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ABSTRACT 45 

The intestinal microbiome influences growth and disease progression in children with cystic 46 

fibrosis (CF). Elexacaftor-tezacaftor-ivacaftor (ELX/TEZ/IVA), the newest pharmaceutical 47 

modulator for CF, restores function of the pathogenic mutated CFTR channel. We performed a 48 

single-center longitudinal analysis of the effect of ELX/TEZ/IVA on the intestinal microbiome, 49 

intestinal inflammation, and clinical parameters in children with CF. Following ELX/TEZ/IVA, 50 

children with CF had significant improvements in BMI, ppFEV1 and required fewer antibiotics for 51 

respiratory infections. Intestinal microbiome diversity increased following ELX/TEZ/IVA coupled 52 

with a decrease in the intestinal carriage of Staphylococcus aureus, the predominant respiratory 53 

pathogen in children with CF. There was a reduced abundance of microbiome-encoded 54 

antibiotic-resistance genes. Microbial pathways for aerobic respiration were reduced after 55 

ELX/TEZ/IVA. The abundance of microbial acid tolerance genes was reduced, indicating 56 

microbial adaptation to increased CFTR function. In all, this study represents the first 57 

comprehensive analysis of the intestinal microbiome in children with CF receiving ELX/TEZ/IVA. 58 

 59 

 60 

IMPORTANCE 61 

 Cystic fibrosis is an autosomal recessive disease with significant gastrointestinal 62 

symptoms in addition to pulmonary complications. Prior work has shown that the intestinal 63 

microbiome correlates with health outcomes in CF, particularly in children. Recently approved 64 

treatments for CF, CFTR modulators, are anticipated to substantially improve the care of 65 

patients with CF and extend their lifespans. Here, we study the intestinal microbiome of children 66 

with CF before and after the CFTR modulator, ELX/TEZ/IVA. We identify promising 67 

improvements in microbiome diversity, reduced measures of intestinal inflammation, and 68 

reduced antibiotic resistance genes. We present specific bacterial taxa and protein groups 69 

which change following ELX/TEZ/IVA. These results will inform future mechanistic studies to 70 

understand the microbial improvements associated with CFTR modulator treatment. This study 71 

demonstrates how the microbiome can change in response to a targeted medication that 72 

corrects a genetic disease.  73 

 74 

 75 

 76 

 77 

 78 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 21, 2023. ; https://doi.org/10.1101/2023.08.11.23293949doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.11.23293949
http://creativecommons.org/licenses/by-nd/4.0/


 79 

1. INTRODUCTION 80 

Cystic fibrosis (CF) is an autosomal recessive disease affecting a total of 40,000 individuals in 81 

the United States (1). CF is caused by mutations in the CF transmembrane conductance 82 

regulator (CFTR) gene resulting in decreased epithelial transport of chloride and bicarbonate 83 

ions. These mutations result in mucus obstruction which presents with severe multi-organ 84 

dysfunction, principally affecting the airways and gastrointestinal tract (2–5). The gastrointestinal 85 

complications include malnutrition, dysmotility, and hepatopancreaticobiliary disease (2). 86 

Importantly, nutritional status and intestinal microbiome abnormalities in children with CF have 87 

been linked to growth failure, disease progression, and risk of future lung transplantation (6–11).  88 

Multiple studies have demonstrated differences in the intestinal microbiome of patients with 89 

CF when compared to healthy controls (8, 12–15). The CF intestinal microbiome is notably 90 

inflammatory and associated with higher rates of inflammatory bowel disease (IBD) and colon 91 

cancer (16–20). In infants with CF, delayed intestinal microbiome maturation has been shown to 92 

influence linear growth and immune programming (8, 21). Among the most striking differences 93 

compared to healthy controls is the abundance of Proteobacteria, specifically Escherichia coli, 94 

and concomitant decrease in Bacteroidetes in infants with CF (8, 12, 22–24). Furthermore, 95 

during acute CF pulmonary exacerbations, the intestinal microbiome is distinguishable from 96 

periods of respiratory stability (15, 21, 25). Respiratory pathogens, such as Staphylococcus 97 

aureus, can also be detected in CF stool samples (22, 26). 98 

Over the past decade, small molecule therapies which address the primary defect in the 99 

CFTR protein and rescue CFTR function in select genotypes have been developed. These 100 

“CFTR modulators” have dramatically changed the trajectory of CF patient care, yielding 101 

remarkable improvements in lung function, growth, and projected lifespan (27). The most recent 102 

CFTR modulator formulation approved for clinical care, elexacaftor-tezacaftor-ivacaftor 103 

(ELX/TEZ/IVA), includes two CFTR correctors (ELX & IVA) and one CFTR potentiator (TEZ ) 104 

(28). The approval of ELX/TEZ/IVA is anticipated to be the most important advancement in CF 105 

therapy since CFTR was identified over 30 years ago (27, 28). 106 

Given the progressive nature of CF, initiation of therapy in early childhood is critical to stall 107 

disease progression. ELX/TEZ/IVA was approved by the FDA for pediatric patients in 2019 108 

(ages 12 years and older), 2021 (ages 6-11 years old), and 2023 (ages 2-5 years old). The 109 

impact of ELX/TEZ/IVA on clinical outcomes and the intestinal microbiome in children with CF 110 

requires targeted study. To date, studies examining the effects of CFTR modulators on the 111 

intestinal microbiome have been limited by the use of single modulator formulations or small 112 
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cohort sizes (29–31). Importantly, no studies have characterized the effect of ELX/TEZ/IVA on 113 

the intestinal microbiome of children with CF. We therefore undertook a longitudinal study to 114 

identify changes in clinical outcomes and the intestinal microbiomes of pediatric patients 115 

following the initiation of ELX/TEZ/IVA. To our knowledge, this study represents the first 116 

comprehensive study of the highly effective CFTR modulator formulation ELX/TEZ/IVA on the 117 

intestinal microbiome of children with CF. 118 

 119 

2. METHODS 120 

2.1 Recruitment of Subjects 121 

Pediatric patients with a diagnosis of CF at Monroe Carell Jr. Children’s Hospital at Vanderbilt 122 

