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ABSTRACT 

Aim: Immunocompromised (IC) patients mount poor immune responses to vaccination. Higher-

dose COVID-19 vaccines may offer increased immunogenicity. 

Materials & methods: A pairwise meta-analysis of 98 studies reporting comparisons of mRNA-

1273 (50 or 100 mcg/dose) and BNT162b2 (30 mcg/dose) in IC adults was performed. 

Outcomes were seroconversion, total and neutralizing antibody titers, and cellular immune 

responses. 

Results: mRNA-1273 was associated with a significantly higher seroconversion likelihood 

(relative risk, 1.11 [95% CI, 1.08, 1.14]; P<0.0001; I2=66.8%) and higher total antibody titers 

(relative increase, 50.45% [95% CI, 34.63%, 66.28%]; P<0.0001; I2=89.5%) versus BNT162b2. 

mRNA-1273 elicited higher but statistically nonsignificant relative increases in neutralizing 

antibody titers and cellular immune responses versus BNT162b2. 

Conclusion: Higher-dose mRNA-1273 had increased immunogenicity versus BNT162b2 in IC 

patients. 

 

Keywords: Severe acute respiratory syndrome coronavirus 2, COVID-19, mRNA vaccine, 

mRNA-1273, BNT162b2, immunocompromised, seroconversion, neutralizing antibody, total 

antibody, cellular immunity  
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Introduction 

Several vaccines against SARS-CoV-2, which causes COVID-19, were developed in 

response to the COVID-19 pandemic [1]. Two vaccines using novel messenger ribonucleic acid 

(mRNA) technology were approved for use against COVID-19 [1]: mRNA-1273 (Spikevax®, 

Moderna, Inc., Cambridge, MA, USA) [2] and BNT162b2 (Comirnaty®, Pfizer/BioNTech, New 

York, NY, USA/Mainz, Germany) [3]. Both mRNA-1273 and BNT162b2 administered in a 2-

dose series significantly reduced symptomatic infections and hospitalizations in 

immunocompetent populations evaluated in pivotal studies [4, 5]. The mRNA-1273 and 

BNT162b2 2-dose primary series were also shown to elicit high neutralizing antibody titers 

against the spike protein of SARS-CoV-2, as well as high rates of seroconversion in the general 

population [6, 7].  

People who are immunocompromised (IC) generally mount poor immune responses to 

vaccination because of their immunocompromising conditions or therapies used to treat their 

underlying diseases, rendering them susceptible to infections [8]. IC populations include but are 

not limited to patients with cancer, autoimmune diseases, HIV, or primary or secondary immune 

system deficiencies; solid organ transplant recipients; and patients receiving 

immunosuppressive therapies (eg, B-cell−depleting agents such as anti-CD20 monoclonal 

antibodies) [9].  

Approximately 10 million people in the United States are considered to be IC [10]; 

however, people with IC conditions were excluded from participating in phase 2/3 clinical trials 

of mRNA-1273 and BNT162b2 [4, 5]. Observational studies have demonstrated that IC 

populations are at increased risk of COVID-19−related morbidity and mortality compared with 

the general population [8, 11-13]. One study showed that nearly half (44%) of COVID-

19−associated hospitalizations among vaccinated people (ie, breakthrough hospitalizations) 

occurred in IC individuals [14]. IC patients are also at higher risk of longer courses of infection 
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[15-22] and viral evolution [15-18, 20, 23, 24]. Poor humoral immune responses also exacerbate 

risks posed by new SARS-CoV-2 variants [25-31]. 

High-dose influenza vaccines have been shown to elicit greater immune responses 

compared with standard-dose vaccines in IC populations [32-37]. Higher-dose mRNA COVID-

19 vaccines may offer similar benefits. In addition to differences in the lipid nanoparticle 

component of the vaccines, the primary series of mRNA-1273 contains over 3 times the amount 

of mRNA compared with BNT162b2 (100 mcg/dose vs 30 mcg/dose) and the booster nearly 2 

times (50 mcg/dose vs 30 mcg/dose) [2, 3, 38, 39]. Humoral immune responses to COVID-19 

vaccines have been shown to correlate with clinical efficacy or effectiveness in general [40-42] 

and IC populations [43, 44]. Although randomized controlled trials (RCTs) evaluating the 

comparative immunogenicity of mRNA COVID-19 vaccines in IC populations are lacking, 

observational studies suggest that there are differences in the immune responses elicited by the 

mRNA COVID-19 vaccines in IC populations [28, 45], which may affect protection from severe 

COVID-19 in these vulnerable populations. 

National immunization technical advisory groups, including the Advisory Committee on 

Immunization Practices (ACIP) in the United States, make recommendations on the best use of 

available vaccines in specific populations [46]. ACIP evaluates available evidence according to 

the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) 

framework to formulate vaccine recommendations [47, 48]. For example, a systematic literature 

review (SLR) and pairwise meta-analysis was performed by ACIP to evaluate the evidence for 

high-dose influenza vaccines compared with standard-dose influenza vaccines in adults ≥65 

years old [49]. The results were evaluated using the GRADE framework and ultimately 

supported a recommendation for high-dose influenza vaccines in adults ≥65 years old [49, 50].  

