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Mitigating Pathogenesis for
Target Discovery and Disease Subtyping

Eric V. Strobl, Thomas A. Lasko, Eric R. Gamazon

Abstract— Treatments ideally mitigate pathogenesis, or
the detrimental effects of the root causes of disease. How-
ever, existing definitions of treatment effect fail to account
for pathogenic mechanism. We therefore introduce the
Treated Root causal Effects (TRE) metric which measures
the ability of a treatment to modify root causal effects. We
leverage TREs to automatically identify treatment targets
and cluster patients who respond similarly to treatment.
The proposed algorithm learns a partially linear causal
model to extract the root causal effects of each variable
and then estimates TREs for target discovery and down-
stream subtyping. We maintain interpretability even without
assuming an invertible structural equation model. Experi-
ments across a range of datasets corroborate the generality
of the proposed approach.

Index Terms— root causes, target discovery, pathogene-
sis, causal inference, precision medicine

I. INTRODUCTION

Target discovery refers to the process of identifying disease-
modifying targets for the development of novel treatments.
Candidate targets should causally affect patient symptoms. We
seek to discover treatment targets from data with minimal prior
knowledge, time and expense.

Properly identifying treatment targets requires a careful
definition of treatment effect. Most investigators quantify
treatment effect using counterfactuals or the do-operator found
in the causal inference literature [1], [2]. Unfortunately, these
quantities ignore the effect of treatment on pathogenesis.
Consider for example the following causal graph in a patient
with appendicitis:

X1 X2 Y

X3

where fecal impaction X1 causes bacterial inflammation of the
appendix X2 which in turn causes lower abdominal pain Y [3].
We can treat the patient with opioids or other pain medications
X3 that directly act on Y . However, these medications ignore
the pathogenesis of impaction and inflammation leading to
the lower abdominal pain. We need definitive treatments
that remove the inflammation (e.g., antibiotics) or both the
impaction and inflammation (appendectomy). We thus seek a
new definition of treatment effect that accounts for the ability
of a treatment to modulate pathogenic mechanism.

A pathogenically informed formulation of treatment effect
may also assist with diagnosis. Modern clinical diagnoses of
complex diseases, such as schizophrenia, fail to map onto the

few biological targets needed for potent treatment development
[4]–[6]. Investigators have therefore proposed to discover
theratypes, or disease categories that delineate patients with
distinct responses to potentially undiscovered treatments [7].
For example, physicians once categorized anemia as a single
disease. Further research revealed the presence of multiple
subtypes, such as those responsive to iron and vitamin B12
supplementation [8], [9]. We now categorize iron and vitamin
B12 deficiency-induced anemia as two distinct theratypes. This
example suggests that we can identify theratypes directly by
their differential treatment effects – provided that the treatment
effects properly account for pathogenesis.

We make the following contributions in this paper:
(1) We summarize the causal effects associated with

pathogenesis using the root causal effects, or the
causal effects of the root causes of disease.

(2) We measure treatment effect using the Treated
Root causal Effects (TRE) metric that quantifies
the ability of a treatment to change the root causal
effects.

(3) We introduce an algorithm that estimates the root
causal effects and TREs from observational data
under a partially linear model.

(4) We employ hierarchical clustering of the estimated
TREs to identify theratypes such that grouped
patients have pathogenic mechanisms responding
similarly to targeted treatments.

Experiments highlight the generality of the approach
by demonstrating markedly improved performance
across a range of datasets.

II. BACKGROUND

We can formally represent a causal process over a set of p+1
endogenous variables X using a structural equation model
(SEM) linking the variables with deterministic functions and
error terms:

Xi = fi(Pa(Xi), Ei), ∀Xi ∈X, (1)

where E is a set of mutually independent and exogenous error
terms. The set Pa(Xi) ⊆X \Xi corresponds to the parents of
Xi. We call Xi a child of Xj if Xj ∈ Pa(Xi). If Pa(Xi) = ∅,
then Xi is a root vertex. We assume Xi = Ei if Xi is a root
vertex without loss of generality. We can recover the error
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term values uniquely from the endogenous variable values in
an invertible SEM [10].

We associate a directed graph G to an SEM by drawing a
directed edge from each Xj ∈ Pa(Xi) to Xi for every Xi ∈
X . A directed path from Xi to Xj corresponds to a sequence
of adjacent directed edges from Xi to Xj . Xi is an ancestor
or cause of Xj , and Xj is a descendant of Xi, if there exists
a directed path from Xi to Xj (or Xi = Xj). We collect all
ancestors and descendants of Xi into the sets Anc(Xi) and
Dec(Xi), respectively. A cycle exists if there is a directed path
from Xi to Xj , and the directed edge Xj → Xi. A directed
graph is called a directed acyclic graph (DAG) if it contains
no cycles. We assume that G is a DAG throughout. If we have
Xi → Xj ← Xk, then we call Xj a collider. Two variables
Xi and Xj are d-connected given W ⊆ X \ {Xi, Xj} in
G if there exists a path between Xi and Xj such that every
collider on the path is an ancestor of W and no non-collider
on the path is in W . The two vertices are d-separated if they
are not d-connected. If an SEM associated with a DAG obeys
Equation (1), then the joint distribution over X satisfies the
global Markov property such that d-separation between Xi

and Xj given W implies conditional independence between
Xi and Xj given W [11].

