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Abstract 
 

Type 2 diabetes (T2D) is a global public health concern due to its increasing 
prevalence. Risk assessment and early detection of T2D are vital in improving 
individuals’ health, reducing the burden on health insurance, and enhancing well-
being. This study leverages artificial intelligence (AI), specifically eXtreme Gradient 
Boosting (XGBoost), to develop predictive models for T2D based on genetic and 
medical imaging data. The study aims to establish a prediction model and identify 
high-risk subgroups for T2D within a cohort of 68,911 Taiwan Biobank (TWB) 
participants. The approach integrates the Polygenic Risk Score (PRS) and Multi-image 
Risk Score (MRS) with demographic factors and environmental exposures to assess 
T2D risk. The model’s performance is evaluated using the Area Under the Receiver 
Operating Curve (AUC). Results demonstrate that genetic information alone is 
insufficient for accurate T2D prediction (AUC = 0.73), whereas medical imaging data, 
including abdominal ultrasonography, vertebral artery ultrasonography, bone density 
scan, and electrocardiography, significantly improves prediction accuracy (AUC = 
0.89). The best-performing model integrates genetic, medical imaging, and 
demographic variables (AUC = 0.94), successfully identifying subgroups at high risk of 
developing T2D. The study also presents an online risk assessment website for T2D. 
In summary, this research represents the first integration of genetic and medical 
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imaging data for T2D risk assessment. The genetic-only model outperforms previous 
genetic prediction studies, and integrating genetic and medical imaging information 
significantly enhances prediction. By utilizing artificial intelligence to analyze genetic, 
medical imaging, and demographic factors, this study contributes to early detection 
and precision health of T2D. 
 
Keywords: Type 2 diabetes (T2D); risk assessment; Taiwan Biobank; single nucleotide 
polymorphism (SNP); medical imaging; polygenic risk score (PRS); eXtreme Gradient 
Boosting (XGBoost).  
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Introduction 

 
Type 2 diabetes (T2D) is a prevalent global health concern, comprising almost 90% of 
diabetes mellitus (DM) cases 1. T2D is associated with severe complications such as 
retinopathy, nephropathy, and cardiovascular diseases, significantly impacting health 
and quality of life and increasing healthcare expenses 2. Early detection and risk 
assessment of T2D are crucial for effective health management. T2D has a global 
prevalence of 6% 3. In Taiwan, the prevalence is even higher, at approximately 10%. 
The mortality and economic burden in medical care among T2D patients increase 
significantly over time 4. T2D has a polygenic and multifactorial mode of inheritance 
5,6. The significant risk factors include genetic components, food intake, and 
environmental exposures 7,8.  

Genome-wide association studies (GWAS) have identified T2D susceptibility loci 
and genes, which have been used to develop T2D prediction models 9-11. Polygenetic 
risk scores (PRS) and weighted PRS have attracted attention for the genetic 
prediction of T2D 12-14. However, the prediction accuracy must be elevated for clinical 
use 15. Recent studies have combined single nucleotide polymorphisms (SNPs) from 
multi-ethnic GWAS to calculate PRS and improve prediction accuracy 16,17. Methods, 
such as PRS-CSx, have been developed to integrate GWAS summary statistics from 
multiple ethnic groups and combine multiple PRSs with weights that consider linkage 
disequilibrium 18-20. The use of PRS for T2D risk assessment and prediction is crucial 
in clinical application and precision medicine 21. 

Recent smart medicine and precision health studies have highlighted the utility 
of medical imaging analysis in disease diagnosis and prediction, in addition to genetic 
markers. Moreover, previous research has demonstrated the association of several 
diseases with T2D 22,23, some of which can be diagnosed using medical imaging 
techniques. For instance, nonalcoholic fatty liver can be diagnosed through 
abdominal (ABD) ultrasonography 24, osteoporosis through bone mineral density 
(BMD) 25, and cardiovascular disease through electrocardiography (EKG) 26. These 
T2D-associated diseases can be effectively diagnosed and detected using medical 
imaging analysis. Considering this, our study incorporates genetic markers and 
medical imaging data to assess the risk of T2D. This approach enables a 
comprehensive evaluation and potential improvement in T2D prediction and risk 
assessment. 

Artificial intelligence, which encompasses machine learning and deep learning, 
has found extensive applications in genetic research, including disease diagnosis, 
classification, and prediction using supervised learning 27,28. Extreme Gradient 
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Boosting (XGBoost), a supervised tree-based machine learning approach 29, has 
demonstrated superior performance in classification and prediction. Successful 
applications of XGBoost in precision medicine include chronic kidney disease 
diagnosis 30, orthopedic auxiliary classification 31, chronic obstructive pulmonary 
prediction 32, and multiple phenotypes prediction 33.  

