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Abstract

During the COVID-19 pandemic, many countries and regions investigated the poten-
tial use of wastewater-based disease surveillance as an early warning system. Initially,
methods were created to detect the presence of SARS-CoV-2 RNA in wastewater. In-
vestigators have since conducted extensive studies to examine the link between viral
concentration in wastewater and COVID-19 cases in areas served by sewage treatment
plants over time. However, only a few reports have attempted to create predictive
models for hospitalizations at county-level based on SARS-CoV-2 RNA concentrations
in wastewater. This study implemented a linear mixed-effects model that observes the
association between levels of virus in wastewater and county-level hospitalizations. The
model was then utilized to predict short-term county-level hospitalization trends in 21
counties in California based on data from March 21, 2022, to May 21, 2023. The mod-
eling framework proposed here permits repeated measurements as well as fixed and
random effects. The model that assumed wastewater data as an input variable, instead
of cases or test positivity rate, showed strong performance and successfully captured
trends in hospitalizations. Additionally, the model allows for the prediction of SARS-
CoV-2 hospitalizations two weeks ahead. Forecasts of COVID-19 hospitalizations could
provide crucial information for hospitals to better allocate resources and prepare for
potential surges in patient numbers.

Keywords: SARS-CoV-2; COVID–19; Hospitalizations; Wastewater-based disease surveillance;
Wastewater-based epidemiology; Linear mixed-effects model
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1 Introduction
Wastewater-based disease surveillance (WDS) is a valuable tool for identifying and monitoring
the spread of infectious diseases within a community. By detecting the presence of SARS-CoV-
2 RNA in municipal sewer systems, WDS systems can provide early detection of outbreaks and
track changes in the concentration of the virus over time. WDS can also be used to identify
the spread of new variants when they emerge. Wastewater surveillance was used effectively prior
to the COVID-19 (Coronavirus Disease 2019) pandemic, most notably as a tool to monitor and
respond to poliovirus and to assess the presence of pharmaceutical and illicit drugs (Paul et al.,
1940; Trask et al., 1938). The COVID-19 pandemic led to widespread implementation of WDS
in communities across the United States. The approach has proven to be a cost-effective method
for tracking COVID-19 and other infectious diseases (To et al., 2010; Hughes et al., 2022; Boehm
et al., 2023a; Kumblathan et al., 2021). To bolster the nation’s capacity to monitor SARS-CoV-
2 effectively, the US Centers for Disease Control and Prevention (CDC) launched the National
Wastewater Surveillance System (NWSS) in September 2020, establishing over 1250 sampling sites
across the US that encompassed more than 133 million people by October 2022. An essential factor
contributing to the success of WDS is the extensive coverage of municipal wastewater collection
systems, which connects approximately eighty percent of households in the United States.

In contrast, conducting widespread testing in a community requires substantial testing capacity,
including access to testing kits, trained personnel, and testing facilities. Implementing community-
wide testing can be financially burdensome, especially in resource-constrained settings. Even with
adequate testing capacity, achieving high participation in testing can be challenging. When individ-
uals get tested for a disease, their test-seeking and preventive behaviors can lead to biases. This can
make the tested population less representative and affect the accuracy of disease prevalence esti-
mates. Therefore, relying solely on confirmed cases to determine disease prevalence in a community
can lead to biased estimates (Daza-Torres et al., 2023).

In order to reduce the biases introduced by testing practices, the test positivity rate (TPR)
emerges as a crucial alternate measure. The TPR is the proportion of individuals who have tested
positive for COVID-19 relative to the total number of tests administered. TPR has been used as
a valuable alternative metric to track the spread of COVID-19 and assess the disease’s prevalence
compared to the number of tests being conducted (Dallal et al., 2021; Dowdy and D’Souza, 2020).
TPR has been demonstrated to reliably correlate with hospitalizations and intensive care units
(Fenga and Gaspari, 2021; Montesinos-López et al., 2021). However, the interpretation and use of
the TPR can be challenging in certain contexts, as it relies on accurate and comprehensive testing
data, which may be hindered by factors such as limited testing capacity, variable testing practices,
and variations in reporting standards.