The do-operator do(A = a) represents a treatment (also
known as an intervention), where we manually set the values
of A ⊆X to a by replacing fi for each Xi ∈ A in Equation
(1) with Xi = xi. We write do(a) for shorthand and associate
the treatment with the graph Gdo(a) obtained by removing
the directed edges into each member of A from G. We have
Ei = Xi = xi for any Xi ∈ A after the do-operation because
A only contains root vertices in Gdo(a). The notation do(A, b)
similarly means that we remove the directed edges into each
member of A ∪B from G to create Gdo(A,b). We replace fi
for each Xi ∈ A in Equation (1) with Xi = Xi, and replace
fi for each Xi ∈ B with Xi = xi.

A linear SEM obeys the following form:

Xi = Xβ·i + Ei, ∀Xi ∈X, (2)

where βji ̸= 0 if and only if Xj ∈ Pa(Xi). We assume
E(X) = 0. If the error terms follow continuous non-Gaussian
distributions, then we more specifically refer to Equation
(2) as the Linear Non-Gaussian Acyclic Model (LiNGAM);
LiNGAM is invertible [12]. We can rewrite the above equation
in matrix form:

X = Xβ +E = E(I − β)−1 = EΘ,

where Θ denotes the matrix of total effects of E on X . Let θ
refer to the column vector in Θ associated with a target Y =
Xp+1 ∈ X . We can augment G by including directed edges
from each Ei to Xi except when Xi = Ei is already a root
vertex. We display the augmented graph for the appendicitis
example below:

X1 X2 Y

X3

E2 EY

The root causes of Y correspond to root vertices that are
ancestors of Y in the augmented graph [13]. If Ei is a root
cause of Y , then Xi is the projection of the error term onto
X , and Eiθi is the root causal effect of Xi on Y [14], [15].
We have X3 = 0 (no pain medications) in the appendicitis
example even though θ3 = β3Y ̸= 0, so that the root causal
effect of X3 on Y is zero before treatment. Note that we define
root causes and their effects relative to the observed variables
X; if Xi = Ei is a root cause of Y for X , but unobserved
Xp+2 has a non-zero total effect on Y with Xp+2 → Xi, then
Xp+2 is a root cause of Y for X ∪Xp+2 but not for X .

III. RELATED WORK

We will identify treatment targets by quantifying their abil-
ity to modulate root causal effects on a phenotypic response
Y . However, most investigators currently identify treatment
targets with high throughput screening, where they test the
causal effects of a large number of molecules on a disease
phenotype or target assay [16]. The process incurs substantial
cost and time partly because most high throughput screens
ignore the pathogenic mechanisms underlying the disease.

Investigators have thus also designed algorithms that iden-
tify treatment targets by incorporating knowledge of biological
networks [17], [18]. Many methods represent the network
using an undirected graph, where edges denote statistical asso-
ciations or binding affinities. Scientists then utilize measures
of proximity or centrality to predict treatment effect [19].
Unfortunately, these quantities predict treatment effect inaccu-
rately because the undirected edges fail to capture biologically
plausible causal relations.

A third set of methods utilize directed graphs, where
directed edges encode causal relationships. These methods
estimate the causal effect of Xi on Y via P(Y |do(xi)), or
similarly E(Y |do(xi)), from observational data by condition-
ing and then marginalizing over an appropriate subset of the
variables [20]–[22]. The conditional distribution quantifies the
causal effect of Xi on Y , but it does not consider the root
causal effect of Xi on Y or the response of the root causal
effects to treatment. Accounting for interactions using do- or
asymmetric Shapley values fails to rectify the issues [23],
[24]. We therefore cannot use these algorithms to discover
treatments that mitigate pathogenesis.

We can however summarize the causal effects involved in
pathogenesis using the root causal effects, or the total effects
of all root causes on a phenotypic response Y . Investigators
defined the root causal effect of a variable as the predictivity
of its error term in a structural equation model [13], [14],
[25]. They then proposed to use the Shapley values of [26] –
equivalent to the root causal effects in the linear case – in order
to identify the root causes of a target vertex. Operationalizing
this idea requires invertible SEMs, where we can pinpoint
the error term values from the endogenous variables alone.
Unfortunately, nature may not obey the bijective relationships
needed to recover the error terms exactly. The root causal
effects also summarize pathogenic effects but do not quantify
their response to treatment.

In this paper, we introduce an algorithm that measures the
sample-specific effect of treatment on pathogenesis without
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relying on the presence of bijective causal relationships. We
assume that we can recover a DAG associated with a po-
tentially non-invertible SEM. We then utilize the graph and
the endogenous variables alone to recover the root causal
effects. Subsequently, we introduce targeted interventions into
the DAG and quantify how each intervention changes the total
effects from root causes to phenotype Y . Clustering of the
resultant changes yields groups of patients whose potentially
differing pathogeneses respond similarly to treatment.