Taiwan Biobank (TWB), established in 2012, is a valuable resource for the 
integrative analysis of genetic and medical imaging data 34. The TWB enrolled 
participants aged over 20 and collected baseline questionnaires, blood, urine 
samples, and their biomarkers of lab tests, and genotyping data from all participants. 
Follow-up data, including repeated questionnaires, biomarker measurements, and 
medical imaging data, were collected every two to four years. Medical imaging data 
includes ABD, vertebral artery ultrasonography (VAU), BMD, EKG, and thyroid 
ultrasonography (TU). The integrative analysis of genetic and medical imaging data 
holds great promise for disease risk assessment and prediction, as demonstrated by 
recent studies 35-38. Here, we present the first study integrating genome-wide SNPs 
and multimodality imaging data from the TWB for T2D risk assessment. We 
developed machine learning models incorporating genetic information, medical 
imaging, demographic variables, and other risk factors. Furthermore, we identified 
high-risk subgroups for T2D, providing insights into T2D precision medicine. 
 

Study participants and variables 

This study included a genetic-centric analysis (Analysis 1) and genetic-imaging 
integrative analysis (Analysis 2). A total of 68,911 participants in the TWB were 
analyzed.  

In the genetic-centric analysis, 50,984 participants who had only baseline data 
(i.e., without follow-up data) were used as the training and validation samples; they 
consisted of 2,531 self-reported T2D patients and 48,453 self-reported non-T2D 
controls (Fig. 1A and Fig. S1A). Here, 9,763 participants who had both baseline and 
follow-up data were used as the testing samples, where 8,827 and 936 participants 
were recruited as the first and second testing datasets; they consisted of 528 self-
reported T2D patients and 9,235 self-reported non-T2D controls at baseline; 767 self-
reported T2D patients and 8,996 self-reported non-T2D controls at follow-up (Fig. 1A 
and Fig. S1A). 

In addition to the self-reported T2D, hemoglobin A1C (HbA1c) and fasting 
glucose (GLU-AC) collected in both baseline and follow-up were used to refine the 
self-reported T2D phenotype (Figs. 1B and 1C). Other variables in the genetic-centric 
analysis (Fig. 1D) are illustrated as follows: Demographic variables included age, sex, 
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and family history of T2D. Four types of family history were: T2D occurrence in 
parents (Yes or No), in sibs (Yes or No), in any of parents and sibs (Yes or No), and in 
father, mother, brother(s), and sister(s) (0, 1, 2, 3, or 4). Environmental exposures 
included education level, drinking level, exercise habits, and the number of exercise 
types. 

Whole-genome genotyping using one of two SNP arrays was performed based 
on the samples in the baseline. TWBv1.0 SNP array with approximately 650,000 SNP 
markers or TWBv2.0 SNP array with approximately 750,000 SNP markers was 
employed. Imputation was performed based on the 1KG-EAS panel 39. The SNPs with 
an info score of less than 0.9 were removed 40. Sample and marker quality controls 
followed the procedures of Yang et al. 41. External information about T2D-associated 
SNP sets and effect sizes based on the GWAS summary statistics of T2D were 
collected (Supplemental Text 1). 

In the genetic-imaging integrative analysis, 17,785 participants who had both 
genetic data and medical imaging data were analyzed (Fig. 2A and Fig. S1B); they 
consisted of 1,366 self-reported T2D patients and 16,419 self-reported non-T2D 
controls (Fig. 2A); here, the case and control were defined based on the 
questionnaire at follow-up rather than baseline. For example, based on the T2D 
Definition IV (Fig. 1C), 7,786 participants, which consisted of 1,118 cases and 6,668 
controls, were analyzed (Fig. 2A). Imaging report variables in the genetic-imaging 
integrative analysis (Upper left in Fig. 2A) consisted of 28 ABD features, 29 VAS 
features, 85 BMD features, and 10 EKG features (Supplemental Table S1). TU 
features were not included in our analysis because of a small sample size. The details 
about the medical imaging protocol can be referred to TWB 
(https://www.biobank.org.tw/about_value.php). In the flowchart of PRS calculation, 
external information about T2D-associated SNP sets and GWAS summary statistics 
from DIAGRAM 42 are provided (Fig. 2B). 
 

Methods 

Classification and prediction for T2D 
XGBoost algorithm 29 was employed to classify and predict T2D using the 
XGBClassifier function in the Python package xgboost based on a set of features 
encompassing genetic, demographic, environmental exposures, and imaging report 
variables. Both classification and prediction models were trained and validated based 
on the baseline data (Datasets 1 – 5 in Fig. 1A). Final classification models were built 
and tested based on the baseline phenotype data (Dataset 6 in Fig. 1A) and further 
replicated based on the second independent testing dataset (Dataset 7 in Fig. 1A). 
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Final prediction models were built and tested based on the follow-up phenotype data 
(Dataset 6’ in Fig. 1A) and replicated based on the second independent testing 
dataset (Dataset 7’ in Fig. 1A). The illustration of the data used for classification and 
prediction tasks in genetic-centric analysis (Analysis 1) and genetic-imaging 
integrative analysis (Analysis 2) are provided in Supplemental Table S2. 

The XGBoost models were trained with the following default parameter settings: 
maximum depth equal to 6, learning rate equal to 0.3, the value of the regularization 
parameter alpha (L1) was set to 0, and lambda (L2) was set as 1, the number of 
boosting stages was 100, and the early-stop parameter was set to 30.  