One solution to the challenges faced in estimating disease prevalence in a community is through
the use of WDS. This approach is relatively simple and accurate in gathering data from both
symptomatic and asymptomatic individuals across an entire community. WDS provides a more
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accurate estimation of disease prevalence as it represents a sample of the population regardless
of individual testing behaviors or access to healthcare. Numerous studies have observed a strong
correlation between SARS-CoV-2 RNA concentrations in wastewater with the number of daily new
cases in corresponding wastewater treatment plants catchment areas and, more recently, with the
TPR (Montesinos-López et al., 2023; Boehm et al., 2023b).

Galani et al. (2022) and Kadonsky et al. (2023) offer examples of correlations between wastewater
data and hospitalizations, with a time lag typically ranging from 8 to 14 days. Galani et al. (2022)
implemented an artificial neural network model that combines clinical test results (COVID-19-
positive cases) and wastewater concentrations to model new hospital and ICU admissions. These
findings emphasize the potential of wastewater surveillance to improve preparedness and response
to the spread of infectious diseases.

Building upon this knowledge, we propose using a linear mixed-effects model (LMM) to predict
COVID-19 hospitalizations at a county-level by examining viral concentrations found in wastew-
ater. Our analysis covers 21 counties in California for which wastewater data for COVID-19 is
reported by WastewaterSCAN, a national WDS program that began in California in 2020 (Boehm
et al., 2023d). The results of the present study thus offer an extensive assessment of correlations
between wastewater data and hospitalization rates and demonstrate the broad applicability of the
hospitalization forecasting models.

2 Materials and Methods
The analytical framework was developed using data from twenty-one counties across California,
USA, which actively monitor wastewater. The analysis includes clinical and wastewater data from
March 21, 2022, to May 21, 2023, covering three “waves” of the COVID-19 pandemic. We identified
the waves by visually examining the data. We defined the first wave period from March 21, 2022 to
October 15, 2022; the second wave starts on October 16, 2022 and ends on February 4, 2023; and
the third wave starts on February 5, 2023 and ends at the end of the study period on May 21, 2023
(see Figure 1).

2.1 Data Sources

Clinical Data

We used publicly available data for daily COVID-19 cases and hospitalization at the county level
from the Official California State Government website, which provided the COVID-19 data from the
California Health & Human Services Agency (CHHS). Hospitalization counts represent the number
of patients hospitalized in an inpatient bed with a laboratory-confirmed COVID-19 diagnosis. It is
important to note that some hospitalization data may involve individuals admitted to the hospital
for reasons unrelated to COVID-19 but who tested positive during their hospital stay. The count
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includes all inpatients, including those in ICU and Medical/Surgical units, but excludes patients
waiting for an inpatient bed in affiliated clinics, outpatient departments, emergency departments,
and overflow locations.

The number of positive COVID-19 cases is determined by the total count of molecular tests that
were positive using polymerase chain reaction (PCR) assays. We considered both “Total Tests” and
“Positive Tests”, which reflect the cumulative totals based on the collection date. There is typically
a delay between the date of specimen collection and when the test results are reported, which could
impact real-time forecasts of hospitalizations as positive tests are reported.

Hospital admissions and COVID-19 cases were aggregated weekly. To calculate population-level
hospitalization rates and cases for a county, we take the number of hospital admissions and new
cases in the past 7 days, divide it by the population in that same county, and then multiply the
result by 100,000. These metrics make it easier to compare data across different counties (refer
to Figure 1). We will refer to the standardized hospitalization as “hospitalization rate” moving
forward.

To calculate the TPR for a specific county, the number of positive COVID-19 tests from the
past 7 days is divided by the total number of tests conducted in that county during that same time
frame.

The analyses of this study used publicly available clinical data and do not contain any private
health information. As a result, our study is exempt from ethical review and the requirement for
informed consent for the clinical data, according to the Common Rule 45 CFR46.102 guidelines.