IV. SETUP

A. Partially Linear Model

We consider an SEM obeying Equation (1) but enforce a
linear SEM in the subset Anc(Y ) ⊆X so that:

Xi = Xβ·i + Ei, ∀Xi ∈ Anc(Y ).

The SEM therefore obeys a partially linear model. The error
terms may be Gaussian or discrete, so we do not assume
LiNGAM even among Anc(Y ). The following result holds:

Theorem 1. The root causal effect of Xi on Y corresponds to
the total effect of Ei on Y , or Eiθi, under the partially linear
model.

We delegate proofs to the Appendix, unless explicated in the
main text.

B. Motivating Example

Pathogenesis refers to the development of disease starting
from its root causes and ending at its phenotype. We can there-
fore summarize the pathogenic causal effects using the root
causal effects on a phenotypic label Y [13]–[15], [25]. Root
causal effects may however differ from treatment response.
Consider for example the following augmented causal graph:

X1 X2 Y

E2 EY

with binary error terms E1 = X1 and E2 whose values are
enumerated in Table I (a). We assume that β = 1, so that the
root causal effects correspond to Table I (b).

We next introduce treatments that target specific nodes in
X . Let θi|j denote the total effect of Ei on Y after performing
do(Xj = xj). If we set do(X1 = −1), then the root causal
effects correspond to the values listed on the left side of Table
I (c). Similarly, if we set do(X2 = 0), then we obtain the

right side. We list the treatment responses in Table I (d)
corresponding to the overall change in root causal effects
between Tables I (b) and I (c). We highlight three observations:
(1) Different root causal effects may respond similarly to

treatment. The red boxes highlight two cases where the
root causal effects of X2 are different in Table I (b) but
have no treatment response after do(X2 = 0) in Table
I (d).

(2) Patients may have partially matching root causal effects
but entirely different treatment responses. The blue boxes
in Table I (b) highlight two cases with the same root causal
effects E2θ2. However, the treatment responses for the two
cases do not match after either do(X1 = −1) or do(X2 =
0) in Table I (d).

(3) Patients can have non-zero root causal effects but fail to
respond to treatment. For example, the second blue box
in Table I (b) has non-zero root causal effects but zero
treatment responses in Table I (d).

Root causal effects without treatment thus provide insufficient
information to predict treatment response. We instead want to
quantify the change in root causal effects from before to after
treatment.

V. STRATEGY

A. Overview
We now introduce a generalized strategy for identifying the

change in root causal effects. We focus on the partially linear
model for interpretability. In particular, we consider the p error
terms that represent potential root causes:

E1, E2, · · · Ep.

We then weigh each error term by its total effect on a target
variable Y :

E1θ1, E2θ2, · · · Epθp,

where θi = 0 if Xi ̸∈ Anc(Y ). We therefore predict the
downstream target using the upstream error terms. We will
show how to directly recover the above root causal effects
even in non-invertible SEMs in the next section.

We next measure the change in the root causal effect of
Xi ∈ X \ Y on Y after performing do(Xj = xj) with Xj ∈
X \ Y :

∆i|j = Ei|jθi|j − Eiθi,

where Ei|j = Ei if Xi ̸= Xj and Ei|j = xj otherwise. The
quantity

∑p
i=1 ∆i|j corresponds to the Treated Root causal

Effects (TRE) quantifying the change in the root causal effects

E1 E2

1 1
1 -1
-1 1
-1 -1

(a)

E1θ1 E2θ2
2 1
2 -1
-2 1
-2 -1

(b)

do(X1 = −1) do(X2 = 0)
X1θ1|1 E2θ2|1 E1θ1|2 X2θ2|2

-2 1 1 0
-2 -1 1 0
-2 1 -1 0
-2 -1 -1 0

(c)

do(X1 = −1) do(X2 = 0)
(X1θ1|1 − E1θ1)
+E2(θ2|1 − θ2)

E1(θ1|2 − θ1)
+(X2θ2|2 − E2θ2)

-4 -2
-4 0
0 0
0 2

(d)

TABLE I: Example of the differences between root causal effects and treatment response.
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on Y after intervening on Xj . This process leads to the feature
space Π:

p∑
i=1

∆i|1,

p∑
i=1

∆i|2, · · ·
p∑

i=1

∆i|p (3)

summarizing the TRE for each Xj ∈ X \ Y . If larger values
of Y correspond to worse symptoms, then we prefer targets
associated with negative TREs because they reduce symptoms.
We also propose to perform clustering on Π in order to identify
theratypes (details in Section V-E).

B. Endogenous Root Causal Effects

Recovering the root causal effect Eiθi for each sample
requires access to the error term values. We cannot recover the
error term values exactly in non-invertible SEMs. We remedy
this situation with an alternative approach.

We can write the following using Equation (1):

Lemma 1. We have P(Y |Ei,Pa(Xi)) = P(Y |Xi,Pa(Xi)).

We thus no longer require knowledge of the value of Ei but
only the values of the endogenous variables Xi and Pa(Xi).
Particularizing the above result to conditional expectations
yields:

Corollary 1. We have E(Y |Ei,Pa(Xi)) = E(Y |Xi,Pa(Xi)).