The area under the receiver operating curve (AUC) was calculated to evaluate 
the model’s overall performance. The DeLong test (DeLong et al., 1988) examined 
the difference between AUCs using the roc.test function in the R package pROC. 
Bonferroni’s correction 43 was applied to control for a family-wise error rate in 
multiple comparisons. Accuracy, sensitivity, specificity, and F1-score were calculated 
to evaluate the performance of the established models, where the optimal cut-off 
value of the XGBoost model was calculated using the Youden index 44 in the 
validation data.  
 
Event history analysis and online risk assessment 
In the genetic-centric analysis, multivariate Cox regression 45 was employed using the 
cox.ph function in the R package survival to identify important risk factors for the T2D 
event time and estimate the T2D-free probability in the testing datasets. The event 
was defined as the occurrence of T2D in the follow-up for non-T2D participants at 
baseline, and the event time was calculated by the duration from the baseline to the 
follow-up. Median event time in weeks was also calculated. Because medical imaging 
data were only available in the follow-up, the genetic-imaging integrative analysis 
applied multivariate logistic regression 46 using the R glm function to identify 
important risk factors for T2D events and estimate the T2D-free probability in the 
testing datasets. To assess the impact of exercise on HbA1c, linear regression analysis 
using the R glm function was performed. In addition, we established a website at 
https://hcyang.stat.sinica.edu.tw/software/T2D_web/header.php to provide an 
online risk assessment for T2D. 
 

Results 

Genetic-centric analysis 
Comparison of prediction models 
We evaluated the prediction performance under different scenarios hierarchically 
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(the best scenario at a previous variable was given for a discussion of the next 
variable) in the following order: the sources and significance levels of T2D-associated 
SNPs (Fig. 3A and Fig. S2), T2D phenotype definitions (Fig. 3B), family history variable 
combinations (Fig. 3C and Fig. S3), demographic variable combinations (Fig. 3D), 
demographic and genetic variable combinations (Fig. 3E), and SNP and PRS 
combinations (Figs. 3F and 3G). The findings are summarized as follows: First, using 
T2D-associated SNPs from the previous large-sample-size GWAS 11 as predictors had 
the highest AUC of 0.557, but its AUC was not significantly higher than that used the 
SNPs identified by our smaller-sample-size GWAS under different thresholds of 
statistical significance (Fig. 3A), although our GWASs did identify some T2D-
associated SNPs (Fig. S4). Second, phenotype defined by self-reported T2D with 
HbA1C ≥6.5% or fasting glucose ≥126 mg/dL (i.e., T2D Definition IV) had the highest 
AUC 0.640, and its AUC was significantly higher than the AUCs of the other three T2D 
definitions (Fig. 3B). Third, sibs’ disease history had a significantly higher AUC 0.732 
than parents’ disease history with an AUC 0.670 (p = 0.009). Moreover, additive 
parent-and-sib disease history had the highest AUC of 0.758. Its AUC was significantly 
higher than parent-only (p < 0.001) (Fig. 3C). Fourth, a joint effect of age, sex, and 
additive parent-sib disease history had the highest AUC of 0.884. Its AUC was 
significantly higher than other demographic variable combinations, except for the 
combination of age and additive parent-sib disease history (Fig. 3D). Fifth, whatever 
SNPs were included or not, demographic and PRS combinations outperformed the 
models without incorporation of PRS (Fig. 3E), although genetic factors only 
improved up to 3% of AUC conditional on demographic factors (age, sex, and family 
history of T2D). Finally, given T2D-associated SNPs, AUC significantly increased if PRS 
was included (Fig. 3F); T2D-associated SNPs provided a limited additional effect if PRS 
was already included (Fig. 3G). 

Among different prediction models, the model with predictors PRS-CSx, age, 
sex, and family history of T2D had the highest AUC 0.915 (Fig. 4A) for T2D Definition 
IV based on the first testing dataset (i.e., Dataset 6’ in Fig. 1). The optimal threshold, 
determined by the Youden index, for the fitted value that used to predict T2D or non-
T2D in the XGboost model was 0.16. The Accuracy, Sensitivity, Specificity, and F1 
indices were 0.843, 0.844, 0.843, and 0.672, respectively. Furthermore, the model 
was tested in the second independent testing dataset (i.e., Dataset 7’ in Fig. 1), and a 
promising result similar to the first testing dataset was found: AUC = 0.905, Accuracy 
= 0.843, Sensitivity = 0.846, Specificity = 0.842, and F1 = 0.644. AUCs are also 
provided for the other three T2D definitions (Fig. S5).  

Further consideration of the environmental factors, including education level, 
drinking experience, exercise habits, the number of exercise types, and SNP-SNP 
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interactions with and without SNPs’ main effect, had no improvement for T2D 
prediction (Supplementary Table S3). Considering model parsimony, these 
environmental factors and SNP-SNP interactions were not included in the final 
model. In addition to prediction models, classification models were also established. 
The AUCs in classification models (Fig. S6) were generally higher than those in 
prediction models (Fig. S5). 
 