Wastewater Data

Sample collection. Samples were collected typically three times per week at 21 WWTPs as early
as December 2021 and late May 2023 (Table S.1). Samples of settled solids were collected from the
primary clarifier, or solids were obtained from raw influent by either using an Imhoff cone (Eaton
et al., 2005), or allowing the influent to settle for 10-15 mins, and using a serological pipette to
aspirate the settled solids into a falcon tube. Samples were collected by WWTP staff and sent at
4°C to our laboratory where they were processed immediately. The time between sample collection
and receipt at the lab was typically between 1-3 days, during this time limited degradation of the
RNA targets is expected (Guo et al., 2022; Burnet et al., 2023). Table S.1 provides additional
information on the WWTPs including populations served and number and type of samples. In
total, these WWTPs serve 13,893,677 people (approximately 35.7 percent of the CA population).
A total of 4,764 samples were collected and analyzed.

The wastewater projects were reviewed by University of California, Davis. Written informed
consent for participation was not required for this study in accordance with the national legislation
and the institutional requirements.

Pre-analytical processing and RNA extraction. Detailed methods for pre-analytical pro-
cessing and RNA extraction have been published in peer-reviewed papers (Wolfe et al., 2021; Daza-
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Torres et al., 2023; Boehm et al., 2023d) and on protocols.io (Topol et al., 2021a,b). In short, solids
were dewatered using centrifugation, then one aliquot of solids was added to DNA/RNA shield
(containing spiked in bovine coronavirus, BCoV, a process control) at a concentration of 75 mg/ml,
a concentration at which inhibition of downstream analytical methods was minimized (Boehm et al.,
2023d; Huisman et al., 2022). Another aliquot was used to determine the dry weight of the solids.
The mixture was homogenized and centrifuged. Subsequently, nucleic-acids were extracted and
purified from the supernatant using a commercial kit. The nucleic-acid extract was then processed
through an inhibitor removal kit. The RNA was used immediately without storage as template in
RT-PCR reactions, as explained below.

Analytical measurements. The RNA was used undiluted as template in digital droplet RT-
PCR reaction containing previously described (Huisman et al., 2022) primers and probe for a target
located in the N gene of SARS-CoV-2. This region has been conserved across all variants to date
(Boehm et al., 2023b). The RNA was diluted 1:100 and used as template in a duplex digital droplet
RT-PCR reaction containing previously published primers and probes (Wolfe et al., 2021) for pepper
mild mottle virus (PMMoV) and BCoV. However, some specifics of the methods changed over time
as the public health needs of the program changed requiring that various assays for other viral
RNA targets were added and removed from the prospective monitoring program) and the number
of samples processed by the lab increased, requiring a change in the number of replicates run for
each sample (see Table S.2). These changes are described in Table S.2.

It should be noted that some of the data in this paper have been described in a Data Descriptor
(Boehm et al., 2023d). Descriptions of the extraction and PCR negative and positive controls,
BCoV recovery calculations, QA/QC elements, thresholding methods, and relevant Environmental
Microbiology Minimal Information (EMMI) guideline reporting, are described in detail in the Data
Descriptor. If BCoV recoveries were less than 10%, then the sample was rerun. The Data Descriptor
describes data from San Jose, Southeast, SAC, and Davis collected through 12/31/22 and Merced
and Modesto through 4/27/22 and 12/2/22-12/31/22. In addition, data from Merced and Modesto
from 5/4/21 through 09/29/22 were included in a paper by (Kadonsky et al., 2023), and data
from San Jose, Southeast, SAC, and Davis after 12/31/22 were included in a paper by Boehm et al.
(2023c). The other data have not been published previously. All data used in this study are publicly
available through the Stanford Digital Repository Boehm (2023).

