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ABSTRACT9

Purpose: Functional magnetic resonance imaging (fMRI) and functional connectivity (FC) have been used to10

follow aging in both children and older adults. Robust changes have been observed in children, where high11

connectivity among all brain regions changes to a more modular structure with maturation. In this work,12

we examine changes in FC in older adults after two years of aging in the UK Biobank longitudinal cohort.13

Approach: We process data using the Power264 atlas, then test whether FC changes in the 2,722-subject14

longitudinal cohort are statistically significant using a Bonferroni-corrected t-test. We also compare the ability15

of Power264 and UKB-provided, ICA-based FC to determine which of a longitudinal scan pair is older. Results:16

We find a 6.8% average increase in SMT-VIS connectivity from younger to older scan (from ρ = 0.39 to ρ = 0.42)17

that occurs in male, female, older subject (> 65 years old), and younger subject (< 55 years old) groups. Among18

all inter-network connections, this average SMT-VIS connectivity is the best predictor of relative scan age,19

accurately predicting which scan is older 57% of the time. Using the full FC and a training set of 2,000 subjects,20

one is able to predict which scan is older 82.5% of the time using either the full Power264 FC or the UKB-21

provided ICA-based FC. Conclusions: We conclude that SMT-VIS connectivity increases in the longitudinal22

cohort, while resting state FC increases generally with age in the cross-sectional cohort. However, we consider23

the possibility of a change in resting state scanner task between UKB longitudinal data acquisitions.24

Keywords: fMRI, functional connectivity, UK Biobank, longitudinal, cross-sectional, aging25

1. INTRODUCTION26

Functional magnetic resonance imaging (fMRI) is a non-invasive technique that has proven indispensable for27

investigating human neural processes in vivo.1 For example, it has been used to localize the areas associated with28

vision,2 attention,34 emotion,567 and language8 to specific regions in the cortex, or at least find the regions that29

are most significantly involved in a specific task. Functional connectivity (FC) is a quantity derived from fMRI30

that measures the time correlation of blood oxygen level-dependent (BOLD) signal between different regions in31

the brain.9 FC has recently been used to predict age,1011 sex,1213 race,14 psychiatric disease status,1516 and pre-32

clinical Alzheimer’s disease.17 Efforts to predict general fluid intelligence, although common,1813 are thought by33

some to be confounded by differential achievement score distribution among ethnicities and the strong presence34

of race signal in FC.14 FC has proven effective in predictive studies because of its simplicity and its robust35

representation of complex BOLD signal activity, as evidenced by high subject identifiability across different36

scanner tasks and across time.19202137

Besides being used as a predictive tool, FC has been observed to undergo changes throughout the lifespan.38

For example, connectivity in young children is generally very high between all brain regions and decreases while39

also becoming more modularized during and after puberty.22 The FC of males and females is also quantitatively40
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different, with females having higher intra-DMN connectivity and males having relatively greater connectivity41

between the DMN and other networks, although there is a wide degree of individual variation.2324 Meanwhile,42

studies have shown that changes occur in the DMN during late middle and old age,25 although the exact43

direction of change in FC does not always appear constant.26 In addition, various studies have examined age-44

related changes in the cingulum27 and medial temporal lobe.28 Given the recent interest in using fMRI to predict45

pre-clinical Alzheimer’s disease,2617 we believe a knowledge of ordinary changes in FC during old age is essential.46

This is especially true because it has been shown that a confounder can easily be mistaken for a true signal47

indicative of, e.g., general fluid intelligence or achievement score.1448

This study uses the longitudinal cohort of the UKB29 to examine changes in the FC of individuals after an49

average of two years, the time between longitudinal scans. The UKB population of subjects with fMRI scans is50

predominantly (98%) Caucasian, ruling out race as a possible confounding effect. Additionally, we investigate51

changes in FC in longitudinal sub-populations based on subject age and sex. We find that average FC between52