Assessment of PRS 
The positive association between PRS and T2D risk is shown (Fig. 4B). Compared to 
the participants in the 40%–60% PRS decile group, those in the top 10% decile group 
had a 4.738-fold risk of developing T2D (95% confidence interval: 3.147–7.132, p < 
0.001) and a 4.660-fold risk (95% confidence interval: 2.682–8.097, p < 0.001) after 
adjusting for age, sex, and family history. We identified a high-risk subgroup of 
women who were older than 59 and had a family history of T2D. The ratio of case vs. 
control sample size was as high as a 7.3–13.0-fold in the 80%–100% decile groups 
(Fig. 4C). The ratio was much higher than a 1.6-fold that did not consider PRS (i.e., 
PRS at 0%–100%) (Fig. 4C). 
 
Risk of developing T2D 
Among 8,347 non-T2D participants at baseline in the first testing dataset of 8,827 
participants, 220 reported T2D in the follow-up. The duration from the baseline to 
the follow-up was treated as the event time. For the remaining 8,127 participants 
who reported having no T2D in the follow-up, their event time was censored. In 
multivariate Cox regression analysis, age, sex, family history of T2D, and PRS were all 
significantly associated with T2D (p<0.001) (Fig. 4D). Increased age, higher PRS, and 
stronger T2D family history had a higher T2D risk. The elderly male, with a strong 
family history and high PRS, had a severe T2D risk (Fig. 4E and Fig. S7). We also 
provided the predicted time-to-event (week) (Fig. 4F). For example, a 50-year-old 
man with one of his family members had T2D will achieve median T2D-free time 
after 460 weeks. The time to develop T2D was shortened to 419 weeks after 
considering a standardized PRS of 0.66 (equivalent to a PRS risk subgroup in the top 
25% of the population). 

To assess the impact of exercise on HbA1c, linear regression analysis was 
performed. It was observed that individuals engaging in regular exercise experienced 
a significant reduction in HbA1c by an average of 0.12% mg/dL (p = 0.023) compared 
to those who did not engage in regular exercise. Moreover, individuals with a high 
PRS who engaged in exercise demonstrated a greater reduction in HbA1c (0.13% 
mg/dL) than those with a low PRS (0.12% mg/dL). Additionally, individuals diagnosed 
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with T2D experienced a noteworthy improvement of 0.3% mg/dL in HbA1c. In 
addition, among the various types of exercise, walking for fitness exhibited the most 
substantial effectiveness in reducing HbA1c (Fig. S8). 
 
The ability of T2D early detection in our model 
To investigate the early detection capability of our model for T2D, we performed an 
analysis focusing on 550 women participants older than 59 years, all of whom had a 
family history of T2D. We identified them as being at high risk if they possessed a 
high PRS, even though they were initially reported as non-T2D at baseline. Thirty-six 
of them changed to T2D, and 514 were still non-T2D at follow-up. We predicted their 
T2D status. G1 – G4 are the groups of participants in true positive, false negative, 
false positive, and true negative, respectively (Fig. 5A). We evaluated that G3 was 
indeed misclassified by our prediction model or our prediction had corrected the 
problem in the self-reported T2D by further investigating: 1) their follow-up time and 
current risk in the Cox regression model; 2) HbA1c and fasting glucose; 3) the 
accuracy of self-reported disease status.  

First, compared to G4 (“true negative”), G3 had a significantly lower T2D-free 
probability (Fig. 5B), shorter median survival time (Fig. 5C), higher T2D-risk under 
similar follow-up time (Fig. 5D and Fig. 5E), higher HbA1c (Fig. 5F), and higher fasting 
glucose (Fig. 5G). Second, compared to G1 (“true positive”), G3 had a comparable 
survival rate (Fig. 5B), median survival time (Fig. 5C), and T2D-risk under similar 
follow-up time (Fig. 5D and Fig. 5E) but lower HbA1c (Fig. 5F) and fasting glucose 
(Fig. 5G). We didn’t compare G2 and G3 because of the small sample size in G2. 
Finally, among the 395 participants in G3, 80.76% of them were removed from our 
previous analysis because their baseline HbA1c and fasting glucose violated the 
criteria for the phenotype definition (Fig. 1C); 339 participants were removed 
because of their follow-up HbA1c or fasting glucose violated the formal non-T2D 
criterion; only 34 self-reported non-T2D were really non-T2D participants who had 
HbA1C <6.5% and fasting glucose <126 mg/dL (Fig. 5H). Overall, the results 
consistently indicate that G3 represents individuals in a pre-T2D stage, which can be 
detected early by our model. 
 