The SARS-CoV-2 viral load is normalized by the PMMoV concentration, resulting in the dimen-
sionless metric N/PMMoV. Previous mass-balance modeling work suggests that the ratio should
be proportion to the number of SARS-CoV-2 RNA shedders in the contributing population (Wolfe
et al., 2021). We calculated the weekly average N/PMMoV concentrations by dividing the sum of
concentrations by the number of samples collected during that week. To analyze the relationship
between hospitalization rates and SARS-CoV-2 RNA concentrations, we used data from the WWTP
serving the highest population in each county. Figure 1 shows the N/PMMoV and hospitalization
rate.
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Figure 1: The weekly average COVID-19 hospitalizations per 100K population (red line) and
weekly average normalized SARS-CoV-2 wastewater concentrations (N/PMMoV, blue dots)
from March 21, 2022, to May 21, 2023, by county. Vertical gray lines represent the end of
each wave.

2.2 Data Analysis
This study focused on associations between hospitalization rates and longitudinal changes in the
wastewater concentrations of SARS-CoV-2 RNA over time. Because COVID-19 hospitalization data
were collected repeatedly through time for each county, the traditional linear regression model may
not be appropriate due to the presence of correlated measurements within each county. Longitudinal
studies often involve correlated data points for which the assumption of independence in linear
regression is violated. LMMs allow us to explicitly model the dependence between observations
within counties by incorporating random effects. We applied a logarithmic (base 10) transformation
to the weekly average wastewater data and hospitalization rates to facilitate the analysis.

We hypothesized that the relationship between wastewater concentrations of SARS-CoV-2 RNA
and hospitalization rate varies by county. This hypothesis is based on county-to-county differences
in public health recommendations, public health access, and human behavior (Figure 2). We also
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aimed to consider the impact of time-dependent factors associated with each wave of infections.
Time-dependent factors include virus variant evolution, human behavior changes, community vac-
cination status, and prior immunity. We accounted for these factors by incorporating a fixed
effect into the model for discrete time periods associated with three waves of infections that were
apparent over this study period (Figure 3). Kadonsky et al. (2023) observed that the wastewater-to-
hospitalization ratios remained relatively stable during two COVID-19 waves in two geographically
adjacent counties in California’s Central Valley between October 2021 and September 2022. This
suggests that the wastewater-to-hospitalization ratios may remain constant in some cases, but the
intercept may differ. Finally, we explore the predictive capabilities of various COVID-19 transmis-
sion indicators, including reported cases, TPR, and wastewater data. We aim to identify the most
effective real-time indicator to monitor hospitalizations within a specific region.

Figure 2: Log10-transformed weekly average COVID-19 hospitalization rate two weeks ahead
of the wastewater sampling and log10 weekly average normalized SARS-COV-2 wastewater
concentration (N/PMMoV) separated by the three waves of infection that were apparent
over the study period. We identified the waves by visually examining the data. Regression
lines are fitted to the data and depicted; model intercepts and slopes vary by county.
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Figure 3: Log10-transformed weekly average COVID-19 hospitalization rate two weeks ahead
of the wastewater sampling and log10 weekly average normalized SARS-COV-2 wastewater
concentration (N/PMMoV) by county. Regression lines are fitted for each county and for
each wave of infection considered.

2.3 Mathematical Model
The logarithmically transformed COVID-19 hospitalization rate at the county i = 1, . . . , 21 and
week t = 1, . . . , T is modelled as

yit = µ + xiβ + vt + gi + Zitvt + εit (1)

where µ is the average hospitalization rate across the study area and xi is a vector of p covari-
ates (e.g., wastewater concentration, reported cases, TPR; xi = {x1it, x2it, . . . xpit}). The vt term
corresponds to a temporal-level fixed effect indicating the pandemic’s three waves (grouped time
component) as specified above. The gi term is a county-level random effect corresponding to the
county where the hospital is located. County-level random effects are modeled as gi ∼ N(0, σ2

g),
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with i = 1, . . . , 21. The term Zitvt represents an interaction effect between a covariate Zit (e.g.,
wastewater concentration) and the wave factor. The εit term represent the residuals distributed
as N(0, σ2) with σ2 is the measurement error variance. The random effect gi is assumed to be
independent of the residual εit.