The above corollary allows us to state:

ϕi ≜ E(Y |Xi,Pa(Xi))− E(Y |Pa(Xi))

= E(Y |Ei,Pa(Xi))− E(Y |Pa(Xi)).
(4)

Let p index Pa(Xi) in X . The conditional expectations in the
last line correspond to the following under the partially linear
model:

ϕi =
(
Eiθi + Pa(Xi)θp|p

)
− Pa(Xi)θp|p

= Eiθi,
(5)

where θp|p corresponds to the total effect of Pa(Xi) on Y in
Gdo(Pa(Xi)). We can therefore compute the root causal effect of
Xi on Y using the difference E(Y |Xi,Pa(Xi))−E(Y |Pa(Xi))
relying on endogenous variables alone. We have proved the
following main result:

Theorem 2. The root causal effect of Xi on Y corresponds
to ϕi = E(Y |Xi,Pa(Xi)) − E(Y |Pa(Xi)) = Eiθi under the
partially linear model.

C. Treated Root Causal Effects

We now consider the changes to the root causal effects
introduced by targeted treatment. Suppose that we set the value
of a variable Xj to xj . We quantify the root causal effect of
any variable Xi under do(Xj = xj) as follows:

ϕi|j ≜ Ei|jθi|j

analogous to ϕi = Eiθi. The change in the root causal effect
after treatment then corresponds to:

∆i|j = ϕi|j − ϕi.

Repeating the above process for every Xi ∈X \ Y allows us
to compute

∑p
i=1 ∆i|j for each Xj ∈X \Y and therefore the

TREs in Expression (3).
We showed how to compute ϕi of each ∆i|j in the previous

section. We can compute ϕi|j given the coefficient matrix β
over Anc(Y ) as follows. Let θp|pj correspond to the total
effect of Pa(Xi) on Y in Gdo(Pa(Xi),xj). We have:

(Pa(Xi)θ
1
p|pj +Xiθi|j)− Pa(Xi)θp|pj

= (Pa(Xi)θ
1
p|pj + (Pa(Xi)θ

2
p|pj + Ei|jθi|j))︸ ︷︷ ︸

(a)

−Pa(Xi)θp|pj︸ ︷︷ ︸
(b)

= (Pa(Xi)θp|pj + Ei|jθi|j)− Pa(Xi)θp|pj

= Ei|jθi|j = ϕi|j ,

where we have decomposed θp|pj into θ1p|pj and θ2p|pj de-
noting the component of the total effect of Pa(Xi) on Y
in Gdo(Pa(Xi),xj) that does not and does pass through Xi,
respectively. The second equality holds because Xiθi|j is equal
to the total effect of Pa(Xi) passing through Xi given by
Pa(Xi)θ

2
p|pj plus the total effect of Ei given by Ei|jθi|j . We

encourage the reader to compare the third line of the above
equation to the first line of Equation (5). The terms highlighted
by the two underbraces prove the following theorem:

Theorem 3. ϕi|j equals (a) the total effect of Pa(Xi)∪Xi on
Y in the graph Gdo(Xi,Pa(Xi),xj) minus (b) the total effect of
Pa(Xi) on Y in the graph Gdo(Pa(Xi),xj) under the partially
linear model.

We compute the required total effects for any ∆i|j from the
coefficient matrix β and therefore recover all of the TREs Π.

D. Algorithm
Sections V-A through V-C lead to the Root and Treated Root

causal Effects (R-TRE) algorithm, which we summarize in
Algorithm 1. R-TRE first learns the DAG G and corresponding
linear coefficient matrix β over Anc(Y ) in Line 1. We assume
that we can recover G uniquely using any method of choice.
In this paper, we use constraint-based search and orient any
remaining undirected edges by experimentation or background
knowledge [27].

R-TRE then intervenes on each Xj that can block the root
causal effect of Xi on Y in Line 6; i.e., by intervening on those

Algorithm 1 Root and Treated Root causal Effects (R-TRE)
Input: X
Output: ϕ,Π

1: Learn the causal graph G and coefficient matrix β
2: ϕ = 0;Π = 0
3: for each Xi ∈ Anc(Y ) \ Y do
4: Compute ϕi via linear regression (or total effects)

using Eq. (4)
5: for each Xj ∈ Dec(Xi) ∩ Anc(Y ) \ Y do
6: Compute ϕi|j via total effects using Thm. 3
7: Πj ← Πj + (ϕi|j − ϕi)
8: end for
9: end for
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vertices that are both a descendant of Xi and an ancestor of
Y (excluding Y itself). This allows the algorithm to compute
ϕi|j in Line 6 per Theorem 3. Finally, R-TRE adds in each
∆i|j in Line 7 in order to recover the TREs Π.

E. Downstream Clustering

R-TRE outputs the TREs Π corresponding to the changes
in the root causal effects after treatment. We can therefore dis-
cover theratypes from Π by performing hierarchical clustering
on the feature space.