Genetic-imaging integrative analysis 
Model performance and essential features 
The model that combined four types of image features performed best. Moreover, 
the model based on BMD image features exhibited a higher AUC, accuracy, 
specificity, and F1 than the models based on any other three types of images (Fig. 
6A). The models based on image features had an AUC of 0.898 higher than the ones 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 16, 2023. ; https://doi.org/10.1101/2023.08.14.23294093doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.14.23294093
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

of genetic information (AUC = 0.677) and demographic factors (AUC = 0.843). 
Integrating image features, genetic information, and demographic factors increased 
AUC to 0.949 (Fig. 6B); the results for each of the four images are also provided (Fig. 
S9). Accuracy, sensitivity, specificity, and F1 of the model in the first testing data were 
0.871, 0.878, 0.870, and 0.663, respectively, based on a classification threshold 0.03. 
The model also performed reasonably well in the second testing dataset with AUC = 
0.929, Accuracy = 0.854, Sensitivity = 0.789, Specificity = 0.862, and F1 = 0.558. 
According to the estimated feature importance in the best XGBoost model, all 
genetic factors (PRS), four types of medical images, and demographic variables 
provided informative features for risk assessment, such as PRS (genetics), family 
history and age (demographic factors), fatty liver (ABD images), end-diastolic velocity 
in the right common carotid artery (VAS images), RR interval (ECG images), and spine 
thickness (BMD images) (Fig. 6C). 
 
Multi-image risk score (MRS) 
Each participant’s multi-image risk score (MRS) was calculated (see Methods). The 
odds ratio and its confidence interval for the association between MRS and T2D are 
shown by percentiles of MRS (Fig. 6D). Compared to the participants in the 40%–60% 
MRS decile group, the risk of T2D increased with MRS. Of importance, we further 
identified that, for the men older than 54 years old with a family history of T2D, the 
case vs. control ratio of sample size was 9.3 in the 90%–100% decile group, much 
higher than 1.3, which MRS was not considered (Fig. 6E).   
 
Online T2D-risk assessment  
We have established a website for users to calculate their T2D risk online. To obtain 
the risk assessment, users need to provide age, sex, family history of relatives, PRS, 
and MRS (Fig. 6F). PRS and MRS can be entered manually or uploaded as a file 
(Supplemental Text 2). Additionally, we have provided PRS and MRS risk percentages 
based on the study population as a reference. The online risk assessment offers 
information, including the risk of developing T2D over 3, 5, and 7 years, T2D-free 
probability, and T2D risk with and without considering PRS (Fig. 6G). The assessment 
takes both PRS and MRS into account (Fig. 6G). For example, consider a 50-year-old 
male with a family history of T2D and PRS 1.5 and MRS 1.5. Without considering PRS, 
the risk (probability) of developing T2D after a 7-year follow-up is 0.23. However, 
when PRS is included, the risk increases to 0.37. Furthermore, considering MRS 
further increases the risk to 0.81. The online tool provides these valuable insights to 
users based on their input data. 
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Discussions  

In this study, we compared two prediction models based on GWAS data. The first 
model used SNPs from our GWAS, which had a limited sample size. The second 
model utilized SNPs from previously published GWASs with a considerably larger 
sample size. Interestingly, the latter approach resulted in a higher prediction AUC. 
Additionally, we constructed PRS using two methods. The first method involved 
significant SNPs from our own GWAS with a limited sample size, while the second 
method utilized summary statistics of whole-genome SNPs from GWASs with a 
considerably larger sample size. Notably, the latter approach resulted in a higher 
prediction AUC. These findings emphasize the significant influence of sample size in 
GWAS, PRS construction, and subsequent classification and prediction analyses, 
consistent with prior research 47. Consequently, in situations where the sample size is 
limited, we propose utilizing external genetic information such as SNPs and summary 
statistics from published studies with larger sample sizes, which not only facilitates 
the development of a more predictive PRS and model but also reduces 
computational overhead 48.  

Our study emphasizes the superiority of disease family history as a predictor of 
T2D compared to T2D-associated SNPs and PRS. The inclusion of genetic factors such 
as significant SNPs and PRS as additional predictors, given family history, only results 
in modest improvements in the model’s predictive capability. Family history 
encompasses genetic and environmental influences, which are crucial in 
understanding the etiology of T2D 49. Additionally, we observed that the disease 
history of siblings provides more informative value for prediction than the disease 
history of parents 50.  

T2D subgrouping can facilitate the implementation of precision medicine in 
clinical practice, particularly when utilizing complex data 51. This study demonstrated 
a positive association between PRS and MRS with T2D risk. Notably, we identified a 
high-risk subgroup of women older than 59 years with a family history of T2D, where 
the case vs. control ratio of sample size in the 80%–100% PRS decile group ranged 
from 7 to 13, significantly higher than the overall population. Similarly, for MRS, we 
found a high-risk subgroup of men older than 54 years with a family history of T2D, 
where the case vs. control ratio of sample size in the 90%–100% MRS decile group 
was 9.3, considerably higher than the ratio of 1.3 when MRS was not considered. 
These results demonstrate the utility of PRS and MRS in identifying high-risk 
subgroups for T2D. 

In the PRS-CSx method, we considered three weighting methods to combine 
several population-specific PRSs into the final PRS: (1) an equal weight, (2) the 
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population-specified weight, and (3) the meta-effect size for each SNP. Our results 
showed that the meta-effect size obtained a worse performance. The population-
specified weight performed best; however, the result may vary between cohorts.  

