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Backgrounds: Early and accurate identification of patients with spontaneous intracerebral 

hemorrhage(sICH) who are at high risk of in-hospital death can help intensive care unit (ICU) physicians 

make optimal clinical decisions. The aim of this study was to develop a machine learning(ML)-based tool to 

predict the risk of in-hospital death in patients with sICH in ICU. 

Methods: We conducted a retrospective administrative database study using the MIMIC-IV and Zhejiang 
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Hospital database. The outcome of the study was in-hospital mortality. To develop and validate the final 

model, we employed the LASSO regression to screen and select relevant variables. Five algorithms, namely 

Logistic Regression (LR), K-Nearest Neighbors (KNN), Adaptive Boosting (AdaBoost), Random Forest 

(RF), and eXtreme Gradient Boosting (XGBoost), were utilized. The selection of the best model was based 

on the area under the curve (AUC) in the validation cohort. Furthermore, we employ the SHapley Additive 

exPlanations (SHAP) methodology to elucidate the contributions of individual features to the model and 

analyze their impact on the model's outputs. To facilitate accessibility, we also created a visual online 

calculation page for the model. 

Results: In the final cohort comprising 1596 patients from MIMIC-IV and Zhejiang Hospital, 367 

individuals (23%) experienced in-hospital mortality during the inpatient follow-up period. After extracting 

46 variables from the database, LASSO regression identified 14 predictor variables for further analysis. 

Among the five evaluated models, the XGBoost model demonstrated superior discriminative power in both 

the internal validation set (AUC = 0.907) and the external validation set (AUC = 0.787). Furthermore, 

through the SHAP technique, we identified the top 5 predictors in the feature importance rankings: Glasgow 

Coma Scale (GCS), Sequential Organ Failure Assessment (SOFA), anticoagulant medication, mannitol 

medication and oxygen saturation. 

Conclusions: Among the five models, the XGBoost model exhibited superior performance in predicting 

mortality for patients with sICH in the ICU, indicating its potential significance in the development of early 

warning systems.  

Keywords: spontaneous intracerebral hemorrhage, machine learning, model prediction, intensive care unit, 

MIMIC IV database, in-hospital mortality 

 

Spontaneous intracerebral hemorrhage (sICH) is a critical neurological event characterized by 

bleeding within the intracerebral parenchyma, leading to a sudden and potentially life-threatening medical 
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emergency1. Despite notable advancements in medical care, the overall prognosis of sICH remains poor, 

primarily attributed to inflammatory responses, oxidative stress, and other mechanisms, resulting in a 

significant proportion of patients succumbing during hospitalization 2,3. Accurate prediction of in-hospital 

mortality holds paramount importance in guiding clinical decision-making and optimizing resource 

allocation. Therefore, there is an urgent need for an advanced model that can help predict the prognosis of 

patients with sICH. 

In recent years, there has been a growing interest in the application of machine learning (ML) 

techniques to investigate various clinical diseases 4–8. Compared to traditional statistics, ML exhibits 

characteristics such as handling complex nonlinear data, offering high flexibility, and enabling continuous 

learning and improvement 9,10. Prior attempts have been made in the field of sICH 11,12. However, there is 

still a pressing need for models that can accurately predict severe sICH cases in ICU. 

In this study, our objective is to develop and validate a machine learning-based predictive model for 

in-hospital mortality among sICH patients. By utilizing a comprehensive set of clinical and demographic 

features, we aim to provide clinicians with a robust tool to accurately assess the risk of mortality in real-time, 

thus facilitating timely interventions and improving patient care.  