(MCJCHV) were recruited beginning in July 2017 with follow-up until October 2022. Patients 123 

with the Phe508 CFTR mutation who were deemed eligible for ELX/TEZ/IVA by their 124 

pulmonologist were eligible for this study. Patients previously treated with other CFTR 125 

modulator regimens were permitted. Patients with pre-existing non-CF gastrointestinal disease 126 

were excluded. A total of 39 participants were recruited (Table 1). Informed consent was 127 

obtained from parental guardians, and assent was obtained from pediatric subjects in 128 

accordance with institutional research ethics guidelines. This study was approved by the 129 

MCJCHV Institutional Review Board (IRB # 200396). The lead investigators of this study had no 130 

direct role in the patients’ routine medical care. All study data were stored in a Research 131 

Electronic Data Capture (REDCap) database per institutional guidelines (32).  132 

 133 

2.2 Study Timepoints 134 

Our analysis included stool samples from up to four timepoints per patient: two timepoints 135 

before ELX treatment (T1 & T2) and two timepoints after initiating ELX/TEZ/IVA (T3 & T4) (Fig. 136 

1B). For clinical outcomes, data was either analyzed by individual timepoints (T1-T4) or time 137 

points were combined for pre-ELX/TEZ/IVA samples (T1 & T2 combined) and post-ELX-138 

TEZ/IVA samples (T3 & T4 combined). Analysis of individual timepoints permitted assessment 139 

of additional differences between the 6 to 12-month periods after ELX/TEZ/IVA initiation. For 140 

microbiome comparisons, analysis was based on combined pre-ELX/TEZ/IVA samples (T1 & 141 

T2) and post-ELX-TEZ/IVA samples (T3 & T4). 142 

 143 

2.3 Stool Sample Collection and DNA Extraction 144 

Stool samples were collected prior to ELX/TEZ/IVA initiation, either through targeted collection 145 

as part of this study or from our center’s biobank of CF stool samples (33, 34). Subsequent stool 146 
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samples were collected at approximately 6- and 12-month intervals after initiation of 147 

ELX/TEZ/IVA (Fig. 1A). Fecal samples were collected in sterile collection cups and refrigerated 148 

until transport to the laboratory. Patients who were unable to provide a stool sample in clinic 149 

were provided with an OMNIgene®•GUT stool collection kit for at home collection and 150 

stabilization, returned via overnight shipping, and stored according to manufacturer 151 

specifications. Aliquots of stool samples were aseptically aliquoted into cryovials in a laminar 152 

flow biosafety cabinet to minimize aerosols and stored at -80ºC until processing. Percent 153 

predicted forced expiratory volume in one second (ppFEV1) values were obtained in the 154 

outpatient setting at the time of stool sample collection; the highest spirometry value of three 155 

attempts was recorded. Clinical data including body mass index (BMI, percentiles), percentage 156 

predicted forced expiratory volume in 1 second (ppFEV1), medications, and laboratory values 157 

were recorded for visits when a stool sample was collected. Total DNA was extracted from 114 158 

stool samples using QIAamp PowerFecal Pro DNA Kits according to the manufacturer’s 159 

instructions. Bead beating for efficient lysis was conducted for 10 minutes. All steps, excluding 160 

bead beating and centrifugation, were conducted in a laminar flow biosafety cabinet. No human 161 

DNA depletion or enrichment of microbial DNA was performed. DNA yield was estimated by 162 

spectrophotometry (NanoDrop™2000c) in parallel with ensuring satisfactory A260/A280 ratio for 163 

DNA purity. 164 

 165 

2.4 Fecal Calprotectin Measurements 166 

Fecal calprotectin was measured using the Calprotectin ELISA Assay Kit (Eagle Biosciences). 167 

Duplicate portions of stool (50-100mg) were weighed and processed according to the 168 

manufacturer’s instructions. Absorbance was measured with a SpectraMax® i3x (Molecular 169 

Devices). Fecal calprotectin (µg/g feces) was calculated using a 7-point standard curve. The 170 

assay’s reported normal cut-off is <43.2 μg/g. 171 

 172 

2.5 Shotgun Metagenomic Sequencing 173 

Sequencing libraries were prepared using Illumina® reagents as described elsewhere (35). 174 

Pooled libraries were sequenced on NextSeq2000 to generate 150-bp paired-end reads. An 175 

average of 13.9 million reads were produced per sample (range 9.1 to 30.1 million). Sequencing 176 

adaptors and low-quality sequences were trimmed with fastq-mcf from ea-utils-1.1.2.779 using 177 

default parameters (Supplementary Methods) (36). 178 

 179 

2.6 Taxonomic and Functional Profiling of Metagenomic Sequence Data 180 
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Species abundances were determined with MetaPhlAn4 following read alignment to the 181 

MetaPhlan4 database (37). Diversity metrics were calculated with the vegan R package (38) 182 

and plotted with ggplot2. A weighted UniFrac distance matrix was constructed with the 183 

MetaPhlAn R script “calculate_unifrac”. Functional profiling was conducted with HUMAnN 3.0 184 

with mapping to UniRef90 gene-families and MetaCyc metabolic pathways (39–41). UniRef90 185 

gene-families were reformatted into KEGG orthology (KO) groups using the HUMAnN command 186 

“humann_regroup_table”.  In total, we identified 722 species, 526 MetaCyc pathways, and 8634 187 

distinct KO groups annotations in the 114 samples. All functional annotations were normalized 188 

using the HUMAnN command “humann_renorm_table --units cpm”. Antibiotic resistance genes 189 

were identified by ShortBRED (42) with the reference Comprehensive Antibiotic Resistance 190 

Database (CARD version 2017) (43). ARG abundance was calculated as reads per kilobase of 191 

reference sequence per million sample reads (RPKM). 192 

 193 

2.7 Microbial Dysbiosis Index  194 

The Microbial Dysbiosis Index (MD-index) was calculated as the log10 of the ratio of the relative 195 

abundance of taxa which were previously positively and negatively associated with newly 196 

diagnosed pediatric Crohn’s disease (44). Specifically, the numerator includes 197 

Enterobacteriaceae, Pasteurellaceae, Fusobacteriaceae, Neisseriaceae, Veillonellaceae, 198 