Determining which of the mRNA-based COVID-19 vaccines offer the highest protection 

from disease is essential in preventing poor COVID-19−related outcomes in highly susceptible 

IC populations. Data on the comparative immunogenicity of mRNA-1273 and BNT162b2 in IC 
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populations are therefore urgently needed to inform public health policy. In this SLR and 

pairwise meta-analysis, we compared seroconversion rates, total and neutralizing anti-spike 

antibody titers, and cellular immunity levels in IC individuals after vaccination with 2 or 3 doses 

of mRNA-1273 or BNT162b2. We also applied the GRADE framework to address the following 

healthcare question: Does the 2-dose mRNA-1273 COVID-19 vaccine primary series (100 mcg 

mRNA/dose) or primary series and booster (50 or 100 mcg mRNA/dose) have greater 

immunogenicity in IC populations compared with the 2-dose BNT162b2 COVID-19 vaccine 

primary series or primary series and booster (30 mcg mRNA/dose irrespective of dose type)? 

Methods 

The SLR was performed per the Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses 2020 framework [51]. A separate meta-analysis evaluating the comparative 

clinical effectiveness of mRNA-1273 and BNT162b2 was performed using data extracted from 

the same SLR and published separately [52].  

Search Strategy 

As previously described [52], the main search was conducted in the World Health 

Organization COVID-19 Research Database on April 14, 2022, and updated on December 19, 

2022. Table S1 lists the search strings. 

Study Selection Criteria 

Titles and abstracts were screened against inclusion criteria by 2 independent reviewers 

in level 1. Full texts were evaluated against selection criteria in level 2. A third reviewer 

arbitrated conflicts between reviewers. 

A summary of the population, intervention/exposure, comparison, and outcomes 

described below is shown in Table S2. Studies were included if they were clinical trials, 

observational studies, or any real-world evidence published as manuscripts, letters, 

commentaries, abstracts, or posters reporting immunogenicity outcomes in IC individuals ≥18 
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years of age vaccinated with a homologous primary series of mRNA-1273 or BNT162b2 or the 

primary series followed by a homologous booster within the same study. We defined the primary 

series as either 2 doses of mRNA-1273 (100 mcg mRNA/dose) or BNT162b2 (30 mcg 

mRNA/dose) or used the definition of primary series reported on a per-study basis due to 

globally varying recommendations for a third vaccine dose in IC populations over time. The 

booster dose was defined as a homologous third dose of mRNA-1273 (50 or 100 mcg 

mRNA/dose) or BNT162b2 (30 mcg mRNA/dose). People belonging to clinically extremely 

vulnerable (CEV) groups 1 or 2 [9], which included transplant recipients, patients with cancer, 

primary immunodeficiencies, dialysis or severe kidney disease, poorly controlled HIV infection, 

or autoimmune diseases requiring immunosuppressive therapy, were considered to be IC. 

Recently published SLRs on the same topic were cross-checked to ensure relevant articles 

were not omitted. Studies reporting outcomes in pregnant women, current or former smokers, or 

physically inactive people and those with a heterologous vaccination schedule (ie, mix of 

mRNA-1273 and BNT162b2), only safety data, or study protocols or economic models were 

excluded. 

Outcomes 

Immunogenicity outcomes were selected based on immune correlates of protection 

against SARS-CoV-2 investigated in preclinical and clinical studies of COVID-19 vaccines [42, 

53, 54]. These correlates of protection are associated with lower risk of severe infection at the 

population level; however, the threshold of protection for total antibody and neutralizing 

antibodies has yet to be established [40, 54]. Regulatory authorities have authorized mRNA 

COVID-19 vaccines for emergency use among different age groups, additional primary series 

doses for IC populations, and booster doses through immunobridging (ie, predicting vaccine 

effectiveness based on immunogenicity demonstrated in new populations); the correlates of 

immunity used were seroresponse rates and neutralizing antibody titers [55-57].  
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The primary outcome was the percentage of patients achieving seroconversion after 

vaccination with 2 or 3 doses of mRNA-1273 compared with BNT162b2. Seroconversion was 

defined as the presence of SARS-CoV-2 anti-spike antibodies above the cutoff value indicated 

by the specifications of the manufacturer of the assay used to measure antibody titers following 

vaccination, or as defined in each study based on an evaluation of correlation with plaque 

reduction neutralization tests. Details on assays used in each study are provided in Table S3. 

Secondary outcomes were total anti-spike binding antibody or immunoglobulin G (IgG) titers 

(Table S4), neutralizing anti-spike antibody titers (Table S5), and cellular immune response 

based on interferon (IFN)-γ or interleukin (IL) levels or CD4+/CD8+ T-cell levels (Table S6).  