Database 

The Medical Information Mart for Intensive Care-IV (MIMIC-IV) is an open and freely accessible critical 

care database that contains comprehensive clinical data of patients admitted to a tertiary academic medical 

center in Boston, MA, USA, from 2008 to 2019. The database includes essential patient information, vital 

signs, laboratory indicators, treatment details, and survival data. The usage of data from MIMIC-IV has been 

granted approval by the Institutional Review Boards of Beth Israel Deaconess Medical Center (Boston, MA) 

and Massachusetts Institute of Technology (MIT; Cambridge, MA). As all personal data in this database is 

encrypted, informed consent was waived. One of the authors (Mao, Baojie) obtained access to the database 

and was responsible for data extraction (certification number 46148427). In addition, we recruited patients 
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with cerebral hemorrhage who were admitted to ICU from December 2018 to February 2023 in Zhejiang 

Hospital. The study protocol was approved by the Ethics Committee of Zhejiang Hospital (No. 2023 

Pro-examination (58K)). All patient data were anonymized. No patient-identifiable data were recorded 

throughout the study. Given that this study was purely observational, written consent from patients was not 

required. 

Data extraction and outcomes 

Clinical and laboratory variables were meticulously collected within 24 hours of admission to the Intensive 

Care Unit (ICU). In the case of variables with multiple measurements, mean values were calculated and 

utilized for analysis. A total of forty-six variables were included in the data collection process. These 

encompassed patient characteristics (age, gender), vital signs (respiratory rate, blood pressure, heart rate, 

oxygen saturation, and temperature), laboratory data (routine blood analysis, renal function, coagulation, and 

blood gases), as well as comorbidities identified based on recorded International Classification of Diseases 

ICD-9 and ICD-10 codes. The comorbidities considered were hypertension, diabetes mellitus, chronic 

obstructive pulmonary disease (COPD), congestive heart failure, renal disease, liver disease, and malignancy. 

Furthermore, information regarding the usage of anticoagulant and vasoactive drugs, surgical status, 

Glasgow Coma Scale (GCS), Sequential Organ Failure Assessment (SOFA) scores, mechanical ventilation, 

and renal replacement therapy (RRT) was gathered. Due to the limited number of patients with missing data, 

we opted to exclude them from the analysis rather than attempting to estimate the missing values.The 

primary endpoint was all-cause in-hospital mortality. 

Cohort selection 

1.Patients must be admitted to the ICU for the first time. 

2.Patients must have a confirmed diagnosis of sICH. 

3.Patients' age should fall within the range of 18 to 90 years. 

4.Patients must have an ICU length of stay exceeding 1 day. 
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5.Patients must have complete clinical data. 

The flowchart for patient recruitment is shown in Figure 1. 

Feature Selection: 

We applied Lasso regression, a regularization technique, on the preprocessed dataset. Lasso performs feature 

selection by shrinking the coefficients of less important features to zero, effectively eliminating them from 

the model. The optimal regularization parameter (λ) for Lasso was determined using the coordinate descent 

algorithm. Following Lasso regression, the variables were ranked based on their corresponding non-zero 

coefficients. The final predictive model included the top 14 variables with the highest absolute coefficient 

values. 

Statistical analysis 

The normality of the distribution was evaluated using the Kolmogorov-Smirnov test. Continuous variables 

were presented as mean with standard deviation if they followed a normal distribution, or as median with 

25th to 75th percentile if they deviated from normality. The Student's t-test or Mann-Whitney test was 

applied accordingly to analyze the continuous variables. Categorical variables were presented as counts and 

percentages, and the chi-square test was utilized to compare the distributions. 

In this study, we employed five different ML algorithms to develop models: Logistic Regression (LR), 

K-Nearest Neighbors (KNN), Adaptive Boosting (AdaBoost), Random Forest (RF) and eXtreme Gradient 