Gemellaceae; the denominator includes Bacteroidales, Clostridiales (excluding Veillonellaceae), 199 

Erysipelotrichaceae, and Bifidobacteriaceae. Higher indices correspond to a greater 200 

inflammatory taxonomic profile. The MD-index has been previously applied to stool samples of 201 

children with CF (14, 45). 202 

 203 

2.8 Differential Abundance Testing 204 

We used MaAsLin2 (Microbiome Multivariable Associations with Linear Models, Maaslin2 R 205 

package) to identify differentially abundant features (46). We included ELX/TEZ/IVA, age, and 206 

recent antibiotic exposure as fixed effects. Subject ID was specified as a random effect due to 207 

multiple samples from the same subject. Species, KEGG orthologs, and MetaCyc pathways 208 

detected at least 10% of samples were tested (i.e., prevalence = 0.1); no minimum abundance 209 

was specified. Abundances were log transformed within the MaAsLin2 function. The general 210 

linear “LM” model was used. MaAsLin2 coefficients are equivalent to log2(FoldChange). The 211 

Benjamini-Hochberg procedure was used to correct P values, and corrected P values are 212 

reported as False Discovery Rates (FDR).  213 

 214 
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2.9 Statistical Analyses 215 

Statistical analyses were conducted using GraphPad Prism 9 and R (version 4.2.1) software. 216 

Details of the statistical tests used and the significance thresholds are presented in the figure 217 

legends. All box-plot graphs are defined as: center line—median; box limits—upper and lower 218 

quartiles; whiskers—1.5× interquartile range.  219 

 220 

2.10 Reproducibility and Data Availability 221 

The results can be reproduced using raw sequence data that are available on NCBI-Genbank 222 

databases under BioProject PRJNA948536 or using processed data in the Supplementary 223 

Dataset 1. Bioinformatic code is available within the repository https://github.com/reaset41/CF-224 

GI-Microbiome-ELX-TEZ-IVA.   225 

 226 

3. RESULTS 227 

3.1 Study Cohort and Stool Sample Collection  228 

Stool samples were collected from a total of 39 children with CF (Table 1). The median 229 

(IQR) age of participants at the time of ELX/TEZ/IVA initiation was 9.86 years old (8.87, 12.15) 230 

and 53.4% were male. Of these, 35.9% (14/39 subjects) had CFTR modulator use (at any time) 231 

before ELX/TEZ/IVA. Patients provided an average of 2.92 stool samples with all patients 232 

providing at least one stool sample prior to starting ELX/TEZ/IVA (T1 median= 33.6 months 233 

before ELX/TEZ/IVA initiation, IQR 28.6, 36.7 months and T2 median=0.64 months before 234 

ELX/TEZ/IVA initiation, IQR 0.13, 2.2 months). Subsequent stool samples were collected at 235 

approximately 6- and 12-month intervals (T3 median=5.97 months, IQR 5.38, 6.92 months and 236 

T4 median=12.39 months, IQR 11.1, 13.1 months). There was a total of 114 stool samples with 237 

53 samples before ELX/TEZ/IVA therapy and 61 samples after ELX/TEZ/IVA treatment (Fig. 1A 238 

& S2). Of the 53 samples collected pre-ELX/TEZ/IVA, 8 samples (15%) were collected while the 239 

patient was receiving an alternative CFTR modulator (Supplementary Dataset 1).  240 

 241 

3.2 Clinical Improvement after ELX/TEZ/IVA 242 

To determine our cohort’s clinical response to ELX/TEZ/IVA, we compared clinical 243 

metrics from before and after ELX/TEZ/IVA initiation. Both BMI percentile and ppFEV1 increased 244 

in the timepoints after ELX/TEZ/IVA compared to pre-ELX/TEZ/IVA timepoints (Fig. 1C-D & 245 

S1A-B). Median BMI percentile increased from the 54th percentile to the 67th percentile after 246 

ELX/TEZ/IVA (Fig. 1D). Likewise, there was a mean change in ppFEV1 of 12.3 percentage 247 

points (95% CI 6.7-17.8) before and after ELX/TEZ/IVA (Fig. 1C). Between 6- and 12-months 248 
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after ELX/TEZ/IVA, there was no further significant improvement in either BMI or ppFEV1 (Fig. 249 

S1A-B, T3 & T4). Consistent with increased BMI, weight percentile increased after ELX/TEZ/IVA 250 

(Fig. S1C). Height percentile increased between T2 and both T3 and T4 (Fig. S1D, P=0.013, 251 

P=0.026, respectively), though not between T1 and T3 & T4. Total antibiotic days per patient 252 

were aggregated and decreased from a median of 22.5 days per 6-months before ELX/TEZ/IVA 253 

to 0 antibiotic days per 6-months after ELX/TEZ/IVA (Fig. 1E, P<0.0001). 254 

 255 

3.3 Microbiome Diversity Increases After ELX/TEZ/IVA 256 

From shotgun metagenomic sequencing on 114 stool samples, we compared measures 257 

of microbiome taxonomy and diversity. In contrast to previously published CF microbiome 258 

datasets of infants (8, 22), our dataset of older children was dominated by the phylum 259 

Firmicutes with minimal Proteobacteria (Fig. 2A and Supplementary Dataset 1). Alpha diversity, 260 

as measured by the Shannon index and richness (observed species), significantly increased 261 

following ELX/TEZ/IVA (Fig. 2B-C, P=0.021 and P=0.026, respectively). The number of species 262 

observed increased from a median (IQR) of 83 (62, 115) species before ELX/TEZ/IVA to 109 263 

(82,125) species after ELX/TEZ/IVA (Fig. 2B). The cumulative increases in alpha diversity were 264 

not significantly different when comparing between the four timepoints individually (Fig. S2A-B), 265 

and there were no differences in overall community composition (beta-diversity) before and after 266 

ELX/TEZ/IVA (Fig. S2C-D). 267 

To determine the effect of prior CFTR modulator treatment besides ELX/TEZ/IVA, we 268 

compared diversity metrics between modulator naïve samples (samples=45) and samples 269 

collected while subjects were receiving another CFTR modulator (samples=8) before 270 