Outcomes reported after the homologous 2-dose primary series were included in the 

analysis. If not reported, outcomes following the homologous third dose (booster or third full 

dose) were included. For studies reporting multiple time points, outcomes assessed 2 weeks 

after the second dose of the primary series (if only 2 doses were given) or the third dose 

administered were preferentially included. If outcomes 2 weeks after the last dose administered 

were not reported, outcomes assessed at time points ≥2 weeks after the final dose were 

considered instead. For studies reporting multiple IC populations, data were included from 

populations with the highest number of patients, events, or measured antibody titers for each 

study. Total patient population and event numbers or rates were required to be reported for 

seroconversion, and the mean or median was required to be reported for total and neutralizing 

anti-spike antibody titers. If the total population size per vaccine arm was not reported, the study 

was excluded from the meta-analysis. Whenever available, antibody titers assessed by the 

Roche Elecsys platform and in COVID-19–naïve populations were included in the meta-

analysis.  

Total binding antibody titers were preferentially used for the total anti-spike antibody 

outcome if reported; otherwise, anti-spike IgG titers were used. Data for the cellular immune 

response outcome were preferentially taken from IFN-γ− or IL-producing T-cell assays or 
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concentrations, followed by CD4+/CD8+ T-cell counts or mean spot-forming units from ELISpot 

assays. If available, composite scores of the data described above were considered first, 

followed by IFN-γ levels and other IL levels. Studies were required to report mean or median 

levels. Distribution statistics were imputed from available data if they were not reported [58]. 

Data Extraction and Quality Assessment 

Publication details, study and patient characteristics, vaccine type and vaccination 

status, IC condition, background anti-CD20 monoclonal antibody treatment, and immunogenicity 

data were extracted. Risk of bias (RoB) was assessed in accordance with Cochrane review 

guidelines [59] using version 2 of the RoB 2 tool [60] for randomized studies and the Newcastle-

Ottawa scale [61] for observational studies. Observational studies with <7 and ≥7 stars were 

considered to have serious and no serious RoB, respectively. Evidence was evaluated based 

on the GRADE framework [47, 48]. 

Statistical Analysis 

Irrespective of assay type, random-effects meta-analysis models were used to pool risk 

ratios (RRs) across studies and absolute effects as risk difference (RD) per 100,000 individuals 

were calculated across studies for the seroconversion outcome. Inverse variance weights were 

calculated for individual studies with the DerSimonian-Laird method [62]. Relative increase and 

corresponding standard errors in total anti-spike binding or IgG antibody titers, neutralizing 

antibody titers, and cellular immune response outcomes were calculated to compare mRNA-

1273 versus BNT162b2 following the Dubey method as suggested in the Cochrane Handbook 

[58, 63]. Chi-square testing to evaluate heterogeneity across studies was performed [64]. The I2 

statistic was estimated (0%−100%) and interpreted as follows: 0% to 40%, no evidence of 

heterogeneity or heterogeneity might not be important; >40% to 60%, evidence of moderate 

heterogeneity; >60% to 75%, evidence of substantial heterogeneity; and >75%, evidence of 

considerable heterogeneity.  
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Outcomes were analyzed separately for RCTs and nonrandomized studies. To reduce 

heterogeneity introduced by differences in the underlying IC condition and therapies used to 

treat the IC condition, 2 subgroup analyses were conducted. The first subgroup analysis 

analyzed patients with autoimmune disease, solid organ transplant recipients, patients with solid 

tumors, and patients with hematologic malignancies separately. In the second subgroup 

analysis, outcomes were further analyzed separately by prior anti-CD20 treatment versus no 

treatment in IC patients overall and among patients with autoimmune disease and hematologic 

malignancies. 

Results 

Overview of Included Studies 

Of the 5745 nonduplicate articles identified in the main searches, 130 articles reporting 

immunogenicity outcomes in IC patients vaccinated with mRNA-1273 versus BNT162b2 in the 

same study were included in the SLR. Of these, 98 articles were included in the pairwise meta-

analysis (Figure 1). Reasons for excluding articles from the meta-analysis were that the data 

were not suitable for meta-analysis (eg, only event rates reported or data not reported by 

vaccine arm separately; n=13), patients received either a single dose of vaccine or a 

heterologous vaccine series (n=9), the population did not meet CEV groups 1 and 2 or age 

inclusion criteria (n=7), and duplicate studies (eg, preprint version of another included study; 

n=3).  

Characteristics of the studies included in the meta-analysis by outcome are provided in 

Tables S3−S6. Of the 98 articles included in the pairwise meta-analysis overall, 1 study was an 

RCT [65] and the remaining 97 were nonrandomized studies. Seventy-nine nonrandomized 

studies comprising 23,135 patients vaccinated with mRNA-1273 (n=9664) or BNT162b2 

(n=13,471) were analyzed for the overall seroconversion outcome. Forty-five nonrandomized 

studies comprising 8913 patients vaccinated with mRNA-1273 (n=3038) or BNT162b2 (n=5875) 
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and 1 RCT comprising 50 patients vaccinated with mRNA-1273 (n=24) or BNT162b2 (n=26) 

were analyzed for the overall total anti-spike binding antibody or IgG titer outcome. Seven 

nonrandomized studies comprising 592 patients vaccinated with mRNA-1273 (n=236) or 

BNT162b2 (n=356) were analyzed for the overall neutralizing anti-spike antibody titer outcome. 