2.4 Model Implementation
The primary objective of this study is to evaluate our model’s ability to predict hospitalizations two
weeks in advance using wastewater data. A two-week lag was incorporated to accurately capture
the relationship between predictor variables and hospitalization outcomes. This lag duration was
chosen based on previous research showing a nearly two-week delay between hospitalizations and
measurements of wastewater, confirmed cases, and test positivity rate (Kadonsky et al., 2023;
Montesinos-López et al., 2021). Specifically, we used the hospitalization data two weeks ahead
(denoted as Yi) as the response variable for concentration, cases, and TPR at time i. While a single
lag was selected in building the present model, the duration of the lag could be optimized for each
county.

In order to account for the interdependence in hospitalization data, all models presented below
will consider the variable “county” (i.e., the county where the hospital is situated) as a random
effect in the predictor. The LMMs were executed using the “lme” function from the “nlme” package
in R.

2.5 Model Evaluation
We tested 9 statistical prediction models to assess the model’s forecasting accuracy. We used the
mean absolute scaled error (MASE) as our benchmark. To create these models, we used different
predictors in Equation 1, including the number of confirmed cases (cases), TPR, N gene concentra-
tion (N), normalized N gene concentration (N/PMMoV), a wave factor (wave), and an interaction
effects between normalized concentration and the wave factor (N/PMMoV×wave). The wave factor
was added to account for several factors related to the emergence of a new variant, which cannot
be measured directly.

The models M1, M2, M3, and M4 assume fixed effects predictor variables for cases, TPR, N gene
concentration, and normalized N gene concentration, respectively. All four models also consider a
county-level random effect. Models M5, M6, M7, and M8 add a wave effect factor to models M1,
M2, M3, and M4, respectively. Model M9 is similar to model M8 but includes an interaction
term between N/PMMoV and the wave factor. These models and their comparative metrics are
summarized in Table 1.

To evaluate the performance of the models, we used ten-fold cross-validation. The data was split
into training and testing sets at random. The training set received 80% of the data, while the testing
set was allocated 20%. The model was created using the training set, and its prediction performance
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was evaluated using the test set. This process was repeated 10 times, creating 10 random partitions.
The overall prediction performance was reported as the average of the 10 partitions.

The MASE was used to compare the observed values with the forecasted values to measure the
accuracy of predictions. The MASE was computed across 10 partitions, MASE = 1

10
∑10

k=1 MASEk,
where MASEk of the k-th fold is estimated by

MASEk =
1
J

∑J
j |yj − ŷj |

1
T −1

∑T
t=2 |yt − yt−1|

where yt and ŷt represent the observed and predicted values at time t, respectively. The Akaike
Information Criteria (AIC) and Bayesian Information Criteria (BIC) were used to evaluate the
goodness of fit, with lower values of AIC and BIC indicating superior model fit.

3 Results
Nine models were implemented to predict the number of COVID-19 hospitalizations in 21 counties
across California (Table 1). We used the mean absolute scaled error (MASE) as a measure of the
accuracy of the model forecasts. We calculated percent differences in MASE between corresponding
models to highlight the effect of each covariate tested (Table 1 and Figure S.1). Models using
TPR (M2 and M6) demonstrated the best performance overall. These models retroactively used
the best measures of TPR, based on collection dates of clinical specimens. In real-time, measures
of TPR are delayed by reporting times and may underperform when testing levels are overall low.
Models that used wastewater data for hospitalization forecasts (models M3, M4, M7, M8, and M9)
were considered successful for hospitalization forecasting when compared to models based on the
traditional COVID-19 cases.

Adding a time-dependent factor for each wave of infections (models M5-M8) significantly en-
hanced forecasting accuracy compared to models without this factor (models M1-M4). Out of all
these models, M5 showed the greatest improvement with the incorporation of a wave factor (18.8%
better than M1), while M6 showed the least improvement with the addition of a wave factor (9%
better than M2). Adding a wave effect to M3 and M4 improved performance by 13% and 17.7%,
respectively. Normalization with PMMoV (model M8) did not improve prediction performance rel-
ative to the model that used unnormalized concentrations (model M7). We found that M2, based
on TPR, outperformed models M1, M3, and M4 by 17.3%, 14.6%, and 18.2%, respectively. Models
M1, M3, and M4 exhibited comparable prediction performance.