Boosting algorithms (XGBoost). The MIMIC IV dataset was initially partitioned into a training set (70%) 

and an internal validation set (30%). Furthermore, we utilized the Zhejiang Hospital dataset as an external 

validation set. The validation process employed a bootstrap resampling technique with 1000 iterations to 

evaluate the model's performance. The Area Under the Curve (AUC) and 95% confidence intervals (CI) 

were calculated. Furthermore, several evaluation metrics, including accuracy, sensitivity, specificity, Youden 

index, and F1 score, were computed. For hyperparameter selection, 5-fold cross-validation and grid search 

methods were utilized. 
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To assess the performance and clinical applicability of the predictive model, we generated calibration curves 

and clinical decision curves. Calibration curves were used to evaluate the predictive accuracy and calibration 

of the model by comparing the predicted probabilities with actual observations. On the other hand, clinical 

decision curves were employed to determine the model's sensitivity and specificity at various decision 

thresholds, thus optimizing its predictive performance for clinical decision-making. After selecting the 

optimal model, we utilized the Shapley Additive exPlanations (SHAP) package in Python to demonstrate the 

importance of each feature. Subsequently, we employed the selected model to visualize prospective 

validations. Statistical significance was set at P < 0.05, and all tests were two-tailed. Statistical analyses 

were performed using R software (version 4.3.1) or Python software (version 3.11). 

 

Result: 

Baseline Characteristics 

The present study involved a total of 1596 patients, including 1486 patients from the internal cohort 

extracted from the MIMIC-IV database and 110 patients from the external cohort extracted from the 

Zhejiang Hospital database. In the internal cohort, there were 349 in-hospital deaths (23.48%), whereas the 

external cohort had 18 in-hospital deaths (16.36%). Table 1 provides an overview of the baseline 

characteristics for both the internal and external cohorts. 

Key variables 

This study utilized Lasso regression for feature selection by determining an appropriate lambda value. From 

the initial pool of 46 candidate variables, we identified the top 14 based on their importance and integrated 

them into the final model. The selected variables encompassed: use of anticoagulants, use of mannitol, use 

of vasoactive drugs, mechanical ventilation, temperature, surgical intervention, serum potassium, heart 

failure, blood oxygen saturation, SOFA, GCS, serum sodium, RDW and serum chloride. 

Model performance 
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The discriminative ability of all models to predict mortality is shown in Figure 3 and Table 2. In the training 

set, XGBoost, KNN, LR, RF, and AdaBoost models were built, and the AUCs of the internal validation set 

were 0. 907, 0.808, 0.851, 0.897, and 0.900, respectively. In contrast, the prediction performance of the 

XGBOOST model was the highest among these five models (AUC 0.907; 95% CI: 0.875 -0.939; accuracy: 

0.874; sensitivity: 0.582). In the external validation set, the XGBoost model demonstrated excellent 

predictive power with an AUC of 0.788, second only to the LR model, which achieved an AUC of 0.790. 

The optimal cut-off for prediction probabilities of the XGBoost model was determined to be 29.53% based 

on the Youden Index, which is calculated as sensitivity + specificity - 1( Figure 3C). 

Figure 4A shows the calibration plots for all five models. The calibration curve analysis showed that 

XGBoost was accurately calibrated in predicting the risk of in-hospital death, with no significant over or 

underestimation(Figure 4B). In addition, the results of the Decision Curve Analysis (DCA) clearly support 

the use of the XGBoost model as a valid predictive tool for patients with severe sICH, as shown in Figure 

4C and 4D. 

Feature importance analysis was performed to identify the important features that influence the model output. 

The importance of features derived from XGBoost model is shown in Figure 5.GCS score was the most 

influential feature followed by SOFA score, use of anticoagulants, use of mannitol, oxygen saturation, body 

temperature, serum sodium, serum potassium, RDW, mechanical ventilation, heart failure, serum chloride, 

use of vasoactive drugs and surgical intervention. 