Fourteen nonrandomized studies comprising 2583 patients vaccinated with mRNA-1273 

(n=878) or BNT162b2 (n=1705) were analyzed for the overall cellular immune response 

outcome. Most studies evaluated the 2-dose primary series (n=81, 82.7%). Patients received 2 

doses of the primary series followed by 1 booster dose in 17 studies (17.3%) [66-82]. Most 

studies did not specify whether the mRNA-1273 booster dose was a true booster (ie, 50 mcg 

mRNA/dose) or a third dose of the primary series (ie, 100 mcg mRNA/dose).  

Assessment of RoB was performed; nearly half of the studies (n=47, 48.0%) were 

determined to have no serious RoB (Table S7; Table S8). Forty-five studies (45.9%) had 

serious RoB, largely because non-IC cohorts were not included or not described if included, 

only 1 cohort was included, or cohort comparability was not assessed or described if multiple 

cohorts were included. RoB was not assessed for 6 articles (6.1%) because they were abstracts 

or research letters.  

Seroconversion 

The meta-analysis of 79 nonrandomized studies overall found that seroconversion was 

significantly more likely with mRNA-1273 compared with BNT162b2 in IC patients (RR, 1.11 

[95% CI, 1.08, 1.14]; P<0.0001; Table 1). The heterogeneity between studies was considered 

substantial (I2=66.8%). Expressed as absolute differences, we found that mRNA-1273 

vaccination would result in seroconversion of 8170.28 more IC patients per 100,000 IC patients 

(95% CI, 6279.09, 10,061.47; P<0.0001; I2=60.3%) compared with BNT162b2 vaccination. 

Similar trends in seroconversion were observed in IC patients analyzed by disease 

subgroup (Table 2). Among solid organ transplant recipients, mRNA-1273 was significantly 
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more likely to result in seroconversion compared with BNT162b2 (RR, 1.29 [95% CI, 1.19, 1.39]; 

P<0.0001; I2=43.5%). In patients with autoimmune disease, seroconversion was significantly 

more likely for mRNA-1273 compared with BNT162b2 (RR, 1.07 [95% CI, 1.03, 1.11]; 

P=0.0002; I2=58.1%). Patients with hematologic malignancies were also significantly more likely 

to seroconvert following mRNA-1273 vaccination versus BNT162b2 (RR, 1.16 [95% CI, 1.09, 

1.24]; P<0.0001; I2=57.0%). mRNA-1273 was not associated with a statistically significant 

difference in likelihood of seroconversion compared with BNT162b2 in patients with solid 

tumors.  

GRADE analysis found that the certainty of evidence of the seroconversion outcome 

overall and in the solid organ transplant and autoimmunity subgroups was downgraded to type 4 

(very low) due to imprecision and indirectness because different assays and antibody thresholds 

were used to assess and define seroconversion across the studies analyzed. Evidence certainty 

in the subgroup of patients with hematologic malignancies was retained as type 3 (ie, the 

maximum certainty possible for nonrandomized studies) because there was a strong 

association in seroconversion likelihood and no issues with imprecision.  

Total Anti-spike Binding Antibody or IgG Titers 

mRNA-1273 elicited a statistically significant relative increase in total anti-spike binding 

antibody or IgG titers versus BNT162b2 (50.45% [95% CI, 34.63%, 66.28%]; P<0.0001) in 45 

nonrandomized studies of IC patients overall (Table 1). However, heterogeneity was 

considerable between studies (I2=89.5%).  

Subgroup analyses showed that patients with solid organ transplant, solid tumors, and 

autoimmune disease vaccinated with mRNA-1273 compared with BNT162b2 had 335.04%, 

104.82%, and 74.75% higher relative increases in total anti-spike binding antibody or IgG titers, 

respectively (Table 3). These findings were statistically significant (all P<0.05). Moderate and 

considerable heterogeneity was found in the solid organ transplant (I2=64.7%) and autoimmune 
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disease (I2=91.8%) subgroups, with no evidence of heterogeneity in patients with solid tumors 

(I2=39.6%). Compared with BNT162b2, a higher relative increase in total anti-spike binding 

antibody or IgG titers in patients with hematologic malignancies was observed in the mRNA-

1273 group; however this finding was not statistically significant (Table 3). 

GRADE evidence certainty for the total binding antibody or IgG titer outcome in IC 

patients overall and by autoimmune disease, solid organ transplant, and solid tumor subgroups 

was type 3 (low); lower grading because of imprecision was offset by higher grading due to a 

strong association in the relative increase in total anti-spike binding antibody or IgG titers. 

Neutralizing Anti-spike Titers 

The SARS-CoV-2 variant against which the neutralization assays were performed was 

not reported in 5 studies [80, 82-85]; neutralization was evaluated against delta, omicron, and 

early WA1/2020 variants in 1 study [86] and against delta, omicron, and D614G/ancestral 

variants in the remaining study [87]. When assessed in IC patients overall from 7 

nonrandomized studies, neutralizing anti-spike titers were not statistically significantly different 

in patients who received mRNA-1273 compared with BNT162b2 (Table 1). mRNA-1273 was 

associated with statistically significant relative increases in neutralizing anti-spike titers 

compared with BNT162b2 (436.78% [95% CI, 164.47%, 709.08%]; P=0.0017) in the subgroup 

of solid organ transplant recipients (Table 4). No evidence of heterogeneity was observed 

(I2=0%). No statistically significant differences in neutralizing anti-spike titers between vaccines 

were observed for the remaining subgroups (Table 4).  

