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22 Abstract

23 Background: Preterm birth is a significant global issue. Antiretroviral therapy (ART) use 

24 and human immunodeficiency virus (HIV) infection have both been linked in recent 

25 research as independent risk factors for preterm birth. Although there has been 

26 evidence linking preterm delivery to significant pathological alterations in the placenta, it 

27 is still unclear how exactly HIV and ART harm the placenta and raise the risk of 

28 prematurity. To explain the increased risk of preterm birth (PTB), we set out to describe 

29 the surface morphological alterations in placenta villi associated with HIV and ART.

30 Methods and materials: We collected and processed 160 placentas from 40 HIV-

31 positive women on ART and 40 HIV-negative women who had preterm deliveries, 40 

32 HIV- positive women and 40 HIV - negative women with term delivery in Nairobi, Kenya. 

33 The placenta biopsies were harvested, washed in phosphate buffer solution, and 

34 processed for scanning electron microscopy. The dried tissue was mounted onto 

35 specimen stubs, sputter coated with gold and visualized using Zeiss Merlin FESEM in-

36 lens. Forty representative samples, 10 from each group, were randomly selected and 

37 examined by investigators who were blinded to maternal HIV serostatus. 

38 Results: The average gestational age for preterm and term births was 34 and 39 

39 weeks, respectively. The average age of the mothers of preterm and term babies was 

40 26.8 + 4.6 years and 24.3 + 4.3 years, respectively. The villous core of the placenta 

41 from HIV-negative patients was covered with microvilli that varied in size and 

42 appearance, and there were hardly any residual red blood cells. Placenta from HIV-

43 positive women with preterm birth had widespread damage with shrunken and wrinkled 

44 villi, predominant blunting of the microvilli, with attendant syncytiotrophoblast disruption, 
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45 and significant erythrocyte adhesion within extensive fibrillar meshwork and on surface 

46 of the syncytium. 

47 Conclusion: Our results show distinctive alterations in the placenta of HIV-positive 

48 mothers who gave birth prematurely, which may impair the syncytium's ability to 

49 function normally. Microvilli blunting, syncytial disruptions, and syncytial erythrocyte 

50 adhesion might be the symptoms of a deeper biological process.  Further work to 

51 understand the effect of HIV/ART on the syncytiotrophoblast in relation to prematurity is 

52 recommended.
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53 Introduction

54 The surface interface between fetus and mother is formed by fetal syncytiotrophoblasts. 

55 These are fused multinucleated cells generated from trophectoderm and are constantly 

56 bathed in maternal blood. These cells are involved in exchange of nutrients, 

57 electrolytes, and gases between the fetus and the mother, hormone production, and are 

58 also important in fetomaternal immunotolerance [1–3]. Efficient transfer of substances 

59 across the placenta is essential in maintaining fetal growth and development and to 

60 ensure maternal health [4–6]. The surface of the placenta syncytium exposed to the 

61 maternal blood has a brush border on their free surface; This border facilitates diverse 

62 functions including absorption, secretion, and mechanotransduction [7–9]. Equally, this 

63 surface is also exposed to toxic substances and pathogens circulating in maternal 

64 blood, putting it at risk of impaired morphology [10–12]. 

65

66 Preterm birth (PTB) is a leading cause of perinatal morbidity and mortality in both 

67 developing and developed countries. The mechanism by which it occurs remains to be 

68 elucidated. Human immunodeficiency virus (HIV) and antiretroviral therapy (ART) have 

69 recently been identified as independent risk factors for preterm birth [13–17]. Our recent 

70 work demonstrated unfavorable histological changes in placenta from HIV positive 

71 women with preterm birth [18], similar to findings from other studies [19–21].  These 

72 findings give credence to the belief that there is a strong association between HIV and 

73 ART with adverse pregnancy outcome via diminishing placenta functional capacity. 

74 Nevertheless, the exact mechanisms by which HIV and ART cause placental damage 

75 and increase the risk of prematurity is far from being fully understood. We set out to 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 16, 2023. ; https://doi.org/10.1101/2023.08.11.23294011doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.11.23294011
http://creativecommons.org/licenses/by/4.0/


5

76 determine the surface morphological changes on placenta villi associated with HIV and 

77 ART that could explain an increased risk of preterm labor (PTB) in this population. 

78 Scanning electron microscopy (SEM)  has been used as a standard method of exploring 

79 features on the cell surface and therefore a suitable tool to use to characterize placental 

80 syncytium. 