SMT-VIS networks increases on average from the first scan to the second, and that SMT and VIS-related53

connectivities are more predictive of scan age than those of other networks. The complete FC, or a large subset,54

is still required to attain the best accuracy.55

2. METHODS56

We first describe the UKB dataset and the longitudinal subset used for our analysis. We then describe pre-57

processing of the fMRI data and conversion into FC. Finally, we discuss prediction of older vs younger scan in58

the longitudinal cohort and detail our methods for analysis of FC changes.59

2.1 UK Biobank Longitudinal Cohort60

The UKB contains various data of more than 500,000 subjects in the UK, of who more than 40,000 have fMRI61

scans.29 We processed two longitudinal resting state scans for 2,722 subjects, taken approximately two years62

apart. These subjects are approximately equally split between male and female, and have significant numbers of63

younger and older adults. The longitudinal cohort is composed of 1,289 genetic males and 1,369 genetic females,64

with the rest not having genetic sex information. The ethnicity of the subset of the UKB with fMRI scans is 98%65

Caucasian. Besides the 2,722 subjects we processed, an additional 154 subjects have the second longitudinal scan66

but not the first, resulting either from missing original source data or a failure in our SPM12-based preprocessing67

pipeline.68

2.2 fMRI Preprocessing69

The original scan acquisition parameters are described elsewhere,3031 but consist of both resting state and task70

fMRI scans with a repetition time of TR = 0.735 sec. For this study, we examined the resting state scans71

only. All resting state 4D fMRI volumes were processed with SPM12, including co-registration and warping to72

MNI space (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/). BOLD signal was extracted using the73

Power264 atlas,32 which consists of 264 ROIs grouped into 14 functional networks and represented by 5mm74

radius spheres. The resulting timeseries were bandpass filtered between 0.01 and 0.15 Hz to remove scanner75

drift, noise, heartbeat, and some breathing signal. Pearson correlation of the filtered timeseries was used to76

create subject-specific FC matrices, which were reduced to the unique entries in the upper right triangle and77

vectorized. The entire procedure is summarized in Figure 1.78

In contrast to the Power264 atlas-derived FC constructed by us, the original UKB data provided the unique79

part of 21-region and 55-region FC and partial correlation-based connectivity (PC) matrices based on ICA in80

vectorized format.30 These matrices were calculated through the use of PCA on whole cohort fMRI data followed81

by ICA,30 meaning that regions overlap in an unpredictable way and are not associated with specific functional82

networks. Although prediction using 55-component ICA-based FC and PC is often as good as and sometimes83

better than prediction using Power264 atlas-derived FC, the resulting connectivities are uninterpretable with84

regards to BOLD signal within specific regions. Additionally, in predicting which scan is older, Power26485

asymptotes to a higher predictive accuracy than either of the ICA-derived measures (see Figure 4).86
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Power264 Template

Extracted Timeseries

Functional Connectivity 
(Pearson Correlation)

4D fMRI BOLD Signal

Figure 1. Preprocessing pipeline for converting 4D fMRI volumes into FC using the Power264 atlas.32 Reproduced with
permission from Orlichenko et al. (2023).33

2.3 Prediction of Scan Order and Analysis of FC87

Prediction of scan age in the UKB longitudinal cohort was carried out by logistic regression (https://scikit-learn.88

org/stable/) models with 20 bootstrapping repetitions, using the scikit-learn implementation.34 The regular-89

ization parameter was fixed to C = 1, which was found to be near the optimal value for all training set sizes90

using grid search. It was found that a simple difference of scan FCs gave the best prediction results com-91

pared to concatenation or difference and concatenation, using either logistic regression or MLP. The training92

set was created with randomization of whether older scan was subtracted from younger scan or younger scan93

was subtracted from older scan. Our code for computing prediction accuracy can be found online (https:94

//github.com/aorliche/ukb-longitudinal-smt-vis). However, UKB data sharing policy precludes us from95

posting the longitudinal data itself; interested researchers may contact us with any questions.96