Application of the model 

Additionally, a web-based computational tool has been developed to enable clinicians in real-time prediction 

of the prognosis for patients with severe sICH. (accessible at https://ich-wpp0azhoyz.streamlit.app/) 

Clinical information of a typical patient was entered into the model, for example, use of anticoagulants: no, 

use of mannitol: no, use of vasoactive drugs: no, mechanical ventilation: yes, heart failure: no, surgical 

intervention: no, serum chlorine: 108 mmol/L, GCS score: 5, SOFA score: 8, temperature: 37.6°C, RDW: 
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13%, serum sodium: 146 mmol/ L; serum potassium: 3.7 mmol/L; oxygen saturation: 99%. The model 

predicted that this patient had a 70.846% risk of in-hospital mortality, indicating that this patient was at high 

risk and that medical staff should be prepared to treat and care for him in advance (Figure 6A). Information 

from another patient was included in the model: use of anticoagulants: no, use of mannitol: no, use of 

vasoactive medications: yes, mechanical ventilation: yes, heart failure: no, surgical intervention: yes, serum 

chloride: 102 mmol/L, GCS score: 14, SOFA score: 3, temperature: 37.6°C, RDW: 14%, serum sodium: 140 

mmol/L; Serum potassium: 3.8 mmol/L; oxygen saturation: 96%. The predicted probability of occurrence in 

this patient was 9.181%, which indicates that the patient had a low risk of in-hospital mortality (Figure 6B) . 

Discussion 

In this retrospective study, we developed and validated a clinical feature-based machine learning algorithm 

for predicting in-hospital mortality in critically ill patients with sICH based on the public database 

MIMIC-IV and the Zhejiang Hospital database. Among the tested models, the XGBOOST model 

demonstrated the highest prediction performance. Through advanced machine learning techniques, we 

successfully identified several key clinical features strongly associated with in-hospital mortality, including 

GCS score, SOFA score, use of mannitol medication, use of anticoagulant medication, vital signs, serum 

electrolytes, RDW, among others. These findings are significant and warrant further investigation. 

Additionally, we have created an easy-to-use web-based calculator to assist clinicians in making informed 

decisions regarding further treatment.  

Among various types of strokes, cerebral hemorrhage is characterized by a relatively high in-hospital 

mortality rate, especially in patients admitted to ICU. The in-hospital mortality rate of patients varies based 

on both the location and volume of the hematoma. Previous studies have reported an early mortality rate of 

40% and a long-term mortality rate as high as 60% for sICH patients 13–15.Marika Fallenius et al. analyzed 

patients admitted to the ICU with severe cerebral hemorrhage and found a mortality rate of 42% for 

supratentorial sICH patients and 49% for infratentorial sICH patients 16. Additionally, researchers 
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investigated a 30-day mortality rate of up to 54% for patients with severe sICH in the southern region of 

Spain, and this rate increased to 60% for patients with hematoma volumes exceeding 30 ml 17. The mortality 

rate observed in our study was lower compared to the case-fatality rates reported in previous studies. This 

difference may be attributed to our exclusion of patients admitted for less than one day or those 

automatically discharged, as well as differences in medical conditions. Nevertheless, identifying patients at 

high risk of in-hospital mortality in the ICU remains challenging for clinicians. Thus, there is an urgent need 

for the development and widespread dissemination of reliable predictive models. Such models would play a 

crucial role in identifying high-risk patients and enabling timely and effective interventions to enhance their 

prognosis. 

Currently, research in the field of predictive modeling of diseases is rapidly advancing, thanks to the 

increasing applicability and effectiveness of supervised machine learning algorithms 18,19. Several 

well-known supervised learning classifiers, such as KNN, support vector machines, Random Forests, 

convolutional neural networks, XGBoost, Light gradient boosting, and AdaBoost, have found progressive 

application in clinical practice 20–22. Through the application of ML classification, research has demonstrated 

that ML-assisted decision support models offer advantages over traditional linear regression models. In this 

study, we employed five distinct ML methods to develop predictive models. The performance evaluation of 

these algorithms was based on six common metrics (AUC, F1 score, accuracy, sensitivity, specificity and 

Youden Index). Notably, the results unequivocally indicate that the XGBoost model exhibits the most 

superior performance and predictive stability, which contrasts with previous findings favoring the Random 