Model M9, which included an interaction effect between normalized concentration and the wave
factor, did not improve compared to Model 8.

A cursory assessment of adding interaction terms to models M5 (casesxwave), M6 (TPRxwave),
and M7 (Nxwave) indicated that these interaction terms also did not enhance model performance.

The hospitalization rate predictions for California counties, based on Model M8, are presented
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Table 1: Model prediction performance based on the mean absolute scaled error (MASE),
across 10 random partitions, assuming 80% of the total data set for training and the remaining
20% for testing. The Akaike Information Criteria (AIC) and Bayesian Information Criteria
(BIC) are also presented.
Model MASE** AIC BIC
M1 = Cases + County* 0.985 (0.072) -732 -712
M2 = TPR + County* 0.815 (0.039) -1061 -1041
M3 = N + County* 0.954 (0.069) -852 -832
M4 = N/PMMoV + County* 0.996 (0.076) -798 -778
M5 = M1 + Wave 0.8 (0.059) -1068 -1038
M6 = M2 + Wave 0.742 (0.051) -1180 -1150
M7 = M3 + Wave 0.83 (0.062) -1038 -1008
M8 = M4 + Wave 0.82 (0.06) -1042 -1013
M9 = M8 + N/PMMoV×Wave 0.809 (0.059) -1057 -1018

∗ Included as a random effect.
∗∗ Mean (standard deviation).

in Figure 4. The predicted hospitalization rates align closely with the observed data, indicating that
the forecasting model is performing well. Predictions for models M5, M6, and M7 are presented in
Figs. S.2, S.3, and S.4, respectively.

4 Discussion
Wastewater-based disease surveillance (WDS) models have been shown to be effective tools to
estimate SAR-CoV-2 prevalence and effective reproductive numbers. WDS data has also been shown
to correlate with hospitalizations. Our study demonstrates the feasibility of using WDS to reliably
forecast hospitalizations at a county level, with a level of accuracy comparable to what we observed
when using only confirmed cases or test positivity rates for hospitalization forecasting. The model
forecasts yielded promising outcomes for WDS programs in 21 California counties, encompassing
13.5 million people across the state. Our findings thus offer a promising mechanism to improve
real-time monitoring of infectious diseases using wastewater data and to support control measures
for infectious diseases, especially when clinical testing is limited.

The mixed-effects models we developed facilitate evaluation of the associations between hospital
admission rates for COVID-19 and three predictors: confirmed cases, TPR, and the concentrations
of SARS-CoV-2 RNA in wastewater. We also introduced a time-dependent factor to account for
the wave of infection underway. The wave factor recognizes the non-autonomous nature of the
extended COVID-19 pandemic. The duration and spread of the disease through time are influenced
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Figure 4: Estimated COVID-19 hospitalization rate based on Model 8. Black-solid lines and
blue-shadow area describe the mean and 80% prediction intervals, respectively. Black dots
represent the observed data. Vertical gray lines represent the end of each wave.

by diverse elements including viral variant evolution, human behavior, vaccine development and
uptake, prior immunity status, health interventions utilized, and other time-dependent variables.
Inclusion of a wave factor enhanced the accuracy of all models tested. Model M6, which uses both
TPR and the wave factor, yielded the strongest prediction performance amongst the nine models
tested (lowest mean absolute scaled error). These findings echo previous research showing that TPR
serves as a more reliable indicator of disease transmission than confirmed case counts (Dallal et al.,
2021). Wastewater data yielded hospitalization forecasts with similar accuracy to models based on
traditional testing data, indicating the significant potential for WDS programs to inform hospital
capacity planning and resource allocation.