We seek clusters where patients respond similarly to treat-
ment. We therefore perform agglomerative hierarchical cluster-
ing on Π using Ward’s method [28]. Ward’s method merges
two clusters when the merge leads to a minimum increase
in the (weighted) squared Euclidean distance between cluster
means. As a result, Ward’s method yields a dendogram where
each cluster contains patients who respond similarly to the
cluster mean.1

The dendogram importantly summarizes nested clusters so
that users can identify large enough groups of patients who
respond similarly to treatment. Each patient may respond
to treatment differently, but categorizations help clinicians
quickly comprehend patients by leveraging their past experi-
ences with similar individuals. Recall that the partially linear
model of Section IV-A allows discrete error terms that can
induce clustering. Clear clusters may not exist in many cases,
but we seek to identify them when they do. If a patient does
not fall into a cluster, then we resort to a dimensional approach
by directly utilizing the recovered TREs [29].

VI. OTHER MEASURES

We emphasize that the TREs recovered by the R-TRE
algorithm differ from other measures introduced in the lit-
erature. We summarize the discussion in Table II in terms
of four criteria – whether the method (1) involves causality,
(2) attempts to detect root causes, (3) achieves precision or
sample-specificity, or (4) accounts for targeted interventions
on the endogenous variables.

Conditional and Marginal Shapley Values (CSV, MSV).
[26], [30] These Shapley values quantify feature importance
according to a trained model. The conditional and marginal
Shapley values marginalize over the inputs of the model using
conditional or marginal expectations, respectively. Authors
have argued that marginal Shapley values better represent
causal relations between algorithm input-output pairs [30].
Marginal Shapley values however do not represent the causal-
ity in nature required for TREs and disease subtyping.

Marginal Error term Shapley Values (MESV). [13]–[15],
[25] These features correspond to marginal Shapley values
on the error terms. Marginal error term Shapley values are
equivalent to the root causal effects under a linear SEM
provided that we can recover the error term values uniquely

1We focus on interpretability with a dendogram, but users may employ
alternative clustering methods depending on the needs of their particular
application. The clusters must group patients who respond similarly to
treatment.

Causality Root Causes Precision Interventions
MSV ✓
CSV ✓

MESV ✓ ✓ ✓
ASV ✓ ✓

RCAO ✓ ✓
RCAM ✓ ✓

ICC ✓ ✓ ✓
do-Reg ✓ ✓ ✓
do-SV ✓ ✓ ✓

Reg ✓
Cor ✓

TRE ✓ ✓ ✓ ✓

TABLE II: Comparison against previously proposed measures.

under invertibility. R-TRE recovers root causal effects even in
the non-invertible scenario.

Asymmetric Shapley Values (ASV). [23] Asymmetric
Shapley values are conditional Shapley values that take into
account natural causality by marginalizing over subsets of
the ancestors of each variable. Asymmetric Shapley values
therefore incorporate variable ordering. In contrast, R-TRE
always conditions on all of the parents in order to explicitly
recover root causal effects and TREs.

Root Causal Analysis of Outliers (RCAO) or Marginals
(RCAM). [31], [32] These values quantify the contribution of
the error terms on an outlier score or a marginal distribution.
They therefore require an invertible SEM, forego sample-
specificity and do not quantify root causal effects under
interventions.

Intrinsic Causal Contribution (ICC). [33] ICC quantifies
the reduction in uncertainty of a variable after knowing the
value of an error term. This method therefore again assumes
that we can recover the error term values uniquely from an
invertible SEM.

do-Regression (do-Reg) and do-Shapley Values (do-SV).
[24], [34] Do-regression computes E(Y |do(Xi)) for each
Xi ∈ X \ Y whereas do-Shapley values perform the do-
operation across all subsets of X \ Y . These algorithms
perform interventions but do not specifically track for changes
in root causal effects.

Standard Regression (Reg) and Correlation (Cor). We
include standard multivariate linear regression and correlation
(or univariate linear regression) as sanity checks. We weigh
each feature by its regression coefficient.

We conclude that only TREs account for the change in root
causal effects after performing targeted interventions, and R-
TRE does not require an invertible SEM.

VII. EXPERIMENTS

We now evaluate the accuracy of R-TRE and compare it
against other algorithms recovering the measures of Section
VI.

A. Data Generation
We first generated a linear SEM obeying Equation (2) with

p = 10 variables. We created the coefficient matrix β by
sampling from a Bernoulli(2/(p−1)) distribution in the upper

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 16, 2023. ; https://doi.org/10.1101/2023.08.12.23294026doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.12.23294026
http://creativecommons.org/licenses/by-nc-nd/4.0/


6

n = 1000 n = 3000 n = 9000
RE TRE CTRE RE TRE CTRE RE TRE CTRE

MSV 0.1962 0.5246 1.3604 0.1907 0.5255 1.3617 0.1871 0.5252 1.3590
CSV 0.1630 0.4784 1.2285 0.1569 0.4796 1.2282 0.1534 0.4793 1.2256
MESV 0.0878 0.4798 1.2505 0.0764 0.4906 1.2763 0.0570 0.4999 1.2941
ASV 0.2336 0.5897 1.4588 0.2250 0.5890 1.4529 0.2214 0.5885 1.4486
RCAO 0.3482 0.3706 1.0883 0.3477 0.3701 1.0896 0.3279 0.3502 1.0340
RCAM 0.2484 0.2729 0.8189 0.2491 0.2734 0.8202 0.2492 0.2734 0.8202
ICC 0.3438 0.3637 1.0654 0.3335 0.3525 1.0416 0.3384 0.3578 1.0595
do-Reg 0.1254 0.5080 1.3254 0.1180 0.5170 1.3464 0.1074 0.5276 1.3662
do-SV 0.1046 0.4757 1.2587 0.0989 0.4870 1.2847 0.0873 0.4955 1.3007
Reg 0.1969 0.5250 1.3621 0.1912 0.5257 1.3625 0.1875 0.5254 1.3596
Cor 0.2129 0.5823 1.4483 0.2103 0.5830 1.4443 0.2086 0.5829 1.4405
R-TRE 0.0934 0.0999 0.5701 0.0759 0.0784 0.5468 0.0568 0.0617 0.5381