Forest model 23. XGBoost is an efficient, flexible, and scalable ML algorithm, renowned for its classification 

capabilities. To mitigate overfitting and optimize its performance, XGBoost employs techniques such as 

improved subsampling rates, learning rates, and maximum tree depth control 24. Zhu et al. evaluated data 

from ICU patients who were intubated due to respiratory failure and received mechanical ventilation. They 

utilized seven learning algorithms to predict in-hospital mortality, with XGBoost demonstrating the best 
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overall performance25. Similarly, Hu et al. incorporated data from 8817 sepsis patients into seven models to 

predict in-hospital mortality, and they also found that the XGBoost model exhibited the most effective 

predictive ability26. 

Despite the success of algorithms in this field, one of the current challenges lies in the need to interpret the 

"black box" of ML. Thus, we utilized the visualization function in SHAP to identify the impact of specific 

variable values on the model output. SHAP is a game-theoretic technique developed by Lundberg and Lee, 

effectively addressing the black-box nature of ML models by providing consistent interpretability. By 

employing an advanced ML approach, we identified the top 10 predictors in the rankings of feature 

importance, which included GCS, SOFA, anticoagulant medication use, mannitol medication use, oxygen 

saturation, temperature, sodium, potassium, RDW, and mechanical ventilation The GCS is a widely used 

scale for assessing the level of consciousness, with scores ranging from 3 to 15. Previous studies have 

consistently demonstrated the importance of the GCS score in evaluating the severity of neurological 

disorders 23,27,28. The SOFA score serves as a valuable tool for quantifying the extent of organ dysfunction or 

failure at the point of ICU admission and has found widespread application in predicting in-hospital 

mortality in this setting 29–31. It has been observed that the SOFA score exhibits superior predictive 

performance compared to other scoring systems when it comes to infection-related in-hospital mortality in 

ICU patients 32. The use of anticoagulants in patients with cerebral hemorrhage and the timing of 

anticoagulant use remain controversial, and some studies have suggested that anticoagulants have a positive 

effect on patient prognosis. This might be because the use of anticoagulants in critically ill patients reduces 

complications such as thromboembolism and does not significantly increase bleeding complications 33. 

Currently, the primary non-surgical treatment for cerebral hemorrhage involves the use of drugs like 

mannitol to reduce intracranial pressure. However, our study revealed that the use of mannitol may lead to a 

poor prognosis for patients with this disease. According to current guidelines, hypertonic saline 

demonstrates superior efficacy in managing cerebral edema associated with cerebral hemorrhage compared 
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to mannitol 34. Moreover, prior research has established that electrolyte disturbances represent an 

independent risk factor for an unfavorable prognosis in stroke patients35–37. Lastly, to our surprise, the study 

indicates that in critically ill patients, surgical treatment may not hold significant importance. It is plausible 

that conservative pharmacological treatment has a more positive effect on the prognosis in these patients 

compared to secondary trauma. 

This study holds significant clinical and methodological implications. Firstly, we implemented an external 

validation set to mitigate the risk of model overfitting. Secondly, the model was developed using readily 

available data collected within 24 hours of patient admission, enabling early and accurate mortality 

prediction. This provides clinicians with more time to adjust treatment strategies accordingly. Thirdly, the 

study sheds light on previously overlooked factors, such as anticoagulant use and RDW, which are now 

identifiable. Integrating these factors with machine learning methods enhances the predictive performance 

significantly. Lastly, to facilitate bedside use by clinicians, a user-friendly calculator based on the model was 

developed. 

However, our study has several limitations that need to be acknowledged. Firstly, it was a retrospective and 

observational study, which may introduce certain research biases. Secondly, as our study was focused on 

patients with sICH, we did not include information on radiologic variables, such as hematoma volume or 

location, which could potentially provide additional insights into the disease. 