There are several limitations of our study. First, limitations of the hospitalization data must be
recognized. Hospitalization data solely reflects the count of individuals who received a COVID-19
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diagnosis while at the hospital. The hospitalization dataset thus includes individuals admitted to the
hospital for reasons unrelated to COVID-19 but who tested positive during their hospital stay. It was
not possible for us to disentangle hospitalizations that were not associated with COVID-19. Second,
only 12 counties in the study had wastewater data for all three waves of infection that occurred
during the study timeframe. As longer-term WDS datasets become available, future studies should
continue to explore the effect of time-dependent factors associated with recurrent waves of infections.
Third, our models did not incorporate interrelationships between communities or sewersheds (the
areas covered by wastewater collection systems). We initially included a regional factor in the
model, using regional classifications (Northern California, Greater Sacramento Region, San Joaquin
Valley, San Francisco Bay Area, and Southern California). This broad geographic factor did not
result in significant improvements in model performance and was eliminated in favor of model
simplicity. More nuanced consideration of spatial correlation structures should be considered in
future studies to assess the role of community interconnectivity and geographic proximity on disease
dynamics. Finally, we recommend future studies incorporate an adaptive modeling framework.
Adaptive frameworks that adjust model parameters according to new developments can generate
more reliable and up-to-date forecasting to help decision-makers implement timely interventions.

Since the COVID-19 pandemic is no longer classified as a public health emergency, testing rates
have diminished, and measures taken to control the spread of the disease have been curbed. Recent
increases in COVID-19 cases and hospitalizations serve as a reminder to maintain vigilance. It is
clear that WDS is a valuable tool for real-time disease monitoring, prevention, and preparedness.
Using WDS to forecast hospitalizations offers an efficient method to translate early warning signals
from wastewater into public health response strategies. By forecasting hospitalizations two weeks
in advance, hospitals can be more proactive in managing their capacity to ensure that all patients
receive the care they need. WDS infrastructure is also now being harnessed to monitor a suite of
other infectious diseases. We believe there is tremendous potential to extend this approach toward
other disease targets to inform hospital planning and public health decision-making.
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Supplementary Material

Table S.1: Description of publicly owned treatment works (POTWs) and samples in this
study.
County POTWs Start

date
N∗ Population

served
Sample
type

Alameda East Bay Municipal Utility District 2/15/2022 199 740000 Solids
Contra Costa Central Contra Costa Sanitary District 3/21/2022 167 484800 Liquids
Los Angeles Hyperion Water Reclamation Plant (HWRP) 8/28/2022 114 4000000 Liquids
Marin Central Marin Sanitation Agency 8/22/2022 71 104250 Liquids
Merced Merced Wastewater Treatment Plant (Merced) 12/6/2021 218 91000 Solids
Monterey Monterey One Water - Regional Treatment Plant 11/27/2022 69 262000 Liquids
Napa Soscol Water Recycling Facility 9/26/2022 98 83300 Solids
Orange Regional Treatment Plant 12/21/2022 64 129000 Liquids
Sacramento Sacramento Regional Wastewater Treatment Plant

(SAC)
12/6/2021 532 1480000 Solids

San Bernardino Regional Water Recycling Plant No.1 (RP-1) 4/25/2022 164 890000 Solids
San Diego E.W. Blom Point Loma Wastewater Treatment

Plant
8/7/2022 120 2200000 Liquids

San Francisco Southeast San Francisco (SEP) 5/20/2022 360 750000 Solids
San Luis Obispo City of Paso Robles Wastewater Treatment Plant 1/11/2022 210 31037 Solids
San Mateo Palo Alto Regional Water Quality Control Plant 12/6/2021 530 236000 Solids
Santa Barbara Lompoc Regional Wastewater Reclamation Plant 8/1/2022 125 69290 Liquids
Santa Clara San Jose-Santa Clara Regional Wastewater Facil-

ity (SJ)
12/6/2021 532 1500000 Solids

Santa Cruz City of Santa Cruz WTF - City Influent 4/3/2022 172 160000 Solids
(Imhoff
cone)

Solano Fairfield-Suisun Sewer District 9/28/2022 101 155000 Solids
Sonoma City of Santa Rosa, Laguna Treatment Plant 8/11/2022 120 230000 Solids

(Imhoff
cone)

Stanislaus Modesto’s Sutter Primary Treatment Facility
(Modesto)