81 Methods and materials

82 Study setting and population. 

83 The clinical information and placental samples were collected at the Kenyatta National 

84 Hospital (KNH) and Pumwani Maternity Hospital. The two are the busiest maternity 

85 hospitals in Nairobi, Kenya each with a delivery rate of over 10,000 annually.

86 Forty placentas were collected in the numbers given from each of the following groups: 

87 (1) HIV-positive women who received ART and had a PTB, (2) HIV- negative women 

88 who delivered preterm, (3) HIV-positive women who received ART and delivered at 

89 term, and (4) HIV- negative women who delivered at term. All the placentas were from 

90 women of African descent aged 18 to 40 years with a singleton live birth. Only women 

91 with an early pregnancy obstetric scan before 16 weeks and sure of the last normal 

92 menstrual period were included in the study. Preterm births were defined as delivery at 

93 <37 weeks of gestation and term births were defined as delivery >37 weeks of 

94 gestation. We excluded women with medical and obstetric complications during 

95 pregnancy and at the time of labor. 

96
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97 Ethical considerations

98 Approval to conduct the study and permission to transport specimens was sought from 

99 the Kenyatta National Hospital/University of Nairobi Ethics and Research Committee 

100 (registration number P5/01/2017). 

101

102 Recruitment and informed consent

103 A trained research assistant cum midwife identified women who were admitted to labor 

104 and delivery meeting our inclusion criteria. He gave a full explanation of the study and 

105 obtained a written consent to enroll. Study participants were recruited from February 14, 

106 2017, to June 22, 2017.

107

108 Sample collection and preparation

109 Placentas were collected after obtaining a written consent from the recruited mothers.  

110 Six sampling sites were aseptically biopsied systematically from each placenta, trimmed 

111 and labeled a-f [22], rinsed  in phosphate buffer solution and then immediately fixed in 

112 3% glutaraldehyde solution at pH 7.2 (at ambient temperature) and stored at 4oC for 24 

113 hours at the Kenya Aids Vaccine Initiative Institute of Clinical Research (KAVI-ICR), 

114 University of Nairobi, Kenya. The specimens were transported to the International 

115 Centre for Insect Physiology and Ecology, Kenya (ICIPE) and were post fixed in 1% 

116 osmium tetroxide in 0.1 M cacodylate buffer for 60 minutes. The blocks were then 

117 washed in distilled water three times, dehydrated in an ascending series of ethanol 

118 starting at 30%, 50%, 70%, 90% to absolute concentration for 20 minutes each  and 
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119 stored in epoxy/propylenoxide (1∶1) overnight. The blocks were then embedded in 

120 epoxy resin polymerized at 60°C for 36 hours and stored. Final drying was done using 

121 100% hexamethyldisilazane (HMDS, 30mins each) and left to dry for 24hrs in a fume 

122 hood at the Central Analytical Facilities, Stellenbosch University, South Africa. Analysis 

123 of tissue ultrastructure with conventional scanning electron microscopes is labor 

124 intensive procedure and requires significant resources. To circumvent this challenge ten 

125 out of forty representative placenta samples were randomly selected from each of the 

126 above groups and examined.

127

128 Scanning electron microscopy imaging

129 After mounting onto standard 12mm aluminum SEM stubs, specimens were sputter-

130 coated with gold and visualized using Zeiss Merlin FESEM in-lens (secondary electron 

131 (SE) and SE2) detector at 1.8 mm working distance, 60 µm aperture and operated at 3-

132 5kV keV acceleration voltage, 100 pA probe current. 

133 Results
134
135 A total of 160 placentas were collected and processed, 80 preterm and 80 term. All HIV-

136 positive women were on treatment with ART. The average gestational ages of the 

137 preterm placenta was 34 (range 30-37) weeks and 39 (range 38-41) weeks for the term 

138 placenta, respectively. The mean maternal age for mothers with preterm delivery was 

139 26.8+4.6 years and 24.3 +4.3 for the mothers with term delivery. Thirty-six (36) and 28 

140 patients with preterm and term deliveries had cesarean deliveries, respectively. 