Conclusion 

  The XGBoost model demonstrated superior performance compared to the logistic regression (LR), 

K-nearest neighbors (KNN), Random Forest (RF), and adaptive boosting (AdaBoost) models in predicting 

short-term mortality among sICH patients. Our findings indicate that factors such as GCS, SOFA score, 

mannitol use, anticoagulant use, oxygen saturation, time of ICU admission, temperature, serum sodium, 

mechanical ventilation, and serum potassium are strongly associated with in-hospital mortality in sICH 

patients. This newly developed risk model is expected to serve as a convenient tool for risk stratification. 
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Figure 1 Model development process and flowchart of the study 
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Figure 2 Demographic and clinical feature selection using the LASSO regression 

 

 

 

 

Figure 3  Area under the receiver operating characteristic curve for machine learning models in the internal 

validation queue and external validation queue. ROC: receiver operate characteristics, CI: confidence 

intervals      
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Figure 4 Calibration plots of five models (A, B). XGBOOST has no significant bias in model predictions. 

Decision curve analysis for five machine learning models(C, D). The XGBoost model represents an ideal 

predictive tool for forecasting in-hospital mortality. 
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Figure 5  SHAP analysis of the XGBoost model. A visual representation illustrates the importance of each 

feature in the XGBoost model, depicting the relationship between them. The color scale indicates the 

variable values, with red denoting higher values and blue indicating lower values. 

 

 

 

Figure 6  Cases of website usage. Enter input values to determine the prognosis for sICH, and show the 

contribution of the variable shap value to the prediction. (A) Case 1 has a high probability of in-hospital 

death; (B) Case 2 has a high probability of a better prognosis. 
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Table 1 
Demographic and Clinical Characteristics of Hospitalization Survival and Mortality Groups in MIMIC IV and Zhejiang Hospital Database 

Characteristics Survivors  
(n =1137) 

Non-survivors 
(n =349) 

P-value Survivors  
(n = 92) 

Non-survivors  
(n = 18) 

P-value 

Demographics       
Age, year, median (IQR) 66.00(55.00,76.00) 

70.00（59.00, 80.00） 
<0.001 54.00 (46.75, 62.25) 60.50 (51.25, 74.75) 0.055 

Gender, male, n (%) 642 (56.46) 185 (53.01) 0.282 64 (69.57) 12 (66.67) 1.000 
Comorbidities, n (%)       
Hyperlipidemia 422 (37.12) 125 (35.82) 0.707 0 (0.00) 0 (0.00) NA 
Diabetes 277 (24.36) 110 (31.52) 0.010 21 (22.83) 2 (11.11) 0.423 
Hypertension 348 (30.61) 104 (29.80) 0.826 74 (80.43) 16 (88.89) 0.606 
COPD 43 (3.78) 17 (4.87) 0.454 1 (1.09) 9 (50.00) <0.001 
Congestive heart failure 115 (10.11) 57 (16.33) 0.002 1 (1.09) 9 (50.00) 1.000 
Renal disease 229 (20.14) 133 (38.11) <0.001 4 (4.35) 4 (22.22) 0.030 
Liver disease 57 (5.01) 36 (10.32) <0.001 16 (17.39) 4 (22.22) 0.879 
Malignancy 160 (14.07) 35 (10.03) 0.062 5 (5.43) 2 (11.11) 0.708 
Vital signs,median (IQR)       
SBP, mmHg 131.09(122.54,138.77) 130.04(120.96,136.91) 0.057 156.50 (136.00, 174.25) 153.50 (142.50, 157.75) 0.547 
DBP, mmHg 68.00 (60.65, 75.73) 63.63(57.41,71.29) <0.001 81.00 (75.00, 93.00) 68.00 (64.25, 79.75) 0.003 
MBP, mmHg 85.76 (78.60, 92.09) 82.09(75.52,88.93) <0.001 105.50 (95.75, 118.00) 97.50 (87.67, 104.58) 0.033 
Temperature, °C 36.95 (36.75, 37.25) 37.12(36.72,37.53) <0.001 36.80 (36.60, 37.50) 37.25 (36.52, 37.95) 0.355 
Heat rate, beats/min 79.04 (70.48, 88.16) 82.96(74.36,94.12) <0.001 83.50 (71.75, 90.00) 87.00 (63.50, 97.25) 0.497 
Respiratory rate, beats/min 18.17 (16.44, 20.24) 18.85(17.09,21.27) <0.001 17.00 (15.75, 18.00) 16.00 (14.25, 18.00) 0.696 
Blood oxygen saturation, % 97.22 (96.00, 98.60) 98.34(96.91,99.27) <0.001 100.00 (99.00, 100.00) 92.50 (90.62, 94.00) <0.001 
Laboratory findings, 
median (IQR) 