ELX/TEZ/IVA. Samples collected while subjects were receiving another CFTR modulator had 271 

similar diversity to modulator naïve samples (Fig. S3A-B). Following ELX/TEZ/IVA, samples 272 

from subjects who had previously received another modulator (samples=20) had similar 273 

improvements in microbiome diversity to samples from subjects who had not previously 274 

received another modulator (samples=41), indicating that the residual effects of another 275 

modulator did not influence microbiome diversity improvement on ELX/TEZ/IVA (Fig. S3C-D). 276 

To determine the influence of antibiotic exposure on microbiome diversity measures 277 

regardless of ELX/TEZ/IVA status, we categorized patient stool samples as having received 278 

antibiotics within the six-months prior to stool sample collection (samples=62) or no antibiotic 279 

receipt (samples=52). Recent antibiotic exposure significantly impacted alpha diversity 280 

measures reducing Shannon diversity and richness (Fig. 2D-E). Likewise, population structure 281 
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(beta-diversity) was significantly different between samples with and without recent antibiotic 282 

exposure (Fig. S2E, permutational multivariate analysis of variance [PERMANOVA]=0.003).  283 

 284 

3.4 Microbiome Encoded Antibiotic Resistance Genes Decrease After ELX/TEZ/IVA 285 

As discussed above, patients required far fewer antibiotics after starting ELX/TEZ/IVA 286 

(Fig. 1E & S4A). Since the intestinal microbiome is a reservoir of antibiotic resistant genes 287 

(ARGs) (47), we compared the number and type of intestinal ARGs before and after 288 

ELX/TEZ/IVA initiation. Across the 114 samples, we detected a total of 309 unique ARGs. The 289 

median number of unique ARGs nominally decreased from a median 86 ARGs (IQR 40, 96) 290 

before ELX/TEZ/IVA to a median 68 ARGs (IQR 38, 90) after ELX/TEZ/IVA (Fig. S4B, P=0.31). 291 

ARG abundance decreased from a median of 1180 RPKM (IQR 815.4, 1761.1) to 829 RPKM 292 

(IQR 460.5, 1299.0) (Fig. 3A, P=0.0097) though this effect was likely mediated by reduced 293 

antibiotic use.  294 

Next, we aggregated the relative abundance of ARGs by antibiotic class to which they 295 

confer resistance (Fig. 3B). The abundance of ARGs conferring resistance to peptide antibiotics 296 

and ungrouped antibiotics (“Other”) significantly decreased after ELX/TEZ/IVA (Fig. 3B & S4C-297 

E, P=0.012, P=0.022 respectively). The most prevalent antibiotics within the peptide ARG class 298 

included arnA (samples=72/114), yojI (samples=71/114), pmrF (samples=74/114) and pmrC 299 

(samples=71/114). arnA, pmrF and pmrC modify Lipid A on bacterial cells to repel cationic 300 

peptide antibiotics, whereas yojI is a peptide efflux pump. The most prevalent ARGs within the 301 

“Other” group were fabI (samples=84/114), gadE (samples=78/114), and EF-Tu mutations 302 

(samples=75/114). These ARGs or mutations confer resistance to isoniazid/disinfecting agents 303 

(fabI), acid resistance and efflux pump (gadE), and elfamycin (EF-Tu). Despite being the most 304 

prevalent, none of these ARGs were independently altered in abundance following 305 

ELX/TEZ/IVA (Fig. S4D & S4F). 306 

 307 

3.5 Alterations to Specific Bacterial Taxa Following ELX/TEZ/IVA 308 

 To determine whether specific bacterial taxa change following ELX/TEZ/IVA treatment, 309 

we used MaAsLin2 (Microbiome Multivariable Associations with Linear Models) to identify 310 

differentially abundant microbial taxa (46). No phyla were differentially abundant following 311 

ELX/TEZ/IVA (Fig. 2A & Table S4). At a granular taxonomic level, seventeen species were 312 

differentially abundant between samples before and after ELX/TEZ/IVA (FDR<0.1, Fig. 4A and 313 

Table S3), with eleven species increasing in abundance after ELX/TEZ/IVA, and six species 314 

decreasing. The three species with the lowest FDR and, therefore, highest reliability were 315 
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Butyricicoccus SGB14985, S. aureus, and Roseburia faecis (Fig. 4A-B). Butyricicoccus 316 

SGB14985, an uncultivated species, was decreased in abundance following ELX/TEZ/IVA (fold 317 

change 0.16, FDR=0.022). Roseburia faecis was increased in abundance following 318 

ELX/TEZ/IVA (fold change 7.35, FDR=0.025) and negatively correlated with recent antibiotic 319 

exposure (Fig. S5A, fold change 0.20, FDR=0.086). The intestinal tract has immunological 320 

cross-talk between the separate but similarly structured mucosal environment of the lung, 321 

deemed the gut-lung axis (20). Since the intestinal tract can harbor similar respiratory 322 

pathogens in patients with CF (15, 48, 49), we performed focused analysis of CF pathogens. S. 323 

aureus, the predominant respiratory pathogen in children with CF (50), was decreased in 324 

abundance after ELX/TEZ/IVA (Fig. 4A-B, fold change 0.40, FDR=0.042). Other members of the 325 

respiratory microbiota which are frequently detected in the intestines (14, 15)—specifically the 326 

genera Haemophilus, Prevotella, Streptococcus, Veillonella—did not significantly change after 327 

ELX/TEZ/IVA initiation (Fig. S5B). Pseudomonas aeruginosa, an additional respiratory pathogen 328 

of importance in CF, was detected in only two of the 114 stool samples. Furthermore, fungal 329 

taxa were only identified in 8/114 samples (Supplementary Dataset 1).  330 

 331 

3.6 Intestinal Inflammation Decreases After ELX/TEZ/IVA 332 

Fecal calprotectin was measured across the four timepoints and markedly decreased 333 

following ELX/TEZ/IVA (Fig. 5A & S5A). Overall, mean fecal calprotectin decreased from 109 334 

μg/g before ELX/TEZ/IVA to 44.8 μg/g for a mean decrease of 64.2 μg/g (95% CI -16.1, -112.3, 335 