In this study, our PRS based on PRS-CSx achieved an AUC of 0.732 for T2D 
prediction. The AUC increased to 0.915 after further including age, sex, and family 
history of T2D into the prediction model. When comparing our results with the 
previous publications, Khera et al. 52 achieved an AUC of 0.725 using a logistic 
regression that included age, sex, and PRS constructed with LDpred 53. Imamura et al. 
14 achieved an AUC of 0.648 with a PRS constructed by 49 T2D-associated SNPs with 
LD weights, and the AUC increased to 0.787 after including age, sex, and BMI. Ge et 
al. 18 achieved an AUC of 0.694 with a PRS constructed using summary statistics from 
three large-scale GWASs. Walford et al. 54 achieved an AUC of 0.641 with a PRS 
constructed by 63 SNPs, age, and sex. In summary, our study utilized phenotype 
refinement through HbA1c and fasting glucose, employed XGBoost with superior 
performance, and considered the family history of T2D as a critical factor for T2D 
prediction, leading to improved performance compared to previous studies. 

Including environmental factors such as education level, drinking level, exercise 
habit, and the number of exercise types in our models increased prediction accuracy 
for non-T2D participants but decreased accuracy for T2D cases. The overall 
improvement in prediction performance achieved by including these environmental 
factors was relatively modest and did not reach statistical significance. Similarly, 
including SNP-SNP interactions in the models did not lead to a significant 
improvement. While SNP-SNP interactions have been proposed as a potential 
explanation for missing heritability 55, our findings indicate that incorporating these 
interactions does not provide additional benefits when PRS is already included in the 
model. This could be attributed to PRS already capturing a substantial portion of the 
genetic component, making incorporating SNP main effects and SNP-SNP interactions 
less impactful. 

This study demonstrates good ability in detecting T2D cases, but we observed 
that some self-reported non-T2D individuals might be misclassified as T2D cases. 
Further investigation revealed that these cases represent individuals in a pre-T2D 
stage. Firstly, their T2D risk at the follow-up time was higher than true non-T2D 
participants but lower than the confirmed T2D cases, indicating an elevated but not 
fully developed risk. Secondly, these individuals exhibited higher HbA1c and fasting 
glucose levels than true non-T2D participants, albeit lower than confirmed T2D 
cases, suggesting a pre-T2D stage. Lastly, when redefining the phenotype using 
HbA1c and fasting glucose, a majority of these participants did not meet the 
inclusion criteria for the control group, further suggesting that they may not be truly 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 16, 2023. ; https://doi.org/10.1101/2023.08.14.23294093doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.14.23294093
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

non-T2D participants. 
Considering these factors, it is evident that although these “misclassified” 

participants are self-reported as non-T2D, they are likely in a pre-T2D stage, with an 
increased risk of developing T2D in the future. It is crucial to follow up with these 
individuals, monitor their condition closely, and implement preventive interventions 
to mitigate the risk of T2D development. 

The integration of genetics and medical imaging data into risk assessment shows 
excellent potential for enabling early T2D detection and prevention, albeit at a higher 
cost. Practical examples from health examinations and screenings, such as the MJ 
Health Survey Database 56, provide compelling evidence for successfully 
incorporating these data into real-world practices. These examples highlight the 
valuable role that genetics and medical imaging data can play in enhancing risk 
assessment and underscore the potential benefits of integrating these approaches 
for improved disease management and prevention. 

Another limitation of our study is that due to limited follow-up time in the TWB, 
only a limited number of participants experienced a change in T2D status from 
baseline to follow-up, particularly for redefining the phenotype using HbA1c and 
fasting glucose. To assess the early detection capability of our model for T2D, we are 
currently addressing this issue by monitoring the participants who exhibited changes 
in self-reported T2D status from baseline to follow-up in our Cox regression model. 
This limitation can be overcome in future studies as the TWB continues to track these 
samples. In addition, conducting a cohort survey or clinical trial is warranted to 
evaluate the high-risk subgroups identified by our PRS and MRS for future precision 
T2D medicine. 
 

Conclusion 

In conclusion, our study surpassed previous research in the prediction and 
classification of T2D. We successfully developed artificial intelligence models that 
effectively combined genetic markers, medical imaging features, and demographic 
variables for early detection and risk assessment of T2D. PRS and MRS were 
instrumental in identifying high-risk subgroups for T2D risk assessment. To facilitate 
online T2D risk evaluation, we have also created a dedicated website. 
 

Data and code availability 

The data analyzed in this study were obtained from the Taiwan Biobank with proper 
approval. As the data are subject to ownership rights held by the Taiwan Biobank, 
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they have not been deposited in a public repository. Researchers interested in 
accessing the data must do so through a formal application process, subject to 
approval by the Taiwan Biobank. Detailed instructions on requesting data access can 
be found on the Taiwan Biobank’s official website 
(https://www.twbiobank.org.tw/index.php). The codes developed in this study are 
available upon request. 
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Figure legend 

Figure 1. Flowchart of genetic-centric analysis. (A) Data partitioning. The dataset 
containing information from 60,747 individuals was divided into several subsets: (i) 
The GWAS samples (Dataset 1, N = 35,688), training samples (Dataset 2, N = 12,236; 
Dataset 4, N = 40,787), and validation samples (Dataset 3, N = 3,060; Dataset 5, N = 
10,197). For classification analysis, testing samples comprised Dataset 6 (N = 8,827) 
and Dataset 7 (N = 936), while for prediction analysis, they were represented as 
Datasets 6’ (N = 8,827) and Dataset 7’ (N = 936); (B) Sample size. Total sample size, 
along with the number of cases and the number of controls, are shown for each of 
the four phenotype definitions in Datasets 1 – 7; (C) Phenotype definition criteria. 
The definition and sample size for the four T2D phenotype definitions is shown. (D) 
Analysis flowchart. The analysis flow comprises three steps, starting with selecting 
T2D-associated SNPs and PRS, then selecting demographic and environmental 
covariates, and the best XGBoost model was established using the selected features. 
 