Analysis of FC was performed by finding the mean (Figure 2) and standard deviation (Figure 9) of older97

scan FC minus younger scan FC for the longitudinal cohort. Additionally, prediction of scan order was carried98

out using the average connectivity between each of the Power264 networks, each network consisting of many99

individual ROIs. As before, logistic regression with 20 bootstrap repetitions and C = 1 was used for this100

purpose. A Bonferroni-corrected two-sided t-test was applied to the 105 average inter-network connectivity101

differences (from the complete graph of 14 functional networks) of the 2,722 longitudinal subjects to determine102

if they were significantly different from zero (Figure 5 Bottom).103

3. RESULTS104

We first describe trends in FC changes during the average of 2 years between longitudinal scans, summarize the105

ability of simple machine learning models to identify older vs younger scan, and investigate the ability of specific106

inter-network connectivities to predict scan order. We then summarize the statistical significance of inter-network107

FC changes with aging, in both the longitudinal and cross-sectional cohorts of the UKB. Finally, we consider the108

possibility that the observed longitudinal changes are due to a change in scanner task by presenting inter-task109

FC differences in the Philadelphia Neurodevelopmental Cohort (PNC) dataset.35110

3.1 Inter-Network FC Changes111

In Figure 2, we show that, on average, SMT-VIS connectivity increases from younger scan to older scan. The112

right hand side of Figure 2 displays divisions of the 14 functional networks included in the Power264 atlas.113

Network labels and abbreviations are listed in Table 1. The increase in connectivity is large and distinct over114

the majority of SMT-VIS FCs compared to other non-SMT and non-VIS FCs. Many FCs involving the VIS115

network appear to increase in connectivity from the first scan to the second. The average change in FC in the116
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Figure 2. Difference in FC calculated by older scan minus younger scan, averaged over all 2,722 longitunidal cohort
subjects. There are significant average differences in SMT-VIS connectivity (labeled 0-6). The same plot is displayed on
the left and right, with Power264 network divisions on the right hand side. Network labels can be found in Table 1.

Table 1. Regions, abbreviations, and labels in the Power264 atlas.

Functional Networks
Label ROIs Label ROIs
0 0-29 Somatomotor Hand (SMT) 7 156-180 Frontoparietal (FRNT)
1 30-34 Somatomotor Mouth (SMT) 8 181-198 Salience (SAL)
2 35-48 Cinguloopercular (CNG) 9 199-211 Subcortical (SUB)
3 49-61 Auditory (AUD) 10 212-220 Ventral Attention (VTRL)
4 62-119 Default Mode (DMN) 11 221-231 Dorsal Attention (DRSL)
5 120-124 Memory (MEM) 12 232-235 Cerebellar (CB)
6 125-155 Visual (VIS) 13 236-263 Uncertain (UNK)

SMT-VIS connection is 6.8%, corresponding to a mean change µ∆ρ = +0.03, compared to a standard deviation117

of σ∆ρ = 0.26. Figure 5 shows that, although small compared to the standard deviation, this difference is very118

significant.119

Figure 3 displays the same analysis, i.e., the average change from first scan to second, for four subsets of the120

cohort. These subsets are male subjects, female subjects, young (< 55 years old) subjects, and old (> 65 years121

old) subjects. All four subsets observed the same effect as the whole cohort, thus we rule out very old age or122

gender as confounding factors.123

3.2 Predicting Older Scan of Pair124

In Figure 4, one can see that is possible to predict which scan of a longitudinal pair is older with the Power264125

atlas at an accuracy of 82.5%, having 2,000 subjects in the training set and the rest in the test set. This126

measurement was repeated with 20 bootstrap iterations and averaged. The entire 34,716-feature upper right127

triangle of the FC matrix was used ot make the prediction. One can also see that the ICA FC/PC matrices128

provided pre-processed along with the UKB data are also able to predict scan order, although at a slightly129

reduced accuracy. Prediction is possible at an accuracy of 60-70% using only 100-200 training set subjects.130
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Figure 3. Significant increase in SMT-VIS connectivity after an average of 2 years in the UKB longitudinal cohort appears
in male, female, younger, and older groups, and seems to be an invariant feature of FC change in the longitudinal UKB
cohort.
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Figure 4. Capability of predicting older scan of a pair based on the difference of FC between the two scans, as a function
of the number of training subjects. Three inputs are used: 55 component ICA FC, 55 component ICA PC, and the
Power264 atlas FC. Prediction accuracy asymptotes at 82.5%.