      

WBC, 109/L 9.90 (7.90, 12.90) 11.90 (9.57, 14.93) <0.001 11.62(9.55,14.10) 10.93 (8.84, 14.60) 0.929 
RBC, 109/L 4.05 (3.58, 4.42) 3.82 (3.37, 4.27) <0.001 3.99(3.54, 4.39) 3.87 (3.31, 4.65) 0.616 
Platelet, 109/L 205.00(165.50,258.00) 189.00(141.00,240.00) <0.001 188.25 (147.38, 233.62) 164.00 (130.38, 232.62) 0.529 
RDW, % 13.80 (13.10, 14.75) 14.15(13.50,15.60) <0.001 13.00(12.40, 13.60) 13.47 (13.00, 14.19) 0.017 
Hematocrit, % 36.50 (32.70, 39.80) 34.90(30.77,38.70) <0.001 36.35(33.11, 39.82) 36.20 (30.32, 41.48) 0.695 
Hemoglobin, g/dL 12.17 (10.90, 13.30) 11.60(10.00,13.00) <0.001 12.25(10.70,13.43) 12.22 (10.25, 13.68) 0.731 
BUN, mg/Dl 15.00 (11.50, 20.50) 18.50(13.50,28.00) <0.001 4.65(3.70, 6.29) 6.30 (5.21, 10.31) 0.002 
Creatinine, mg/dL 0.85 (0.70, 1.10) 1.00 (0.75, 1.50) <0.001 0.81 (0.65, 1.01) 0.98 (0.65, 1.34) 0.212 
Glucose, mg/dL 127.00(108.00,151.00) 148.50 (124.00, 183.75) <0.001 75.88 (65.35, 94.08) 95.70 (81.00, 103.08) 0.009 
Calcium, mmol/L 8.70 (8.35, 9.10) 8.55 (8.18, 9.00) 0.001 8.37 (8.16, 8.68) 8.56 (8.27, 8.67) 0.383 
Potassium, mmol/L 3.90 (3.60, 4.20) 3.97 (3.70, 4.30) 0.004 3.74 (3.49, 3.98) 4.00 (3.56, 4.13) 0.117 
Sodium, mmol/L 140.00(137.50,142.00) 140.50(138.00,144.00) <0.001 139.68 (138.10, 141.93) 139.86 (138.49, 143.58) 0.648 
Chloride, mmol/L 104.00(101.50,107.00) 105.00(101.00,109.50) 0.002 105.35 (103.50, 107.93) 106.70 (103.53, 108.07) 0.455 
MCH, pg 30.25 (28.90, 31.60) 30.50(28.95,31.75) 0.236 30.70 (29.64, 31.72) 30.70 (29.64, 31.72) 0.862 
MCHC, g/dL 33.30 (32.35, 34.30) 33.10(32.17,34.03) 0.025 33.50 (32.94, 34.00) 33.47 (32.80, 33.84) 0.799 
MCV, fl 91.00 (87.00, 94.00) 92.00(88.00,96.00) 0.002 91.50 (90.20, 93.40) 91.30 (89.82, 93.20) 0.677 
INR, s 1.10 (1.10, 1.20) 1.20 (1.10, 1.30) <0.001 1.07 (1.02, 1.13) 1.11 (1.07, 1.18) 0.053 
PT, s 12.50 (11.60, 13.80) 12.95(12.00,14.40) <0.001 13.90 (13.30, 14.40) 14.45 (13.46, 15.42) 0.041 
PTT, s 27.90 (25.60, 30.90) 28.30(25.35,31.20) 0.399 35.10 (32.54, 38.32) 40.20 (36.16, 44.65) 0.004 
Anion gap, mmol/L 14.00 (13.00, 16.00) 15.00(13.00,17.33) <0.001 9.15 (7.39, 10.40) 7.70 (6.17, 9.38) 0.076 
Bicarbonate, mmol/L 23.50 (21.33, 25.50) 23.00(20.33,25.00) <0.001 22.41 (20.81, 23.80) 20.45 (19.47, 23.17) 0.196 
Prognostic scoring system, 
median (IQR)  