Fig. 5A). We then computed the microbial dysbiosis index (MD-index), a ratio of bacterial taxa 336 

positively and negatively associated with newly diagnosed pediatric Crohn’s disease, to assess 337 

the relationship between intestinal inflammation and specific microbial signatures (44). We 338 

noted a nominal reduction in the MD-index following ELX/TEZ/IVA (Fig. 5B, P=0.068), which 339 

was less pronounced when comparing samples from patients with recent antibiotic exposure 340 

and those without (Fig. 5C, P=0.77). 341 

 342 

3.7 Microbiome Functional Changes Reveal Specific Disease-Relevant Changes   343 

From the 114 stool samples, alignment of sequencing reads to known microbial proteins and 344 

pathways identified 8634 KEGG orthology (KO) protein groups and 526 MetaCyc metabolic 345 

pathways, consistent with prior studies of the intestinal microbiota (51). There were 249 KO 346 

groups differentially abundant with respect to ELX/TEZ/IVA use (MaAsLin2 FDR<0.25, Fig. 5D 347 

& Table S6). Strikingly, a common thread among differentially abundant KO groups was a 348 

decreased abundance of genes encoding oxidative phosphorylation functions following 349 
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ELX/TEZ/IVA (Fig. 5D). Seven of the top 10 most differentially abundant KO groups were 350 

components of the electron transport chain (Fig. 5D & S5B and Table S7) and included NADH-351 

ubiquinone oxidoreductases (e.g., K03883, K03881, K03884, & K03880), F-type ATPase 352 

subunits (e.g., K02125), and cytochrome c oxidase subunits (e.g., K02262, K02261, & K02256). 353 

The taxa contributing to oxidative phosphorylation KO groups were not consistently annotated 354 

by HUMAnN (Fig. S6C and Table S10). This indicates that a specific taxonomic signature was 355 

not responsible for the reduced abundance of oxidative phosphorylation KO groups (Fig. S6C). 356 

These results were corroborated by MaAsLin2 differential abundance testing of MetaCyc 357 

pathways. Sixty-four MetaCyc pathways were differentially abundant with respect to 358 

ELX/TEZ/IVA use (MaAsLin2 FDR<0.25, Fig. 5E & S7, Table S9). Two of these pathways 359 

corresponded to aerobic respiration (PWY-3781 and PWY-7279). Differential abundance of 360 

anaerobic energy metabolism pathways showed discordant results with one pathway increased 361 

in abundance following ELX/TEZ/IVA (PWY-7383), and two pathways decreased in abundance 362 

(PWY-7389 and PWY-7384) following ELX/TEZ/IVA (Fig. S7 and Table S9). Thirteen amino 363 

acid biosynthesis pathways were universally prevalent in all stool samples (114/114) and 364 

significantly increased in abundance following ELX/TEZ/IVA (Fig. 5E and Table S9, FDR<0.25). 365 

This indicates increased biosynthetic capacity of the intestinal microbiome following 366 

ELX/TEZ/IVA.  367 

Furthermore, multiple pathways related to nucleobase and nucleotide metabolism were 368 

differentially abundant following ELX/TEZ/IVA. Pyrimidine deoxyribonucleotide biosynthesis 369 

pathways were reduced in abundance following ELX/TEZ/IVA (PWY-7184 & PWY-6545) 370 

whereas a pyrimidine ribonucleotides biosynthesis pathway was increased in abundance 371 

(PWY0-162, Fig.S7 and Table S9). While these general pyrimidine deoxyribonucleotide 372 

biosynthesis pathways were reduced in abundance, specific pathways for thiamine biosynthesis 373 

(PWY-7357) and two uridine-monophosphate biosynthesis pathways (PWY-7790 & PWY−7791) 374 

were significantly increased in abundance following ELX/TEZ/IVA. An anaerobic pathway for 375 

purine degradation was increased in abundance following ELX/TEZ/IVA (P164-PWY). Three 376 

pathways related to allantoin degradation were significantly reduced in abundance following 377 

ELX/TEZ/IVA (PWY-5692, PWY0-41 & URDEGR-PWY, Fig. S7 and Table S9).  378 

Another intriguing observation was the reduced abundance of KO groups involved in acid 379 

tolerance and transport following ELX/TEZ/IVA (Fig. 5D). KO groups involved in organic acid 380 

transport (e.g., K03290 & K23016) and proton-symporters (e.g., K11102 & K03459) were 381 

reduced in abundance following ELX/TEZ/IVA. Likewise, an acidity-responsive transcriptional 382 
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regulator (K03765, cadC) was decreased in abundance following ELX/TEZ/IVA (Fig. 5D and 383 

Table S7, fold change 0.42, FDR=0.27). 384 

 385 

4. DISCUSSION 386 

ELX/TEZ/IVA has changed the trajectory of CF patient care and dramatically improved 387 

clinical outcomes. Nutritional status and components of the intestinal microbiome are strong 388 

predictors of future clinical outcomes, particularly in children with CF (6–8). We therefore sought 389 

to determine the effects of ELX/TEZ/IVA on intestinal inflammation and the intestinal 390 

microbiome in children with CF. Herein, we present a comprehensive longitudinal 391 

characterization of the intestinal microbiome in children with CF treated with ELX/TEZ/IVA. We 392 

identified widespread changes to the intestinal microbiome after ELX/TEZ/IVA including 393 

taxonomic composition, reduced carriage of ARGs, and altered microbiota metabolic functions. 394 

Although randomized controlled trials demonstrated that ELX/TEZ/IVA was safe and 395 

effective, there are limited post-approval clinical data, particularly in children over two years old 396 

(52–56). BMI and ppFEV1 are useful markers of clinical response to CFTR modulator treatment 397 

in children (57). Our cohort demonstrated significant improvement in ppFEV1 and BMI percentile 398 

within six-months of starting ELX/TEZ/IVA, with no additional differences at later time points 399 