Table 2. Number of subjects in the longitudinal cohort increasing and decreasing in average FC within the SMT-VIS
connection and within the whole brain.

Group +SMT-VIS FC -SMT-VIS FC +Total FC -Total FC Total Subjects
Male 778 (60.4%) 511 690 (53.5%) 599 1289
Female 741 (54.1%) 628 671 (49.0%) 698 1369

< 55 years old 269 (59.0%) 187 249 (54.6%) 207 456
> 65 years old 577 (56.5%) 445 520 (50.1%) 502 1022

3.3 Prediction of Older Scan Using Specific Inter-Network Connections131

In Figure 5, we rank average inter-network FCs in their ability to predict scan order. As expected from the mean132

change in FC (Figure 2), the SMT-VIS connection is the most predictive of longitudinal scan age. Furthermore,133

SMT and VIS networks are included among the next several most predictive inter-network connections. In134

Figure 5 bottom, we plot the predictive ability of all 105 inter-network connections, along with a p-value for the135

inter-network FC change being significantly different from zero. The raw p-value has been multiplied by 105136

to account for multiple comparisons. It is highly significant for the first 10 or so most predictive inter-network137

connections.138

Table 3.3 lists the number of subjects whose FC increased or decreased for the SMT-VIS connection and over139

the entire brain. The table is divided among the four subsets of the longitudinal cohort mentioned previously.140

Additionally, we correlated several dozen subject phenotypes and longitudinally-tracked variables with changes141

in FC and report the most significant in Appendix B. In that section, we find an interesting but small correlation142

with hand grip strength, body mass index (BMI), and basal metabolic rate. In Section 3.4, we find that average143

resting state FC increases with age across most inter-network connections in the much larger UKB cross-sectional144

cohort.145

3.4 FC Changes with Age in the UKB Cross-Sectional Cohort146

We find that average resting state FC has a significant increase in almost all inter-network connections in the147

UKB cross-sectional cohort. Average maps of FC change are shown in Figure 7. We fail to find a higher SMT-VIS148
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Figure 5. Ability to predict which scan of a subject is older based on average connectivity between regions. Top: best and
worst inter-network connectivities for prediction. Bottom: Prediction accuracy for all 105 inter-network connectivities.
We find that SMT-VIS connectivity has the maximum predictive ability of all regions at 57%. In general, network-level
connectivities involving SMT and VIS networks have higher predictive ability compared to other regions. The dashed
orange line displays negative log base 10 of the Bonferroni-corrected p-value for significance of FC change between scans.
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Figure 7. Mean FC change from younger group to older group in the large UKB cross-sectional cohort.

change compared to other connections; however, almost all inter-network regions have a large positive increase149

in FC with aging. We give precise numbers for four inter-network connections as well as total FC in Table 3.150

In total, there are 9,387 older males (> 65 years old), 2,425 younger males (< 55 years old), 8,728 older151

females (> 65 years old), and 3,132 younger females (< 55 years old) in the UKB cross-sectional cohort.152

3.5 Comparison with FC Differences Between Scanner Tasks in the PNC Dataset153

We consider the possibility that the difference in SMT-VIS connectivity between the two scans of the longitudinal154

cohort is due to a change in scanner task. In Figure 8, we show the average FC differences between 3 different155

tasks in the PNC dataset.35 This dataset contains 1,345 children and young adults having all of three different156

scanner tasks: resting state, working memory, and emotion identification. The preprocessing and FC creation157

steps for this dataset have been described elsewhere.10 We note that the VIS-VIS is most different for change158

in task, but that the SMT-VIS is not qualitatively more different that the rest of FC. Also, the magnitude of159

change in FC in the PNC dataset between tasks is much larger than in the UKB longitudinal cohort.160
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Table 3. Average FC changes with aging in the UKB cross-sectional cohort from young subjects (< 55 years old) to old
subjects (> 65 years old).