GRADE analysis found the certainty of evidence for the neutralizing anti-spike titer 

outcome in IC patients overall to be type 4 (very low) because of imprecision among the 

nonrandomized studies. 
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Cellular Immune Response 

The meta-analysis of 14 nonrandomized studies reporting cellular immune responses in 

IC patients overall found no statistically significant differences in the relative increase or 

decrease in the cellular immune response elicited by mRNA-1273 versus BNT162b2 (Table 1). 

Consistent with the meta-analysis of cellular immune response in IC patients overall, no 

statistically significant findings were observed in disease subgroups (Table 5). 

Effect of Anti-CD20 Treatment on Outcomes 

B-cell−depleting therapy through anti-CD20−specific monoclonal antibodies used to treat 

some patients with autoimmune disease or hematologic malignancies can severely impair the 

development of immune responses [88]. Therefore, and to account for heterogeneity between 

studies, we performed a subgroup analysis of patients with and without anti-CD20 monoclonal 

antibody treatment overall and in patients with autoimmune disease and hematologic 

malignancies. Vaccination with mRNA-1273 was associated with higher rates of seroconversion 

(Table S9) and elicited higher relative increases in total anti-spike binding antibody or IgG titers 

(Table S10), neutralizing anti-spike antibody titers (Table S11), and cellular immune responses 

(Table S12) in IC patients who received anti-CD20 treatment compared with BNT162b2. 

Generally similar trends were observed in patients with autoimmune disease and hematologic 

malignancies. 

Discussion 

In this SLR and pairwise meta-analysis of IC patients ≥18 years of age vaccinated with 

mRNA COVID-19 vaccines, IC patients who received mRNA-1273 were significantly more likely 

to achieve seroconversion than those who received BNT162b2. Consistent with the 

seroconversion outcome, mRNA-1273 was also associated with a statistically significant relative 

increase in total anti-spike binding antibody or IgG titers over BNT162b2. Neutralizing anti-spike 
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antibody titers were approximately 35% higher in IC patients vaccinated with mRNA-1273 

versus BNT162b2; however, this result was not statistically significant. We also assessed 

cellular immune responses, which have been associated with protection against initial SARS-

CoV-2 infection and viral clearance and may be critical for long-lasting immunity to SARS-CoV-2 

[89]. Although no statistically significant differences in cellular immunity were observed between 

mRNA-1273 and BNT162b2 in this meta-analysis, the cellular immune response was 

approximately 15% higher in IC patients overall who were vaccinated with mRNA-1273 versus 

BNT162b2. Because only 14 nonrandomized studies, each with differing metrics of cellular 

immunity, were included in the meta-analysis for this outcome, it is possible that analyzing a 

larger number of studies with similar outcome definitions may have yielded clearer results.  

Consistent with the practices of ACIP, the GRADE framework was used to evaluate 

evidence in this meta-analysis. Evidence for mRNA-1273 versus BNT162b2 vaccination was 

rated to be type 4 (very low) for the seroconversion, neutralizing antibody titer, and cellular 

immune response outcomes and type 3 (low) for the total antibody titer outcome (Table 6). 

Because IC populations are often excluded from RCTs, all but 1 of the 98 studies included in 

our meta-analysis were observational, nonrandomized studies, so the maximum evidence 

certainty achievable was type 3 (GRADE sets the maximum certainty for evidence derived from 

nonrandomized studies to type 3 [low] [47]). Logistical challenges, such as the rapid 

development and administration of mRNA COVID-19 vaccines in both general and IC 

populations, meant that RCTs designed specifically to test comparative immunogenicity of 

mRNA COVID-19 vaccines in IC patients were not feasible to conduct. Despite obligatory 

reliance on nonrandomized studies, we were able to consistently show strong associations 

between mRNA-1273 and the likelihood of achieving seroconversion and relative increases in 

total antibody titers in the observational studies identified in the SLR.  

Anti-CD20 monoclonal antibody therapy is used to treat some autoimmune diseases (eg, 

multiple sclerosis) [90] and hematologic malignancies characterized by aberrant B-cell 
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proliferation (eg, non-Hodgkin lymphoma) [91]. Anti-CD20 therapy depletes B cells, possibly 

rendering patients receiving this therapy susceptible to SARS-CoV-2 infection and severe 

COVID-19 because of impaired humoral immune responses [88]. Our meta-analysis included 

studies of patients both with and without anti-CD20 treatment, which, while increasing the 

heterogeneity observed in some outcomes, allowed the impact of anti-CD20 treatment on 

differential immunogenicity of mRNA-1273 and BNT162b2 to be analyzed. Consistent with the 

overall IC population, mRNA-1273 was more likely to result in seroconversion and induce higher 

humoral and cellular immune responses than BNT162b2 in patients with anti-CD20 treatment. 