Figure 2. Flowchart of genetic-image integrative analysis. (A) Data partitioning and 
model training. To illustrate the process, Phenotype Definition IV was used as an 
example. The data containing information from 7,786 individuals were divided into 
four subsets: a training dataset (N = 4,689), a validation dataset (N = 1,175), and two 
independent testing datasets (N = 1,469 for the first dataset and N = 444 for the 
second independent dataset). Subsequently, the best XGBoost model was 
established. (B) Flowchart of PRS construction. The construction of PRS was carried 
out using PRS-CSx based on the GWAS summary statistics obtained from the analysis 
of the DIAGRAM Project. 
 
Figure 3. Model evaluation and comparison: Bar chart displaying AUC. (A) SNP 
selection. Model predictors were SNPs selected from published studies or our GWAS 
under different p-value thresholds. The average AUCs of prediction models for four 
phenotype definitions were compared. Incorporating SNPs from published GWAS 
with a large sample size has the highest AUC. (B) T2D Phenotype Definition. In 
addition to including the selected variables in Fig. 3A, the AUCs of four phenotype 
definitions were compared. T2D Phenotype Definition IV (i.e., phenotype defined by 
self-reported T2D, HbA1c, and fasting glucose) has the highest AUC. (C) Family 
history of T2D. In addition to including the selected variables in Figs. 3A–3B, the 
AUCs of the four types of T2D family history (i.e., (i): parents (binary factor), (ii) sibs 
(binary factor), (iii) either parents or sibs (binary factors), and (iv) both parents and 
sibs (ordinal factor)) were compared. Incorporating T2D family history that considers 
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both parents’ and sibs’ disease history as ordinal predictors has the highest AUC. (D) 
Demographic variables. In addition to including the selected variables in Figs. 3A–3C, 
the AUCs of different combinations of demographic factors, including age, sex, and 
family history of T2D, are compared. Incorporating age, sex, and family history of T2D 
as predictors have the highest AUC. (E) PRS and demographic variables. In addition 
to including the selected variables in Figs. 3A–3D, the AUCs of different combinations 
of genetic variables, including SNPs, PRS-CS, and PRS-CSx, and demographic 
variables, including age, sex, and family history of T2D, are compared. Incorporating 
PRS and demographic factors as predictors have the highest AUC. (F) Impact of 
including PRS after SNPs. The AUCs of the models that consider SNPs, SNPs+PRS-CS, 
and SNPs+PRS-CSx as predictors are compared. PRS significantly improves prediction 
performance. PRS-CSx outperforms other genetic variables. (G) Impact of including 
additional SNPs after PRS. The AUCs of the models that consider additional SNPs 
given PRS in the model are compared. SNPs cannot further enhance prediction 
accuracy after PRS. PRS and PRS+SNP show similar prediction performances. 
 
Figure 4. Results in the genetic-centric analysis. (A) AUCs of all models based on 
Phenotype Definition IV. A heatmap summarizes the AUCs of all models based on 
Phenotype Definition IV (i.e., T2D was defined by self-reported T2D, HbA1c, and 
fasting glucose). The genetic variables are shown on the X-axis, and the demographic 
variables are shown on the Y-axis. The best model comprises age, sex, family history 
of T2D, and PRS-CSx as predictors. (B) Positive correlation between PRS and T2D 
odds ratio. In each decile of PRS based on PRS-CSx, the odds ratio of T2D risk and its 
95% confidence interval were calculated based on an unadjusted model (blue line) 
and an adjusted model considering age, sex, and T2D family history (red line). The 
reference group was the PRS group in the 40%–60% decile. (C) High-risk group. In 
the chart, the figures from the inner to the outer represent (i) the case-to-control 
ratio, (ii) the number of cases, and (iii) the number of controls in the PRS decile 
subgroups. A high-risk group was identified, comprising females older than 59 with a 
T2D family history and falling into the PRS group in the 80%–100% decile group. (D) 
Association of age, sex, T2D family history, and PRS with T2D. Hazard rates, 95% 
confidence intervals, and p-values based on univariate and multivariate Cox 
regression models demonstrate that age, sex, T2D family history, and PRS are 
significantly associated with T2D. (E) Risk factors for T2D. Predicted survival 
proportion curves reveal that elder persons, males, the number of parents and 
siblings who had T2D, and the high decile PRS group are risk factors for T2D risk. Age 
(older persons), sex (males), T2D family history (the number of parents and siblings 
who had T2D), and PRS (high decile PRS group) are risk factors (high-risk level) for 
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T2D risk. (F) Median event time of T2D. Examples of the median even time for 
developing T2D are provided based on a multivariate Cox regression model, both 
without and with incorporating PRS. For instance, a male aged 50 with a T2D family 
history in one family member will develop T2D after 460 weeks, and the onset time is 
advanced to 419 weeks when PRS is further incorporated. 
 