TABLE III: Mean RMSE results to the ground truth RE, TRE and CTRE values. Bolded values highlight the best performances.
R-TRE achieves the lowest RMSE in all three cases across all sample sizes.

triangular portion of the matrix with an expected neighbor-
hood size of 2. We then randomly permuted the variable
ordering. We introduced weights β by uniformly sampling
from [−1,−0.25] ∪ [0.25, 1]. We chose the distributions of
the error terms uniformly at random from the following set:
a uniform distribution between -1 and 1, a t-distribution with
three degrees of freedom, or a discrete uniform distribution
with 2 or 3 values. We centered all error terms. We then
binarized a random subset of the variables with at most one
child to ensure a non-invertible SEM. We chose Y randomly
from the set of random variables with at least one parent; Y
need not be a terminal vertex. We repeated the above procedure
250 times for sample sizes 1000, 3000 and 9000. We therefore
generated a total of 250× 3 = 750 unique datasets.

Reproducibility. All code needed to repro-
duce the experimental results is available at
https://github.com/ericstrobl/RTRE.

B. Comparators & Metric

We compare the output of R-TRE against algorithms recov-
ering the eleven other measures listed in Table II. We learned
the DAG for all algorithms using the PC algorithm equipped
with the linear correlation test and an alpha threshold of 0.01
[27].

We evaluated the accuracy in recovering the root causal
effects and the TREs using the root mean squared error
(RMSE) to the ground truth:√√√√ 1
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where the superscripts index the n samples. We also evaluated
the accuracy of the clustered TREs using the RMSE:√√√√√ 1
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The set Ckl contains the sample indices of the lth cluster among
a total of k clusters. We vary k from 1 to 10. The above metric
quantifies the distance from the true TREs to their estimated
cluster means, i.e., the estimated treatment response by group.

Fig. 1: Mean sum of squares across different cluster sizes
for first, second and third place algorithms at n = 9000.
Bands denote 95% confidence intervals. R-TRE continues to
improve with increasing numbers of clusters, but the other two
algorithms do not.

We collectively call these cluster means the Clustered Treated
Root causal Effects (CTRE). We plot mean sum of squares
(squared RMSE) for each k when varying the value of k in
order to conform with tradition [28]. Lower values of the above
three metrics denote better performance.

C. Results
We summarize the accuracy results in Table III. Bolded

values denote the best performance according to a paired t-test
significant at the Bonferonni corrected threshold of 0.05/12,
since we compared a total of 12 algorithms. We place timing
results in Table IV in the Appendix; R-TRE always completed
within 10 milliseconds on average.

Root Causal Effects. Both R-TRE and MESV achieved the
lowest RMSE in discovering the root causal effects (REs).
MESV however requires access to the error terms, whereas
R-TRE discovers the root causal effects using endogenous
variables alone. The do-Shapley values came in third place
and struggled to improve beyond the lowest tested sample size.
We conclude that R-TRE accurately discovers sample-specific
REs.

Treated Root Causal Effects. R-TRE outperformed all other
algorithms by a large margin in estimating TREs; RCAM came
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(a) Diabetes TRE (c) scRNA-seq TRE (f) CYTO TRE

(b) Diabetes CTRE (d) scRNA-seq CTRE (g) CYTO CTRE

Fig. 2: TRE and CTRE accuracy results for the real datasets. Error bars and bands again denote 95% confidence intervals.

in second place but with greater than 2.5 times the error. We
conclude that R-TRE also accurately discovers sample-specific
TREs.

Clustered Treated Root Causal Effects. Clustering results
in loss of information due to the groupings. R-TRE however
still outperformed all algorithms after clustering the estimated
TREs from one to ten groups. We plot the accuracy results of
the top three algorithms for up to 10 total clusters in Figure 1
for n = 9000; RCAM had a flat sum of squares line because its
output is not sample-specific. Only the performance of R-TRE
continued to improve with increasing numbers of clusters. We
conclude that R-TRE accurately identifies samples with similar
TREs regardless of total cluster number.

In summary, R-TRE outputs accurate REs, TREs and
CTREs for target discovery. The algorithm outperforms all
11 other algorithms.

D. Applications

We demonstrate the generality of the approach by applying
R-TRE and the other algorithms to a clinical dataset, a
single-cell RNA sequencing (scRNA-seq) dataset and a flow
cytometry dataset. We report the main results here but refer
the reader to the Appendix for full tables of accuracy and
timing results. We equipped the PC algorithm with a fast non-
parametric conditional independence test for all real datasets
[13], [35].