Although our findings were not statistically significant, in the absence of robust RCTs evaluating 

mRNA COVID-19 vaccines in IC populations receiving anti-CD20 therapy, they suggest that 

mRNA-1273 may be more immunogenic than BNT162b2 in this population at even greater risk 

for severe COVID-19 compared with the overall IC population.  

Limitations of our study are that non-English studies were excluded from the SLR and 

that publication bias was not assessed in the meta-analysis. Furthermore, we observed 

considerable heterogeneity, in part due to differing study designs (eg, case control, cohort), 

differences in the number of vaccine doses or booster doses administered by study as well as 

lack of detail regarding mRNA dosage in reported mRNA-1273 booster doses, differing outcome 

definitions between studies, and differences in methods and assays used to measure antibody 

titers. Changing prevalence of variants of concern over time and differing immune responses to 

the variants as well as the heterogenous nature of IC conditions and background treatments 

(eg, anti-CD20 therapy, immunoglobulin replacement therapy) also contributed to the 

heterogeneity we observed. To address some of these limitations, we conducted subgroup 

analyses by IC condition and anti-CD20 treatment subgroups as previously discussed, 

preferentially included antibody titers from the Roche Elecsys platform where available, and 

used relative increase or decrease in humoral and cellular immunity outcomes to mitigate the 
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heterogeneity caused by multiple outcome definitions and cutoffs. Although these strategies 

reduced heterogeneity, more data are needed to address all the limitations of our meta-analysis.  

As previously described [52], differences in prescribing behavior or the impact of vaccine 

choice could not be accounted for in our meta-analysis. Besides mRNA dose in mRNA-1273 

and BNT162b2, other differences in vaccine formulation or delivery, such as the type of lipid 

nanoparticle encapsulating the mRNA, mRNA translation efficiency, and vaccination schedule 

(4 vs 3 weeks between doses of the primary series), may have impacted immunogenicity.  

In conclusion, our meta-analysis of mostly observational studies showed that vaccination 

with a higher-dose mRNA-1273 primary series (100 mcg mRNA/dose) or primary series and 

booster (50 or 100 mcg mRNA/dose) was more likely to result in seroconversion and elicited 

higher total anti-spike antibody titers than the BNT162b2 primary series or primary series and 

booster (30 mcg mRNA/dose irrespective of dose type). These findings suggest that immune 

responses to SARS-CoV-2 vaccination could be optimized in IC patients by selecting an 

appropriate mRNA vaccine and can help inform vaccine strategy in high-risk, 

immunosuppressed populations. 
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45 nR NS Seriousg Seriousb Serioush 
Strong 

association 
— — 

50.45% 

(34.63%, 

66.28%) 

— Type 3i Critical 

Neutralizing antibody titers 

7 nR NS Seriousj Seriousb 
Very 

seriousk 
None — — 

34.95% 

(−15.79%, 

85.69%) 

— Type 4l Critical 

Cellular immune response 

14 nR NS Seriousm Seriousb 
Very 

seriousn 
None — — 

14.69% 

(−5.17%, 

34.55%) 

— Type 4l Critical 

GRADE, Grading of Recommendations, Assessment, Development, and Evaluation; nR, nonrandomized; NS, not serious; R, randomized; RCT, randomized controlled trial; RoB, risk 
of bias. 
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Relative effect is shown as risk ratio for the seroconversion outcome and relative increase in total and neutralizing antibody titers or cellular immune response for the remaining 
outcomes. 
aI²=66.8%, Χ²=235.2, p(Q)=0; substantial heterogeneity. 
bOutcome definitions were heterogeneous (various antibody types tested through many assays). 
cWider 95% CI due to only 1 event in the mRNA-1273 arm in Gallais 2022 and Werbel 2021 and the overall small sample size of Werbel 2021. 
dLower grading due to imprecision and indirectness because of varying outcome definitions (various antibody types tested through many assays). 
eI²=0%, Χ²=0, p(Q)=1; no issues of heterogeneity or inconsistency. 
fLower grading due limited evidence and higher grading due to RCT evidence. 
gI²=89.5%, Χ²=417.88, p(Q)=0; considerable heterogeneity. 
hWide 95% CI for mean antibody levels per arm in Helfgott 2023 and Narasimhan 2021. 
iLower grading due to imprecision and higher grading due to strong association in relative increase. Type 3 due to nonrandomized studies. 
jI²=53.2%, Χ²=12.81, p(Q)=0.05; moderate heterogeneity. 
kWide 95% CI due to wide IQR and range for mean antibody levels per arm in Andreica 2022 and Manjappa 2022. 
lLower grading due to imprecision and nonrandomized studies. No strong association identified, therefore type 4. 
mI²=76.2%, Χ²=54.56, p(Q)=0; considerable heterogeneity. 
nWide 95% CI due to wide IQR for mean antibody levels per arm in Stumpf 2022. 
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Table 2. GRADE Summary of Seroconversion by Disease Subgroup 

Certainty Assessment Vaccinated 

with mRNA-

1273, n/N 

(%) 

Vaccinated 

with 

BNT162b2, 

n/N (%) 

RR 

(95% 

CI) 

Absolute 

Effect (95% 

CI) 