Male (Young to Old) Female (Young to Old)
Regions FC Increase Std Dev of Avg FC p-value FC Increase Std Dev of Avg FC p-value

SMT-VIS (0-6) 0.031 0.13 < 10−23 0.029 0.13 < 10−25

SMT-DMN (0-4) 0.045 0.11 < 10−78 0.043 0.11 < 10−82

DMN-VIS (4-6) 0.042 0.11 < 10−60 0.035 0.11 < 10−52

VIS-VIS (6-6) -0.014 0.10 < 10−7 -0.009 0.11 < 0.002
Total FC 0.035 0.09 < 10−64 0.031 0.087 < 10−62
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Figure 8. Average differences in FC between three scanner tasks of 1,345 subjects in the PNC dataset. This is a cross-
sectional, not longitudinal, dataset.

4. DISCUSSION161

Farràs-Permanyer et al. (2019)36 find that mean resting state FC may increase throughout the entire brain for162

the oldest subject (> 80 years old) group. As shown in Appendix A, we confirm a small, statistically insignificant163

increase in total longitudinal FC in the healthy controls of the ADNI dataset,37 another elderly population with164

multiple longitudinal fMRI scans. In Section 3.4, we show that there is a large, statistically significant increase165

in average resting state FC across almost all inter-network connections in the UKB cross-sectional cohort with166

increased age. This cross-sectional cohort is much larger than the longitudinal cohort we describe in the main part167

of this paper. The fact that SMT-VIS FC also increases in the cross-sectional cohort, but not disproportionately168

compared to the rest of FC, raises the possibility of a change in resting state scanner task during the second169

longitudinal scan. We believe this longitudinal change is not an artifact of our pre-processing methods. Credence170

should increase in our pre-processing methods since the UKB-provided ICA-based FC and PC is also able to171

predict longitudinal scan ordering at almost the same level as our Power264-based approach, although the ICA172

FC and PC matrices are not interpretable.173

Many studies have focused on examining connectivity in the DMN associated with aging.3839 These studies174

find areas of increased connectivity as well as areas of decreased connectivity. There are two problems with such175

studies. First, they are for the most part cross-sectional and do not follow a single subject across a multi-year176

period. Second, they mostly use small numbers of subjects, the majority of studies enrolling fewer than 50,177

making it impossible to identify small effects. On the other hand, one study performed on a cohort of more than178

2,000 older subjects in Rotterdam found age-related changes in connectivity to be complicated, drawing no firm179

conclusions.40 We note that the Rotterdam study was not longitudinal but cross-sectional.180

We conjecture the fact that most studies only focus on DMN and report decreased connectivity38 in aging181

populations may be related to the large number of ROIs in the DMN and an implicit bias inherent in the word182

“connectivity.” Naturally, as we reach very old age we expect physical connections to degenerate, not become183
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Figure 9. Standard deviation of difference between older scan FC and younger scan FC in the UKB longitudinal cohort.
Note that the magnitude of average standard deviation (0.26) of SMT-VIS connectivity change is large compared to mean
SMT-VIS connectivity change (0.03). However, we show in Figure 5 that this connectivity change is highly statistically
significant. The smallest average standard deviations are found in SMT-SMT (0.2) and VIS-VIS (0.22) connectivities.

stronger. In fact, FC is really the synchronization of BOLD signal between regions, and does not imply a direct184

physical link between regions. Young children are known to have higher average FC than young adults;2241 thus185

older subjects may been as reverting to a less optimal state as they age.186

On the other hand, as we describe in Appendix B, physical observables such as hand grip strength in the187

UKB longitudinal cohort are weakly correlated with an increase in FC in SMT-CB and VIS-CB connectivity.188

Additionally, we find BMI and basal metabolic rate are weakly correlated with the longitudinal increase in SMT-189