141
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142 Structure of the placenta from HIV-negative women with 

143 preterm and term birth

144 The chorionic villous structures had a tree-like appearance with gradual branching. 

145 Branching seemed to increase gradually with advancing gestation. The terminal 

146 ramifications appeared as buds and some extended to the neighboring terminal villous 

147 structure via intervillous bridges (Fig 1A, B). The villous core structure was covered with 

148 microvilli of variable sizes and appearance, closely apposed against each other (Fig 

149 1C). There were syncytial knots which appeared as dome-shaped like elevations on the 

150 surface of the syncytium and seemed to increase with advancing gestation. A few red 

151 blood cells were observed on the surface, pitting the structure of the syncytium (Fig 1D).  

152 In a few areas, the syncytial continuity was interrupted and the gap to a lesser extent 

153 filled with fibrinoid material (Fig 1E, F). There were occurrences of tip-to-tip fusion of the 

154 terminal villi in some placental sections. The preterm placenta demonstrated 

155 intermediate villi transitioning into terminal villi. In some instances, the terminal villi were 

156 cross-sectionally cut and revealed capillaries, many of which were dilated and occupied 

157 most of the cross-sectional area of the villous core (Fig 1F).

158

159 Fig 1. Electron microscopy structure of term and preterm placentas from HIV-

160 negative women. (A, B) The chorionic structures with a tree-like appearance with 

161 gradual branching. The terminal ramifications and joining via intervillous bridges (white 

162 arrows). (C) The villous core structure covered with microvilli (MV) of variable sizes and 

163 appearance. (D) Red blood cells (asterisks) observed on the syncytial surface, pitting 

164 the structure of the syncytium. (E) The syncytial continuity (white arrow) disrupted and 
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165 filled with fibrinoid material (black arrow). (F) Cross-sectionally cut terminal villi revealed 

166 capillaries with fetal red blood cells (FRBC).

167 Structure of the placenta from HIV-positive women with 

168 preterm birth

169 The general structure of preterm placenta consisted of villous tree structure with 

170 intermediate and terminal villi. Most sections of these placentas showed widespread 

171 damage with shrunken and wrinkled villi. The terminal villi showed thinning with loss of 

172 congruently shaped terminal buds. Microvilli were either blunted or absent in significant 

173 areas of both the intermediate and the terminal villi with attendant syncytiotrophoblast 

174 disruption (Fig 2A, C). Massive fibrinoid material covered the cross-sectional cuts (Fig 

175 2B). At the bases and sometimes along the surface of the terminal villi, red blood cells 

176 appeared to be adherent on the surfaces of these villi. The red blood cells were in 

177 different shapes and sizes and seemed to be trapped within extensive fibrillar meshwork 

178 (Fig 2D, E). 

179

180 Fig 2. Electron microscopy structure of preterm placentas from HIV-positive 

181 women. (A) The villi appeared shrunken (SV) and wrinkled with thinning terminal villi 

182 and loss of congruently shaped terminal buds. (B) Microvilli (MV) were either blunted or 

183 absent with attendant syncytiotrophoblast disruption (white arrows). Red blood cells 

184 (RBC) were seen and massive fibrinoid material (black arrow) covered the villous 

185 structures in C, D, and E, red blood cells (asterisks) on the surface of the syncytium at 

186 advancing magnification
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187 Structure of the placenta from HIV-positive women with term 

188 birth

189 There was a progressive expansion of the villous tree with predominance of terminal villi 

190 in the term placenta. Focal villous syncytiotrophoblast thinning as a key feature was 

191 also apparent (Fig 3A). Club-shaped microvilli were present in most parts of the surface 

192 of the syncytium (Fig 3B). The red blood cells were observed on the surface of 

193 syncytium but not as significant as was seen in HIV-positive preterm placenta. The 

194 syncytium is obliterated (Fig 3C, D). 

195

196 Fig 3. Electron microscopy structure of term placentas from HIV-positive women. 

197 (A) Focal thinning and loss of congruence of the terminal villi. (B) Club-shaped syncytial 

198 knots on the villi (black arrow). (C, D) Red blood cells trapped in the fibrillar meshwork 

199 (asterisks) on the surface of the syncytium with diminished microvilli (black arrow).