Type II Diabetes. We sought to identify TREs and theratypes
in Type II diabetes using a real clinical dataset [36].2 The
dataset contains 7 variables related to the metabolic system in

2https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database

768 Pima Indians; we excluded insulin due to a possible cycle
involving insulin and glucose. Type II diabetes is well-studied,
so we expect R-TRE to only identify one cluster of patients
using clinical variables [37]. Note that multiple theratypes of
type II diabetes likely exist, but they are not detectable when
intervening on the routine clinical variables present in this
dataset [38].

The dataset comes with a known ground-truth graph, which
we used to fit the parameters of a linear SEM to obtain the
ground truth [15]. We then ran all of the algorithms on 250
bootstrapped draws of the dataset. The algorithms only had
access to the graph estimated from bootstrapped samples using
PC. We did not intervene on age and pedigree for R-TRE, do-
reg and do-SV, since we cannot intervene on these variables
in practice.

We summarize results in Figures 2 (a) and 2 (b). R-TRE
achieved the lowest mean RMSE to the ground truth TREs
as compared to the 11 other algorithms (Figure 2 (a)). We
plot the clustering results of the top two algorithms including
R-TRE and RCAM in Figure 2 (b); the sum of squares
for all other algorithms increased with increasing number of
clusters implying worse performance. The clustering results
of R-TRE in Figure 2 (b) show a sharp drop in the sum of
squares after one cluster and a subsequent leveling off. R-
TRE therefore only identified approximately one theratype in
this dataset as expected. We conclude that R-TRE identified
the correct number of clusters and estimated treatment effect
most accurately in the Pima Indians dataset.

Single-Cell RNA Sequencing in Disease. We next sought
to increase the difficulty by utilizing an scRNA-seq dataset
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of lung adenocarcinoma [39].3 R-TRE is sample-specific in
general, so we can use the algorithm to identify TREs of
individual cells rather than just patients. The scRNA-seq
dataset contains 17,502 single cells derived from cancerous
and normal adjacent tissue in three individuals. We thus expect
to detect at least three clusters of cells due to the heterogeneity
of the cell population. We focused on variables involved in the
mitogen-activated protein kinase (MAPK) pathway because
of its importance in lung cancer pathogenesis. The variables
include lung adenocarcinoma status as well as expression
levels of GRB2, HRAS, ARAF, CCND1. We also included
KRAS and TP53. We excluded EGFR since it had nearly all
zero counts in the dataset. We extracted the ground truth causal
graph from the KEGG pathway of non-small cell lung cancer
(HSA05223) [40], [41].

We set lung adenocarconima status as the target. We report
the results in the same format as with the previous example
over 100 bootstrapped draws in Figures 2 (c) and 2 (d). R-TRE
again estimated the TREs to the highest accuracy. Moreover,
clustering results showed a gradual decline in the sum of
squares rather than a leveling off. R-TRE identified at least
4 sub-populations of cells using the elbow method. We do
not plot any other algorithms in Figure 2 (d) because they all
performed much worse than R-TRE. We conclude that R-TRE
achieved the highest accuracy and expected clustering results
in this dataset.

Cell Signaling. The above two datasets use a diagnosis as a
discrete terminal vertex. In this example, we demonstrate that
R-TRE works well even if the target is continuous and non-
terminal. We used the CYTO dataset which contains measure-
ments of 11 phosphoproteins and phospholipids from 7466
primary human immune system cells across 9 experimental
conditions [42], [43].4 We standardized the data by mean and
standard deviation in each experimental condition. The dataset
again comes with a ground truth causal graph to fit a linear
SEM. We chose the target uniformly at random for vertices
that contain at least one parent. We do not expect to see a
clear number of clusters in this case, since we vary the target.
The inability to find well-defined clusters informs the user to
examine the sample TRE values rather than adopt a categorical
approach.

We summarize the results over 250 bootstrapped repetitions
in Figures 2 (f) and 2 (g). R-TRE again achieved the lowest
RMSE to the TREs by a large margin. Furthermore, clustering
revealed a smooth decay in the sum of squares, suggesting that
either many small or no meaningful groups exist in the data
(Figure 2 (g)). We conclude that R-TRE works well across a
variety of response variables, even if the cells fail to cluster
into a few groups.

In summary, real data results indicate that R-TRE performs
well across a variety of scenarios. The algorithm estimates
the root causal effects and TREs accurately; it also identifies
the theratypes we expect to see across three different dataset
types.

3https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE123904
4https://arxiv.org/src/1805.03108v1/anc/data.txt

VIII. CONCLUSION

We summarized the causal effects involved in pathogenesis
using root causal effects. We then quantified the response of
the pathogenic mechanisms to treatment using TREs. We dis-
covered theratypes by clustering samples with similar TREs.
We finally automated these three ideas under a partially linear
model with the R-TRE algorithm that simultaneously recovers
root causal effects, TREs and CTREs. The algorithm impor-
tantly recovers the above quantities even in non-invertible
SEMs, where we cannot recover the error term values exactly.
Experimental results revealed substantially increased accuracy
relative to existing algorithms. Future work will focus on
extending R-TRE to the non-linear setting, accommodating
confounding as well as incorporating high throughput experi-
mentation in large scRNA-seq datasets.
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APPENDIX

Proofs
Theorem 1. The root causal effect of Xi on Y corresponds to
the total effect of Ei on Y , or Eiθi, under the partially linear
model.