Certainty Importance Studies, 

n 

Study 

Design 
RoB Inconsistency Indirectness Imprecision 

Other 

Considerations 

Autoimmune disease 

20 nR NS Seriousa Seriousb 
Very 

seriousc 

Strong 

association 

1724/1979 

(87.1) 

3943/4790 

(82.3) 

1.07  

(1.03, 

1.11) 

6032.12 

more per 

100,000 

(3068.95, 

8995.3) 

Type 4d Critical 

Solid organ transplant 

21 nR NS Seriouse Seriousb 
Very 

seriousf 

Strong 

association 

1117/1852 

(60.3) 

1442/2999 

(48.1) 

1.29  

(1.19, 

1.39) 

14,229.94 

more per 

100,000 

(11,269.98, 

17,189.9) 

Type 4d Critical 

Cancer (solid tumors and hematologic malignancies) 

30 nR NS Seriousg Seriousb 
Very 

serioush 

Strong 

association 

2362/3156 

(74.8) 

2721/4232 

(64.3) 

1.11  

(1.06, 

1.17) 

7860.6 more 

per 100,000 

(4543.3, 

11,177.9) 

Type 4d Critical 

Hematologic malignancy 

25 nR NS Seriousi Seriousb NS 
Strong 

association 

2081/2803 

(74.2) 

2271/3573 

(63.6) 

1.16  

(1.09, 

1.24) 

10,490.65 

more per 

100,000 

(6535.24, 

14,446.05) 

Type 3j Critical 

GRADE, Grading of Recommendations, Assessment, Development, and Evaluation; nR, nonrandomized; NS, not serious; RoB, risk of bias; RR, risk ratio. 
aI²=58.1%, Χ²=45.38, p(Q)=0; moderate heterogeneity. 
bOutcome definitions rather heterogeneous (various antibody types tested through many assays). 
cWider 95% CI due to only 3 events in the mRNA-1273 arm and overall small sample size in Hammer 2022. 
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dLower grading due to imprecision and indirectness because of varying outcome definitions (different antibody types and assays used). 
eI²=43.5%, Χ²=35.42, p(Q)=0.02; no evidence of heterogeneity. 
fWider 95% CI due to only 1 event in the mRNA-1273 arm in Gallais 2022 and Maillard 2022 and the overall small sample size of the mRNA-1273 arm of Werbel 2021. 
gI²=59.2%, Χ²=71.11, p(Q)=0; moderate heterogeneity. 
hWider 95% CI due to only 2 events in the mRNA-1273 arm and overall small sample size of Macrae 2022. 
iI²=57.0%, Χ²=55.86, p(Q)=0; moderate heterogeneity. 
jHigher grading due to strong association in RR. No issues with imprecision. Type 3 due to nonrandomized studies. 
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Table 3. GRADE Summary of Total Anti-spike Binding Antibody and IgG Titers by Disease Subgroup 

Certainty Assessment Relative 

Increase (95% 

CI) 

Certainty Importance 
Studies, n 

Study 

Design 
RoB Inconsistency Indirectness Imprecision Other Considerations 

Autoimmune disease 

16 nR NS Seriousa Seriousb Very seriousc Strong association 

74.75% 

(41.90%, 

107.59%) 

Type 3d Critical 

Solid organ transplant 

6 nR NS Seriouse Seriousb Very seriousf Strong association 

335.04% 

(29.76%, 

640.33%) 

Type 3d Critical 

Solid tumor 

5 nR NS NSg Seriousb Very serioush Strong association 

104.82% 

(38.58%, 

171.06%) 

Type 3d Critical 

Hematologic malignancy 

12 nR NS Seriousi Seriousb Very seriousj None 

0.85% 

(−16.60%, 

18.30%) 

Type 4k Critical 

GRADE, Grading of Recommendations, Assessment, Development, and Evaluation; IgG, immunoglobulin G; IQR, interquartile range; nR, nonrandomized; NS, not serious; RoB, risk 
of bias. 
aI²=91.8%, Χ²=183.79, p(Q)=0; substantial heterogeneity. 
bOutcome definitions were rather heterogeneous (various antibody types tested through various assays). 
cWide 95% CI because of imputation of standard error by mean standard deviation over all studies in analysis in Verstappen 2022. 
dLower grading due to imprecision, higher grading due to strong association in relative increase or decrease. Type 3 due to nonrandomized studies. 
eI²=64.7%, Χ²=14.16, p(Q)=0.01; substantial heterogeneity. 
fWide 95% CI for mean antibody levels per arm in Narasimhan 2021. 
gI²=39.6%, Χ²=6.62, p(Q)=0.16; no issues of heterogeneity or inconsistency. 
hWide 95% CI because of wide IQR for mean antibody levels per arm in Su 2022. 
iI²=36.6%, Χ²=17.36, p(Q)=0.1; no evidence of heterogeneity. 
jWide 95% CI for mean antibody levels per arm in Helfgott 2022. 
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kLower grading due to imprecision and nonrandomized studies. No strong association identified, therefore type 4. 
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Table 4. GRADE Summary of Neutralizing Anti-spike Titers by Disease Subgroup 

Certainty Assessment Relative 

Increase (95% 

CI) 