(Fig. S1A-B). This is consistent with prior clinical trial and real-world data showing the greatest 400 

impact on nutritional status and anthropometric parameters immediately after ELX/TEX/IVA 401 

therapy initiation with subsequent plateau without regression in children (52, 56, 58). Prior 402 

baseline BMI, particularly underweight status, has been predicted to be a major determinant of 403 

increase in weight gain in patients with CF treated with ELX/TEZ/IVA (59). Furthermore, 404 

between the timepoint immediately before ELX/TEZ/IVA initiation (T2) and post-ELX/TEZ/IVA 405 

timepoints (T3 & T4), there was a significant increase in height percentile (Fig. S1D). This 406 

suggests that CFTR modulator therapy may improve linear growth in children with CF. In sum, 407 

these results support the clinical responsiveness of children with CF to ELX/TEZ/IVA. 408 

 The gastrointestinal microbiome influences whole-body physiology. CF intestinal 409 

microbiome abnormalities begin in infancy, diverging from healthy controls soon after birth (8, 410 

14, 15, 21–23). Intriguingly, the microbiome of patients with CF resembles that of patients with 411 

IBD, a group with a characteristically perturbed intestinal microbiome (12, 45, 60). Considerable 412 

prior research has characterized the development of the CF intestinal microbiome in infants (8, 413 

13–15, 21–23). Less information exists about the CF intestinal microbiome in children and 414 

adolescents (13, 24, 26, 61–65). A consistent finding is that high levels of the phylum 415 

Proteobacteria, specifically the species Escherichia coli, define the infant CF intestinal 416 
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microbiome (12, 22). The abundance of Proteobacteria decreases with age in young children 417 

with CF (14, 22). In our dataset of older children with CF, Proteobacteria comprised a minority of 418 

the identified bacteria (Fig. 2A). In turn, the relative abundance of the phylum Firmicutes is 419 

increased in our cohort, likely representing a more stable “adult-like” microbiome. 420 

 Direct comparison of our results to studies containing healthy controls is difficult given 421 

different sampling and sequencing methodologies. Notably, although our study identified subtle 422 

changes in the intestinal microbiome after initiation of ELX/TEZ/IVA in children with CF, the 423 

post-ELX/TEZ/IVA intestinal microbiome remains significantly altered from what has been 424 

described in healthy children. Compared to healthy children, the intestinal microbiome of 425 

children with CF is delayed in development and exhibits decreased microbial diversity relative to 426 

healthy controls throughout childhood and adolescence (22, 24, 63). Among the most consistent 427 

differences between healthy controls and patients with CF is reduced abundance of the phylum 428 

Bacteroidetes in patients with CF (13, 20, 61, 63, 66). In our dataset, Bacteroidetes remained 429 

depleted post-ELX/TEZ/IVA (Fig. 2A and Table S4). Likewise, Shannon diversity remained 430 

below that of similarly-aged healthy controls (24, 63), as discussed henceforth.  431 

In our cohort, alpha diversity, as measured by the Shannon index and richness (observed 432 

species), significantly increased following ELX/TEZ/IVA (Fig. 2B-C). These results demonstrate 433 

modest but statistically significant differences in an older cohort of children with CF, whose 434 

microbiome resembles that of more of a stable “adult-like” microbiome. The difference in the 435 

median Shannon diversity was increased 0.29 after ELX/TEZ/IVA (Fig. 2B). In contrast, a 436 

similarly aged cohort of children with CF exhibited a median ~1.0 reduced Shannon index 437 

compared to healthy controls in the same study (24). Thus, while our cohort exhibited significant 438 

increases in Shannon diversity, it is unlikely that this magnitude of increase restores the 439 

diversity to that of similarly aged healthy controls. This is consistent with the notion that “adult-440 

like” intestinal microbiota are remarkably stable and resilient to intervention (67–69). As CFTR 441 

modulator formulations are approved for younger children, particularly infants for whom the 442 

microbiome is still developing, studying the effects of CFTR modulators on the developing 443 

intestinal microbiome will be an important research endeavor and may show more substantial 444 

differences.  445 

In children with CF, markers of intestinal inflammation correlate with growth failure (11, 24). 446 

Moreover, intestinal inflammation in patients with CF is linked to higher rates of IBD and 447 

colorectal cancer in patients with CF (16, 17, 70). Fecal calprotectin, a laboratory marker of 448 

intestinal inflammation (71–73), significantly decreased following ELX/TEZ/IVA (Fig. 5A), 449 

corroborating prior reports in the PROMISE and RECOVER cohorts (74, 75). Using a dysbiosis 450 
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index of bacterial taxa correlated with pediatric Crohn’s disease (44), we identified that this 451 

dysbiosis index nominally decreased following ELX/TEZ/IVA initiation (Fig. 5B). The decrease in 452 

the median MD-index was 0.166 before and after ELX/TEZ/IVA. The median post-ELX/TEZ/IVA 453 

MD-index was lower (i.e. reduced inflammatory taxa) than that of healthy controls in the original 454 

publication describing the MD-index (44). This suggests that the magnitude of decrease in the 455 

MD-index in our study may be biologically meaningful. Furthermore, the difference between pre- 456 

and post-ELX/TEZ/IVA (Fig. 5B) was more pronounced than in samples with and without recent 457 

antibiotic exposure (Fig. 5C). This suggests that this effect may be specific to ELX/TEZ/IVA 458 

treatment, and not due to reduced antibiotic use. At the species level, the butyrate-producing 459 

species Roseburia faecis was significantly enriched following ELX/TEZ/IVA (Fig. 4A-B). Prior 460 

studies have identified R. faecis as reduced in abundance in patients with CF (20, 76–78). In 461 

parallel, we detected reduced abundance of genes involved in oxygen-dependent metabolism 462 

following ELX/TEZ/IVA (Fig. 5D-E). Intestinal inflammation is characterized by a shift towards 463 

oxygen-dependent microbiota metabolism, perpetuating a cycle of inflammatory damage (79–464 

81). From multiple lines of evidence, our results suggest that ELX/TEZ/IVA reduces intestinal 465 

inflammation in children with CF. 466 

Respiratory infections require frequent antibiotics in patients with CF. Some respiratory 467 

pathogens also colonize the intestinal tract and temporally correlate with respiratory colonization 468 