Proof. We consider the Shapley value formulation introduced
in [13]–[15], where:

Si =
1

p

∑
W⊆(E\Ei)

1(
p−1
|W |

) (E(Y |W , Ei)− E(Y |W )) .

We have Y = EAnc(Y )θAnc(Y ) + ENθN under the partially
linear model, where θ corresponds to the total effects of the
error terms on Y , N = X \ Anc(Y ) and θN = 0. We now
invoke Corollary 1 of [26] to conclude that the root causal
effect of Xi corresponds to Si = Eiθi.

Lemma 1. We have P(Y |Ei,Pa(Xi)) = P(Y |Xi,Pa(Xi)).

Proof. We can write the following sequence of equalities:

P(Y |Ei,Pa(Xi)) = EXi|Ei,Pa(Xi)P(Y |Xi,Pa(Xi), Ei)

= P(Y |Xi,Pa(Xi), Ei) = P(Y |Xi,Pa(Xi)).

The second equality follows because Xi is a constant given
Ei and Pa(Xi). We justify the last equality on a case-by-case
basis:
(1) If Xi is an ancestor of Y , then the last equality holds

because Ei and Y are conditionally independent given
Xi ∪ Pa(Xi) by the global Markov property.

(2) If Xi is not an ancestor of Y , then we have two sub-
cases. If Y ∈ Pa(Xi), then Ei and Y are conditionally
independent given Xi ∪ Pa(Xi) because Y is a constant
given Pa(Xi). If Y ̸∈ Pa(Xi), then again Ei and Y are
conditionally independent given Xi∪Pa(Xi) by the global
Markov property because Ei and Y are d-separated given
Xi ∪ Pa(Xi).

We have considered all cases, whence the conclusion follows.
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Other Experimental Results

1000 3000 9000
MSV 0.1448 0.2679 0.6663
CSV 6.9661 11.624 31.391
MESV 0.0003 0.0013 0.0030
ASV 2.0513 2.8520 6.3738
RCAO 0.3281 0.5229 1.2834
RCAM 0.1785 0.3048 0.7790
ICC 2.1826 3.6168 7.9542
do-Reg 0.0007 0.0008 0.0022
do-SV 0.1315 0.1966 0.4026
Reg 0.0002 0.0006 0.0010
Cor 0.0004 0.0007 0.0031
R-TRE 0.0017 0.0021 0.0054

TABLE IV: Timing results for the synthetic data in seconds.
Columns correspond to different sample sizes.

Diabetes scRNA-seq CYTO
RE TRE CTRE RE TRE CTRE RE TRE CTRE

MSV 0.3431 0.5404 0.6694 0.1260 0.3674 0.2773 0.3242 0.5442 0.8805
CSV 0.4200 0.5617 0.6874 0.2647 0.3761 0.3012 0.3617 0.5560 0.8945
MESV 0.3374 0.4983 0.5940 0.1765 0.3569 0.2689 0.2075 0.4512 0.7362
ASV 0.5030 0.6283 0.8046 0.2702 0.3850 0.3111 0.4046 0.5960 1.008
RCAO 0.4509 0.4785 0.5909 0.3740 0.3835 0.3609 0.3413 0.3741 0.5258
RCAM 0.3774 0.3794 0.3907 0.3240 0.3246 0.2588 0.3312 0.3330 0.4393
ICC 0.5136 0.4836 0.5707 0.3114 0.3359 0.2549 0.4326 0.4135 0.6317
do-Reg 0.3359 0.5045 0.5973 0.1677 0.3615 0.2776 0.2162 0.4549 0.7472
do-SV 0.3234 0.4956 0.7251 0.1643 0.3582 0.2731 0.2122 0.4470 0.7251
Reg. 0.3430 0.5405 0.6699 0.1260 0.3674 0.2772 0.3241 0.5442 0.8806
Cor 0.3948 0.5809 0.7296 0.1366 0.3634 0.2712 0.3472 0.5818 0.9553
R-TRE 0.3565 0.3642 0.3700 0.1630 0.1851 0.1181 0.2243 0.2175 0.3182

TABLE V: Accuracy results for the real data.

Diabetes scRNA-seq CYTO
MSV 0.0946 0.5997 0.6707
CSV 5.3320 29.653 45.676
MESV 0.0002 0.0043 0.0022
ASV 1.8635 7.2489 7.1502
RCAO 0.4762 5.6888 0.9319
RCAM 0.2501 2.6468 0.3252
ICC 2.5110 41.712 7.2634
do-Reg 0.0006 0.0048 0.0022
do-SV 0.0389 0.3003 0.4386
Reg 0.0002 0.0024 0.0013
Cor 0.0004 0.0038 0.0025
R-TRE 0.0018 0.0201 0.0038

TABLE VI: Timing results for the real data in seconds.
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