Certainty Importance 
Studies, n 

Study 

Design 
RoB Inconsistency Indirectness Imprecision Other Considerations 

Autoimmune disease 

3 nR NS NSa Seriousb Very seriousc None 

32.87% 

(−54.31%, 

120.04%) 

Type 4d Critical 

Solid organ transplant 

1 nR NS NSe Seriousb NS Limited evidence 

436.78% 

(164.47%, 

709.08%) 

Type 4d Limited evidence 

Solid tumor 

1 nR NS NSe Seriousb NS Limited evidence 

114.17% 

(−44.07%, 

272.42%) 

Type 4d Limited evidence 

Hematologic malignancy 

1 nR NS NSe Seriousb NS Limited evidence 

2.41% 

(−25.67%, 

30.48%) 

Type 4d Limited evidence 

GRADE, Grading of Recommendations, Assessment, Development, and Evaluation; IQR, interquartile range; nR, nonrandomized; NS, not serious; RoB, risk of bias. 
aI²=0%, Χ²=1.17, p(Q)=0.56; no issues of heterogeneity or inconsistency. 
bOutcome definitions were rather heterogeneous (various antibody types tested through various assays). 
cWide 95% CI because of wide IQR for mean antibody levels per arm in Andreica 2022. 
dLower grading due limited evidence and nonrandomized studies, therefore type 4. 
eI²=0%, Χ²=0, p(Q)=1; no issues of heterogeneity or inconsistency. 
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Table 5. GRADE Summary of Findings for Cellular Immune Response by Disease Subgroup 

Certainty Assessment Relative 

Increase (95% 

CI) 

Certainty Importance 
Studies, n 

Study 

Design 
RoB Inconsistency Indirectness Imprecision Other Considerations 

Autoimmune disease 

6 nR NS Seriousa Seriousb Very seriousc None 

13.55% 

(−14.21%, 

41.31%) 

Type 4d Critical 

Solid organ transplant 

2 nR NS NSe Seriousb Very seriousf Limited evidence 

105.58% 

(−9.56%, 

220.71%) 

Type 4d Limited evidence 

Solid tumor 

1 nR NS NSg Seriousb Very serioush Limited evidence 

72.77% 

(−10.33%, 

155.87%) 

Type 4d Limited evidence 

Hematologic malignancy 

3 nR NS Seriousi Seriousb Very seriousj None 

43.78% 

(−40.22%, 

127.77%) 

Type 4d Critical 

GRADE, Grading of Recommendations, Assessment, Development, and Evaluation; IQR, interquartile range; nR, nonrandomized; NS, not serious; RoB, risk of bias. 
aI²=63.9%, Χ²=13.84, p(Q)=0.02; substantial heterogeneity. 
bOutcome definitions were rather heterogeneous (various antibody types tested through various assays). 
cWide 95% CI because of imputation of standard error by mean standard deviation over all studies in analysis in Verstappen 2022. 
dLower grading due to imprecision and nonrandomized studies. No strong association identified, therefore type 4. 
eI²=0%, Χ²=0.38, p(Q)=0.54; no issues of heterogeneity or inconsistency. 
fWide 95% CI because of the wide IQR for mean antibody levels per arm in Stumpf 2022. 
gI²=0%, Χ²=0, p(Q)=1; no issues of heterogeneity or inconsistency. 
hWide 95% CI because of wide IQR for mean antibody levels per arm in Su 2022. 
iI²=75.6%, Χ²=8.2, p(Q)=0.02; considerable heterogeneity. 
jWide 95% CI for mean antibody levels per arm in Mairhofer 2021.  
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Table 6. Summary of Evidence for Outcomes of Interest 

Outcome Outcome 

Importancea 

Included in Evidence Profile Certainty 

Seroconversion Critical Yes Type 4 (very low) 

Total anti-spike binding antibody or IgG titers Critical Yes Type 3 (low) 

Neutralizing anti-spike antibody titers Critical Yes Type 4 (very low) 

Cellular immune response Critical Yes Type 4 (very low) 

GRADE, Grading of Recommendations, Assessment, Development, and Evaluation; IgG, immunoglobulin G. 

aRelative importance of outcomes assessed and ranked per the GRADE framework. 
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FIGURE LEGENDS 

Figure 1. PRISMA flow diagram. Searches were first performed on April 14, 2022, 

followed by an update on December 19, 2022. *Databases searched include 

ICTRP, Embase, EuropePMC, medRxiv, Web of Science, ProQuest Central, 

Academic Search Complete, Scopus, and COVIDWHO. **Includes internal 

documents from Moderna and recently published SLRs. ICTRP, International 

Clinical Trials Registry Platform; PRISMA, Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses; SLR, systematic literature review; 

WHO, World Health Organization. 

Figure 2. Summary of the seroconversion meta-analysis by disease subgroup. 

Likelihood of seroconversion in IC patients vaccinated with mRNA-1273 vs 

BNT162b2 overall and by disease subgroup are shown. IC, 

immunocompromised. 
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Figure 1. PRISMA flow diagram 
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Figure 2. Summary of seroconversion meta-analysis by disease subgroup 
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