(15, 48, 49). S. aureus is among the first pathogens to colonize the respiratory tract and cause 469 

infections in children with CF (50). We detected reduced intestinal abundance of S. aureus 470 

following ELX/TEZ/IVA (Fig. 4A-B). Antibiotic exposure in patients with CF has been associated 471 

with increased intestinal carriage of antibiotic resistant bacteria compared to healthy controls 472 

which are a poor prognostic factor (82–84). Following ELX/TEZ/IVA, patients in our cohort 473 

required far fewer antibiotics (Fig. 1E). In turn, we detected reduced intestinal abundance of 474 

ARGs (Fig. 2E). These results indicate disease-relevant taxonomic changes to the intestinal 475 

microbiome following ELX/TEZ/IVA, as well as reduced ARGs.  476 

The CFTR channel permits transepithelial movement of bicarbonate (HCO3-) and 477 

chloride (Cl-) (5). Intestinal pH is lower in patients with CF due to the lack of neutralizing 478 

bicarbonate (85) yet increases with CFTR modulator treatment, consistent with increased CFTR 479 

activity in the intestinal tract (86). We observed a reduced abundance of microbial protein 480 

groups associated with acid tolerance (Fig. 5D), consistent with microbial adaptation to 481 

increased CFTR channel function in the intestines. These results display physiologically intuitive 482 

functional changes to the microbiome post-ELX/TEZ/IVA. As CFTR modulators become the 483 
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mainstay of treatment for CF, further research will be necessary to mechanistically describe the 484 

effects of CFTR modulators on gastrointestinal function. 485 

Our study is strengthened by longitudinal sampling over a five-year period combined 486 

with the real-world use of ELX/TEZ/IVA. Using shotgun metagenomic sequencing, we 487 

comprehensively compared microbiota differences before and after ELX/TEZ/IVA. Sampling of 488 

the intestinal microbiome over extended periods will be important to uncover additional long-489 

term improvements to the microbiome. Similarly, further research is necessary to delineate the 490 

effects of ELX/TEX/IVA on the interconnected respiratory and intestinal microbiomes. Although 491 

our study was limited by the single-center focus, our cohort mirrors the overall CF pediatric 492 

population in clinical and demographic factors (Table 1). Our study lacks untreated CF controls 493 

or healthy controls, which would allow for additional comparisons.   494 

 In summary, our results indicate that the CFTR modulator ELX/TEZ/IVA alters the 495 

intestinal microbiome in children with CF. We identified taxonomic and functional changes to the 496 

intestinal microbiome that represent improvements to CF intestinal microbiome structure and 497 

function. Our results also support that CFTR modulators reduce intestinal inflammation in 498 

children with CF. 499 
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 873 

Figure 1. Study Schematic, Timeline, and Clinical Improvement after ELX/TEZ/IVA.  874 

A) Overview of study procedure and analyses. B) Timeline illustrating the four timepoints. Day 0 875 

is depicted as the day of ELX/TEZ/IVA initiation. A total of 114 samples were collected from 39 876 

unique patients, of which 53 samples were before ELX/TEZ/IVA treatment and 61 samples after 877 

treatment. C-E) Depictions of clinical data before and after ELX/TEZ/IVA; (C) ppFEV1, (D) BMI 878 

percentile, (E) antibiotic days per 6-months. Each dot represents the clinical data associated 879 

with a stool sample. P values calculated by Wilcoxon rank-sum test. 880 

 881 

Figure 2. Microbiome Diversity and Intestinal Carriage of Antibiotic Resistance Genes.  882 

A) Phylum level relative abundance for samples collected before (samples=53) and after 883 

(samples=61) ELX/TEZ/IVA. Samples are organized by the relative abundance of the phylum 884 

Firmicutes. B-C) Alpha diversity before and after ELX/TEZ/IVA. Shannon Index calculated with 885 

the R package vegan using species abundance table from Metaphlan4. Microbial richness 886 

represents the number of unique species per sample. Each dot represents a stool sample 887 

(samples=114). P values calculated by Wilcoxon rank-sum test. D-E) Alpha diversity between 888 

samples with and without recent antibiotic exposure. Recent antibiotic exposure categorized as 889 

any systemic antibiotic within the past 6-months. Shannon Index calculated with the R package 890 

vegan using species abundance table from MetaPhlAn4. Microbial richness represents the 891 

number of unique species per sample. Each dot represents a stool sample (samples=114). P 892 

values calculated by Wilcoxon rank-sum test.  893 

 894 

Figure 3. A) Antibiotic resistance gene (ARG) abundance (RPKM) before and after 895 

ELX/TEZ/IVA. ARGs were profiled using ShortBRED and the Comprehensive Antibiotic 896 

Resistance Database (CARD). Each dot represents a stool sample (samples=114). P values 897 

calculated by Wilcoxon rank-sum test. B) ARG abundance (RPKM) by class of antibiotic to 898 

which they confer resistance. Abundance values of zero are plotted on the vertical axis. P 899 

values calculated by Wilcoxon signed-rank test. 900 

 901 
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Figure 4. Specific Microbial Taxonomic Changes after ELX/TEZ/IVA. 902 

A) Differentially abundant species before and after ELX/TEZ/IVA. The results are depicted with 903 

significance (−log10 of the FDR) (Y axis) vs. log2(FoldChange). MaAsLin2 multivariable 904 

association modeling was implemented in R, using ELX/TEZ/IVA status, age, and recent 905 

antibiotics as fixed effects in the model. Participant ID was used as a random effect. Horizontal 906 

dashed line depicts FDR=0.1. Species reaching statistical significance (FDR≤0.10) are 907 

highlighted in solid colors whereas other species are gray. B) Species of interest from 908 

differential abundance testing before and after ELX/TEZ/IVA. Vertical axis is log10 transformed. 909 

MaAsLin2 FDR is depicted. Zero values are plotted on the horizontal axes. The percentage of 910 

samples for which the relative abundance was zero is depicted below the graph. 911 

 912 

Figure 5. Intestinal Inflammation Decreases after ELX/TEZ/IVA and Microbiome 913 

Functional Changes. A) Fecal calprotectin before and after ELX/TEZ/IVA. Each dot represents 914 

a stool sample (samples=114). P values calculated by Wilcoxon rank-sum test. B-C) Microbial 915 

dysbiosis index (MD-INDEX) before and after ELX/TEZ/IVA (B) or between samples with and 916 

without recent antibiotic exposure (C). MD-index calculated as the log10 ratio of species 917 

positively/negatively correlated with new onset pediatric Crohn’s disease (44). Each dot 918 

represents a stool sample (samples=114). P values calculated by Wilcoxon rank-sum test. D) 919 