VIS connectivity (see Appendix B). This may suggest a small health related effect that is found throughout the190

study cohort and includes male, female, younger, and older subjects. Finally, as discussed in Section 3.5, we191

cannot rule out the possibility that changes in longitudinal FC are caused by a change in scanner task between192

acquisition of the two longitudinal timepoints.193

We show in this work that the average connectivity increase in the SMT-VIS connection is small but highly194

statistically significant. The average change in FC in this connection is only 6.8%, corresponding to a mean195

change µ∆ρ = +0.03, compared to a standard deviation of change from subject to subject of σ∆ρ = 0.26 (see196

Figure 9). However, using our longitudinal sample of 2,722 subjects, we find the average SMT-VIS connectivity197

change from younger scan to older scan is significant as level of p < 10−15 after Bonferroni correction for198

multiple comparisons (Figure 5). Finding such small effects is helped by the use of large number of subjects and199

longitudinal data.200

5. CONCLUSION201

In this work, we pre-process a 2,722 subject longitudinal subset of the UK Biobank dataset and examine FC202

using the Power264 atlas. We find that in scans taken an average of two years apart, the average functional203

connectivity between SMT and VIS network regions tends to increase. This occurs in male, female, younger204

(< 55 years old), and older (> 65 years old) subjects. We verify the ability of this average FC increase to205

predict scan ordering using simple machine learning models. The identification of an increase in connectivity206

with non-pathological aging, in longitudinal as well as cross-sectional cohorts, and specifically in the SMT-VIS207

synchronization of BOLD signal, may lead to novel insights about brain function in old age. Additionally,208

we identify an effect that could possibly show up as a confounder in studies of dementia or neurodegenerative209

diseases. Nonetheless, we remain open to the idea of a change in resting state scanner task during acquisition of210

the longitudinal data in the UKB being partly responsible for this effect.211
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Figure 10. Mean longitudinal changes in FC between first scan and second scan in healthy controls of ADNI dataset.

APPENDIX A. LONGITUDINAL FC CHANGES IN THE ADNI DATASET361

We examined the longitudinal change in FC of healthy controls in the Alzheimer’s Disease Neuroimaging Initiative362

(ADNI) dataset37 (age matched subjects who do not develop AD pathology). We used scans taken an average363

of one year apart. We confirm a small, statistically insignificant increase in total FC but fail to find the same364

SMT-VIS increase relative to the rest of FC as in the UKB. Statistics are given in Table 4 and the average FC365

change is shown in Figure 10.366

Average FC Increase Std Dev FC Change +Total FC -Total FC Total Subjects
0.015 0.131 184 (52.7%) 165 394

Table 4. There is a small but positive change in FC in ADNI healthy controls (subjects who do not go on to develop AD).
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APPENDIX B. CORRELATION OF CHANGE IN FC WITH LONGITUDINAL367

OUTCOMES IN THE UKB368

We identified several correlations between longitudinal change in FC and changes in clinical outcomes associated369

with the two scan timepoints in the UKB dataset. These are presented below, along with the UKB field identifiers370

of the outcomes. All p-values are Bonferroni-corrected with n = 105 multiple comparisons (one for each average371

inter-network connectivity).372

B.1 SMT Hand, VIS, and CB Connectivity and Grip Strength (f.46.2.0, f.46.3.0,373

f.47.2.0, f.47.3.0)374

We find a marginally significant association between change in hand grip strength and VIS-CB and SMT-CB375

connectivity change (Figure 11).376

B.2 Body Mass Index and Basal Metabolic Rate (f.23104.2.0, f.23104.3.0, f.23105.2.0,377

f.23105.3.0)378

We find a not statistically significant but suggestive association between BMI and basal metabolic rate change379

and SMT-VIS connectivity change (Figure 12).380
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Figure 11. Hand grip strength change association with functional connectivity change in the longitudinal cohort.
Bonferroni-corrected p-values.
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Figure 12. BMI and basal metabolic range change association with functional connectivity change in the longitudinal
cohort. Bonferroni-corrected p-values.
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