200

201 Discussion

202 The maturation spectrum of the placenta from the HIV-negative women was in keeping 

203 with what has previously been observed in normal placenta. The gradual ramifications 

204 of the chorionic villi  has been described and forms the functional core of the human 

205 placenta [23]. The branches are covered by the syncytialized villous trophoblast that is 

206 in direct contact with maternal blood in the intervillous space.  The presence of the 

207 syncytial knots and intervillous bridges in these cases mostly signify a normal placental 

208 ageing process [24,25]. In other cases, they may be associated with pathological 
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209 processes such as preeclampsia, obesity, malaria, oxidative stress and intrauterine 

210 growth restriction [26–29]. The intervillous bridges are involved in support role within 

211 placenta though the formation of an internal strut mechanism [30] and act to protect the 

212 villous capillaries from collapse during labor process. Dilatation of the capillary villi 

213 occurs at the tip of the terminal villi forming sinusoids that facilitate exchange of 

214 substances between the mother and the fetus via a thinned vasculosyncytial 

215 membranes [31]. 

216

217 The shrinking, wrinkling ant thinning of the placenta villi observed in placenta of HIV-

218 positive women with preterm birth is in keeping with the decreased villi surface area and 

219 perimeter observed in our previous work [18], but has also been noted in some 

220 infections involving the placenta [32,33], intrauterine growth restriction [34], and 

221 preeclampsia [35]. By the virtue of exposure to maternal blood, the syncytium is always 

222 under constant danger of immunological or reactive oxygen species attack that could 

223 result in apoptosis, degeneration and sometimes attempt to regeneration. As stated 

224 above, the shriveling of the syncytium may be due to reduced trophoblast regeneration 

225 capacity occasioned either independently or in combination by HIV infection or the 

226 antiretrovirals. The result is that many functions of the villous syncytiotrophoblast like 

227 gaseous exchange, nutrient transfer and hormone production may be impaired.  

228

229 Microvilli, found on the apical aspect of some epithelial cells are surface specialization 

230 that provide an increased surface area for absorption, secretion, mechanosensation, 

231 and  also provide cellular polarity enhancing certain cellular functions such as 
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232 membrane transportation, cytoskeletal distribution, and enzymatic function [8,36]. These 

233 cells, in addition, must maintain the barrier function of the compartments being 

234 separated [37]. The loss of microvilli on the surface of syncytium has been correlated 

235 with diminished placental function and has been reported in eclampsia,  gestational 

236 diabetes, intrauterine growth restriction, and small for gestational age fetuses [38–40]. In 

237 the current study, the loss of microvilli may signify a possible diminished placental 

238 function which may have played a role in instigating preterm labor. Syncytiotrophoblast 

239 disruption, red cell adhesion, and an extensive fibrillar meshwork that were frequently 

240 found on the surface of the syncytium in these patients might be indicative of apoptotic 

241 process of the syncytiotrophoblast, attempt to repair, and attendant inflammatory 

242 process [41]. Fibrinoid deposition, in small amounts may be physiological as a response 

243 to minimize maternal bleeding to improve pregnancy outcome. In extensive amounts, as 

244 observed in this study, it may result in obliteration of the intervillous space, with atrophy 

245 of the chorionic villi. The basis for this observation  is related to syncytiotrophoblastic 

246 damage, immunological  derangement with initiation of  coagulation events that results 

247 into adherence of the red blood cells on the surface of the syncytium and within the 

248 fibrinoid material [42–44]. This phenomenon heralds adverse pregnancy outcome and 

249 has been identified as a signature of maternal anti-fetal rejection [45].

250

251 The remarkable similarities illustrated in this study between the placenta from term HIV-

252 positive patients and placenta from HIV-negative patients strongly suggest that these 

253 pregnancies were minimally affected by HIV/ART. We however, observed to a lesser 

254 extent, syncytiotrophoblast thinning, microvilli missing in some parts and the red blood 
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255 cells adherence on the surface of syncytium. The difference between this group and 

256 placenta from HIV-positive women with preterm birth  may be explained by 

257 interindividual biologic variability in response to drug metabolism, immune reaction or 

258 duration of HIV/ART exposure [46–48]. These results suggest HIV and ART may play a 

259 role in inducing syncytial morphological changes in placentas.

260 Conclusion

261 Our results show distinctive alterations in the placenta of HIV-positive mothers who 

262 gave birth prematurely, which may impair the syncytium's ability to function normally. 

263 Microvilli blunting, syncytial disruptions, and syncytial erythrocyte adhesion might be the 

264 symptoms of a deeper biological process.  Further work to understand the effect of 

265 HIV/ART on the syncytiotrophoblast in relation to prematurity is recommended.
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