Figure 5. T2D early detection using our prediction model (Phenotype Definition IV; 
age, sex, family, and PRS). (A) Four subgroups. The individuals who are females aged 
>59 with a T2D family history and initially reported as non-T2D in the baseline are 
divided into four categories based on the T2D status predicted by our model and the 
self-reported T2D status in the follow-up. The four groups are G1 – True Positive (i.e., 
predicted as T2D and self-reported as T2D in the follow-up), G2 – False Negative (i.e., 
predicted as non-T2D but self-reported as T2D in the follow-up), G3 – False Positive 
(i.e., predicted as T2D but self-reported as non-T2D in the follow-up, and G4 – True 
Negative (i.e., predicted as non-T2D and self-reported as non-T2D in the follow-up). 
(B) Survival rate. The predicted survival proportion curves for each subgroup are 
displayed. G3 had a lower survival rate than G4 and higher than G1, indicating that 
most individuals in G3 are possibly pre-diabetic. (C) Median survival time. The 
distributions of median survival time for each subgroup are displayed. G3 had a 
shorter median survival time than G4 and longer than G1, suggesting that most 
individuals in G3 are possibly pre-diabetic. (D) Follow-up time. The distributions of 
the time period from the baseline to the follow-up for each subgroup are displayed. 
G3 had a follow-up time similar to G1 and G4. (E) T2D risk. The distributions of T2D 
risk at the follow-up for each subgroup are displayed. G3 had a higher T2D risk in the 
follow-up than G4 and lower than G1, suggesting that most individuals in G3 are 
possibly pre-diabetic. (F) HbA1c. The distributions of HbA1c at the baseline and 
follow-up for each subgroup are displayed. G3 had a higher HbA1c than G4 and lower 
than G1, indicating that most individuals in G3 are possibly pre-diabetic. (G) Fasting 
glucose. The distributions of fasting glucose at the baseline and follow-up are 
displayed. The results show that G3 had higher fasting glucose than G4 and lower 
than G1, indicating that most individuals in G3 are possibly pre-diabetic. (H) 
Phenotype definition. Many individuals in G3 cannot satisfy the T2D Phenotype 
Definition IV. Only 37 of 404 individuals passed the phenotype inclusion criteria. The 
self-reported T2D in G3 does not match the general definition of T2D based on 
HbA1C and fasting glucose, indicating that most individuals in G3 are possibly pre-
diabetic. 
 
Figure 6. Results in the genetic-image integrative analysis. (A) Performance 
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comparison of medical imaging data analysis. The area under the receiver operating 
characteristic (ROC) curve (AUC), accuracy (ACC), sensitivity (SEN), specificity (SPE), 
and F1 score are compared for the integrative analysis of four types of medical 
images (All) and individual medical imaging analyses, including BMD, EKG, VAS, and 
ABD. The analysis combining all four medical imaging data types shows the highest 
performance. (B) The model that combines four types of medical imaging, PRS, and 
demographic variables shows the highest AUC of 0.949. ROC plots and the 
corresponding AUC for the models considering medical imaging features (I), genetic 
PRS (G), and demographic variables, including age, sex, T2D family history (D), and 
their combinations. (C) An optimal model combining medical imaging, PRS, and 
demographic variables. The best model's top 20 features with a high feature impact 
include the medical imaging, genetic, and demographic features. The high-impact 
image features include ABD-related features, including fatty liver and RR; BMD-
related features, including spine and right hip thickness; EKG-related features, 
including RR and QRS degrees; and VAS-related features, including R CCA EDV and L 
CCA EDV. The high-impact genetic features: PRS. The high-impact demographic 
features: T2D family history and age. (D) Positive correlation between MRS and T2D 
odds ratio. In each decile of MRS based on four types of medical images, the odds 
ratio of T2D risk and its 95% confidence interval were calculated based on an 
unadjusted model (blue line) and an adjusted model considering age, sex, and T2D 
family history (red line), with the MRS group in the 40%–60% decile serving as the 
reference group. (E) High-risk group. A high-risk group was identified as males older 
than 59 with a T2D family history and falling into the PRS group in the 80%–100% 
decile. The figures from the inner to the outer in the chart display (i) the case-to-
control ratio, (ii) the number of cases, and (iii) the number of controls in the MRS 
decile subgroups. (F) Input page of the online T2D prediction website. Personal 
information, including age, sex, family history of T2D, PRS, and MRS, is input to 
calculate T2D risk. PRS and MRS are optional, and a reference distribution is 
provided. (G) Output page of the online T2D prediction website. The results include 
the hazard of developing T2D in 3, 5, and 7 years for persons without and with 
inputted PRS data based on a Cox regression model. The probability of developing 
T2D without and with PRS and MRS based on a logistic regression model is also 
provided. 
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