      

SOFA 3.00 (2.00, 5.00) 6.00 (4.00, 8.00) <0.001 3.00 (2.00, 4.00) 9.00 (7.00, 10.00) <0.001 
GCS 12.00 (8.00, 14.00) 7.00 (4.00, 15.00) <0.001 8.00 (5.00, 11.00) 4.00 (3.00, 5.00) <0.001 
Treatment information, n 
(%) 

      

Mechanical ventilation 854 (75.11) 329 (94.27) <0.001 91 (98.91) 18 (100.00) 1.000 
RRT 29 (2.55) 26 (7.45) <0.001 0 (0.00) 2 (11.11) 0.024 
Use of mannitol 164 (14.42) 134 (38.40) <0.001 82 (89.13) 14 (77.78) 0.350 
Use of anticoagulants 996 (87.60) 213 (61.03) <0.001 

 
14 (15.22) 5 (27.78) 0.343 

Use of vasoactive drugs 33 (2.90) 58 (16.62) <0.001 24 (26.09) 14 (77.78) <0.001 
Surgical intervention 136 (11.96) 30 (8.60) 0.099 90 (97.83) 16 (88.89) 0.244 

COPD: chronic obstructive pulmonary disease, SBP: systolic blood pressure, DBP: diastolic blood pressure, MBP: mean blood pressure, WBC: 
white blood cell, RBC: red blood cell, RDW :red blood cell distribution width, BUN: blood urea nitrogen, MCH: mean corpuscular hemoglobin, 
MCHC: Mean corpuscular hemoglobin concentration, MCV: mean corpuscular volume, INR: international normalized, PT: prothrombin time, 
PTT: partial thromboplastin time, ratio, SOFA: Sequential Organ Failure Assessment, GCS: Glasgow Coma Scale, RRT: renal replacement 
therapy  
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Table2 
Predictive performance of machine learning models in internal and external validation sets 

 

 Model AUC Accuracy Sensitivity Specificity Youden Index F1 score 
Internal validation cohort       

XGBoost 0.907 0.874 0.582 0.957 0.769 0.671 
KNN 0.807 0.823 0.337 0.960 0.648 0.445 
Logistic Regression 0.851 0.843 0.551 0.925 0.738 0.606 
Random Forest 0.897 0.858 0.602 0.931 0.767 0.652 
AdaBoost 0.900 0.865 0.561 0.951 0.756 0.647 

External validation cohort       
XGBoost 0.788 0.554 0.833 0.500 0.667 0.380 
KNN 0.787 0.855 0.500 0.924 0.712 0.529 
Logistic Regression 0.790 0.436 0.833 0.359 0.596 0.326 
Random Forest 0.728 0.436 0.833 0.359 0.596 0.326 
AdaBoost 0.650 0.500 0.778 0.446 0.612 0.337 
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