12/6/2021 347 230000 Solids

Yolo City of Davis Wastewater Treatment Plant (Davis) 12/6/2021 451 68000 Solids
∗ N is the number of samples analyzed at each POTW.
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Table S.2: Description of changes in the analytical measurement of the N gene in SARS-CoV-
2 over time. The changes involved (1) the number of replicates from each sample from which
nucleic-acids are extracted and subsequently run in individual digital droplet RT-PCR wells,
and/or (2) how the N gene assay was multiplexed with other assays. Table columns include
the names of the POTWs, and then each subsequent column shows the information on (1) and
(2) for adjacent time periods indicated. S, XBB*, RSV, IAV, IBV, and HuNoV represent the
S gene in SARS-CoV-2, 5 adjacent single nucleotide polymorphisms in the XBB* sublineages
of SARS-CoV-2, respiratory syncytial virus, influenza A virus, influenza B virus, and human
norovirus GII, respectively. BA.4 and BA.2 indicate assays for characteristic mutations in
those SARS-CoV-2 variants (Boehm et al., 2023d).
POTW(s) Dates and method Dates and method Dates and method Dates and method
SAC, SEP,
SJ

Start date through 3/12/23 3/13/22 - 5/21/23

Multiplexed as described in
(Boehm et al., 2023d) with
10 replicates per sample

Multiplexed with assays for
XBB*, RSV, IAV, IBV,
HuNoV using the QX600 6
color instrument from Bio-
rad with 10 replicates per
sample

Davis 12/6/21 - 12/31/23 1/1/23 - 2/6/23 2/7/23 - 5/19/23
Multiplexed as described in
(Boehm et al., 2023d) with
10 replicates per sample

Multiplexed with IAV and S
with 6 replicates per sample

Multiplexed with IAV and
XBB* with 6 replicates per
sample

Modesto
and Merced

Start date through 4/27/22 5/4/22 - 11/30/22 12/2/22 - 2/6/23 2/7/23 - 5/19/23

Multiplexed as described in
(Boehm et al., 2023d) with
10 replicates per sample

Multiplexed as described in
(Kadonsky et al., 2023)
with 3-5 replicates per sam-
ple

Multiplexed with IAV and S
with 6 replicates per sam-
ple. Modesto extra diluted
ten fold prior to ddPCR as
described in (Boehm et al.,
2023d)

Multiplexed with IAV
and XBB* with 6
replicates per sam-
ple. Modesto ex-
tra diluted ten fold
prior to ddPCR as
described in (Boehm
et al., 2023d)

All other
plants

2/15/22 (or other start
date) through 5/26/22

5/26/22 - 6/14/22 6/15/22 - 7/11/22 7/12/22 - 2/6/23

Multiplexed with S and
del143/145 with 6 replicates
per sample

Multiplexed with S and
BA.4 with 6 replicates per
sample

Multiplexed with S and
BA.2 with 6 replicates per
sample

Multiplexed with S
and IAV with 6 repli-
cates per sample
2/7/23 - 5/21/23
Multiplexed with IAV
and XBB* with 6
replicates per sample
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Figure S.1: Performance prediction of models described in Table 1: mean absolute
scaled error (MASE) with its standard deviation across the 10 partitions.
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Figure S.2: Model M5 = Cases + wave + County. Estimated COVID-19 hospitalization
rate. Black-solid lines and blue-shadow area describe the mean and 80% prediction intervals,
respectively. Black dots represent the observed data. Vertical gray lines represent the end of
each wave.
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Figure S.3: Model M6 = TPR + wave + County. Estimated COVID-19 hospitalization
rate. Black-solid lines and blue-shadow area describe the mean and 80% prediction intervals,
respectively. Black dots represent the observed data. Vertical gray lines represent the end of
each wave.
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Figure S.4: Model M7 = N + wave + County. Estimated COVID-19 hospitalization
rate. Black-solid lines and blue-shadow area describe the mean and 80% prediction intervals,
respectively. Black dots represent the observed data. Vertical gray lines represent the end of
each wave.
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