBMC samples from 8 SjD and 6 non-SjD (n=206687 651 

cells). (E) The upregulated genes were associated with immune and inflammatory responses 652 

revealed by functional annotation analysis from PBMC scRNAseq. (F) Differential expression of 653 

IFN score, monocytes had the highest expression of ISGs, followed by dendritic cells and then NK 654 

cells. SjD, Sjogren’s Disease; UMAP, Uniform manifold approximation and projection; RNAseq, 655 

RNA sequencing; ISG, interferon stimulated genes. 656 

 657 

Figure 5: Basal pSTATs frequencies in PBMCs 658 
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(A-D) Flow cytometry analysis revealed basal pSTATs levels in PBMCs were upregulated in 21 659 

SjD compared to 10 HV. P value was calculated using Welch’s test. SjD, Sjogren’s Disease; HV, 660 

healthy volunteer. 661 

 662 

Figure 6: Treatment effects of tofacitinib in PBMCs 663 

(A) Overview of using PBMC treated by tofacitinib for scRNAseq and FACS. PBMCs were 664 

treated with or without 5mM tofacitinib for 1 hour prior to IFNβ treatment for 30 minutes or 6 665 

hours, respectively. (B) Treatment with tofacitinib blocked STATs phosphorylation status induced 666 

by IFNβ stimulation in PBMCs from SjD. P value was calculated using Mann-Whitney test. (C) 667 

UMAP embedding of the entire dataset colored by generated clusters labelled by 4 general cell 668 

type annotations. (D) Differential utilization of IFN signature of each condition showed tofacitinib 669 

abolished the IFNβ-induced IFN score to baseline level. (E) Volcano plot showing DEGs by 670 

pseudobulk analysis across SjD and HV, in which some representative genes were highlighted. T 671 

cells (129 genes) and monocytes (61 genes) exhibited greater numbers of downregulated ISGs in 672 

the context of tofacitinib. ISGs (e.g., IFIT1, IFIT3) were among the top DEG in all subsets after 673 

IFNβ and tofacitinib normalizing this response. RNAseq, RNA sequencing; SjD, Sjogren’s 674 

Disease; DEG, differentially expressed genes; HV, healthy volunteer; ISG, interferon stimulated 675 

genes. 676 

 677 

Figure 7: Treatment effects of tofacitinib in pSGECs 678 

(A) Overview of using pSGEC treated by tofacitinib for IF and RT-qPCR. pSGEC were derived 679 

from fresh MSG biopsies. (B, C) Differential expression of pSTAT1 in pSGECs. Tofacitinib 680 

treatment mitigated IFNβ-induced STAT1 phosphorylation in both the nucleus and cytosol. P 681 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted August 21, 2023. ; https://doi.org/10.1101/2023.08.16.23294130doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.16.23294130


 30 

value was calculated using Kruskal-Wallis test. (D) Expression change of ISGs (i.e., CXCL10, 682 

ISG15, MX1) on pSGECs showing dose-dependently decreased IFNβ-induced ISGs mRNA 683 

expression. 5 SjD and 5 HV (n=5 individuals’ lines, respectively). 1 SjD and 1 HV samples were 684 

eliminated from MX1 result. P value was calculated using Mann-Whitney test and Kruskal-Wallis 685 

test. pSGEC, primary salivary gland epithelial cells; SjD, Sjogren’s Disease; HV, healthy 686 

volunteer; ISG, interferon stimulated genes. 687 
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