Differentially abundant KEGG orthologs following MaAsLin2 multivariable association modeling, 920 

using ELX/TEZ/IVA status, age, and recent antibiotics as fixed effects in the model. Participant 921 

ID was used as a random effect. Horizontal dashed line depicts FDR=0.25. E) Subset of 922 

differentially abundant MetaCyc pathways following MaAsLin2 multivariable association 923 

modeling, using ELX/TEZ/IVA status, age, and recent antibiotics as fixed effects in the model. 924 

Only pathways with FDR<0.25 are depicted. 925 

 926 

Supplementary Figure S1. A-D) Clinical metadata vs. timepoint; (A) ppFEV1, (B) BMI 927 

percentile, (C) weight percentile, and (D) height percentile. Each dot represents the clinical data 928 

associated with a stool sample. Red line indicates the mean, and gray lines represent individual 929 

patients. P values calculated by Wilcoxon signed-rank test. 930 

 931 

Supplementary Figure S2. A-B) Alpha diversity vs. timepoint. Shannon Index (A) calculated 932 

with the R package vegan using species abundance table from Metaphlan4. Microbial richness 933 

(B) represents the number of unique species per sample. Each dot represents a stool sample 934 

(samples=114). P values calculated by Wilcoxon signed-rank test. C) Principal component 935 
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analysis of Bray-Curtis distances before and after ELX/TEZ/IVA. Bray-Curtis distance matrix 936 

computed with vegan. PERMANOVA and PERMDISP computed by the vegan package with the 937 

functions adonis2 and betadisp, respectively. Ellipse depicts the 95% confidence level. D) 938 

Principal component analysis of weighted UniFrac distances before and after ELX/TEZ/IVA. 939 

Weighted UniFrac computed with MetaPhlAn4 R script. PERMANOVA and PERMDISP 940 

computed by the vegan package with the functions adonis2 and betadisp, respectively. Ellipse 941 

depicts the 95% confidence level. E) Principal component analysis of the Bray-Curtis distances 942 

between samples with and without recent antibiotic exposure. Distance matrix generated by the 943 

R package vegan using the MetaPhlAn4 species table. PERMANOVA and PERMDISP 944 

computed in vegan with the functions adonis2 and betadisp, respectively. Ellipse depicts the 945 

95% confidence level.  946 

 947 

Supplementary Figure S3. A-B) Diversity metrics of pre-ELX/TEZ/IVA samples (samples=53 948 

total). Samples are grouped by whether the subject was receiving another CFTR modulator at 949 

the time of sample collection (Yes=8, No=45). C-D) Diversity metrics of pre-ELX/TEZ/IVA 950 

samples (samples=53) compared to post-ELX/TEZ/IVA samples (samples=61). Post-951 

ELX/TEZ/IVA samples were segregated by whether the subject had previously received any 952 

other CFTR modulator (Yes=20 samples, No=41 samples). Shannon Index calculated with the 953 

R package vegan using species abundance table from MetaPhlAn4. Microbial richness 954 

represents the number of unique species per sample. P values calculated by Wilcoxon rank-955 

sum test. 956 

 957 

Supplementary Figure S4. A) Cumulative antibiotic days per 6-months prior to stool sample 958 

collection. P values calculated by Wilcoxon signed-rank test. B) ARG richness (unique genes) 959 

before and after ELX/TEZ/IVA. ARGs were profiled using ShortBRED and the Comprehensive 960 

Antibiotic Resistance Database (CARD). Each dot represents a stool sample (samples=114). P 961 

values calculated by Wilcoxon rank-sum test. C) Cumulative relative abundance (RPKM) of 962 

ARGs conferring resistance to peptide antibiotics. P values calculated by Wilcoxon rank-sum 963 

test. D) Relative abundance (RPKM) of the most prevalent ARGs conferring resistance to 964 

peptide antibiotics. MaAsLin2 FDR is depicted. E) Cumulative relative abundance (RPKM) of 965 

ARGs conferring resistance to other antibiotics. P values calculated by Wilcoxon rank-sum test. 966 

F) Relative abundance (RPKM) of the most prevalent ARGs conferring resistance to other 967 

antibiotics. MaAsLin2 FDR is depicted. 968 

 969 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 21, 2023. ; https://doi.org/10.1101/2023.08.11.23293949doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.11.23293949
http://creativecommons.org/licenses/by-nd/4.0/


Supplementary Figure S5. A) Roseburia faecis relative abundance between samples with and 970 

without recent antibiotic exposure. Each dot represents a stool sample (samples=114). 971 

MaAsLin2 FDR is depicted. B) Relative abundance of respiratory genera in stool samples 972 

before and after ELX/TEZ/IVA. Each dot represents a stool sample (samples=114). MaAsLin2 973 

FDR is depicted. Vertical axis is log10 transformed. Zero values are plotted on the horizontal 974 

axes. 975 

 976 

Supplementary Figure S6. A) Fecal calprotectin (μg/g) vs. study timepoint. Red line indicates 977 

the mean, and gray lines represent individual patients. P values calculated by Wilcoxon signed-978 

rank test. B) Differentially abundant oxidative phosphorylation KEGG orthology (KO) groups 979 

from MaAsLin2 (FDR<0.25). Groups correspond to red points in Fig. 5A. log2(FoldChange), 980 

which is equivalent to MaAsLin2 coefficient, is depicted. C) Taxonomic stratification of 981 

differentially abundant oxidative phosphorylation KO groups. KO groups correspond to groups in 982 

panel A. 983 

 984 

Supplementary Figure S7. Differentially abundant MetaCyc pathways following MaAsLin2 985 

multivariable association modeling, using ELX/TEZ/IVA status, age, and recent antibiotics as 986 

fixed effects in the model. Only pathways with FDR<0.25 are depicted. 987 
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Supplemental Figure 3
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Supplemental Figure 5
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Supplemental Figure 6

KEGG Orthology Groups
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Supplemental Figure 7

MetaCyc Pathway
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