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Abstract  

Background 
Depressive symptoms are rising in the general population and can lead to depression years later, 

but the contributing factors are less known. Although the link between sleep disturbances and 

depressive symptoms has been reported, the predictive role of sleep on depressive symptoms 

severity (DSS) and the impact of anxiety and brain structure on their interrelationship at the 

individual subject level remain poorly understood.  
Methods 
Here, we used 1813 participants from three population-based datasets. We applied ensemble 

machine learning models to assess the predictive role of sleep, anxiety, and brain structure on 

DSS in the primary dataset (n = 1101), then we tested the generalizability of our findings in two 

independent datasets. In addition, we performed a mediation analysis to identify the effect of 

anxiety and brain structure on the link between sleep and DSS.  

Results 
We observed that sleep quality could predict DSS (r = 0.43, rMSE = 2.73, R2 = 0.18), and adding 

anxiety strengthened its prediction (r = 0.67, rMSE = 2.25, R2 = 0.45). However, brain structure 

(alone or along with sleep/anxiety) did not predict DSS. Importantly, out-of-cohort validations of 

our findings in other samples provided similar findings. Further, anxiety scores (not brain 

structure) could mediate the link between sleep quality and DSS.  

Conclusion 
Taken together, poor sleep quality and anxiety symptoms could predict DSS across three cohorts. 

We hope that our findings incentivize clinicians to consider the importance of screening and 

treating subjects with sleep and anxiety problems to reduce the burden of depressive symptoms. 

 

Keywords: Sleep quality; Anxiety; Depressive symptoms severity; Gray matter volume; Machine 

learning  
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Introduction 
In modern societies, about 25% of the general population presents depressive symptoms such 

as sadness, irritability, anhedonia, low motivation, distracted concentration, worthlessness, 

abnormal appetite, and sleep disturbance [1, 2]. Depressive symptoms have dramatically 

increased in general populations from 1991 to 2018, mainly in young women [3]. Recent findings 

during the COVID-19 pandemic observed that the prevalence of depressive symptoms increased 

about 3-fold compared to the earlier population-based estimates of the mental health [4]. Critically, 

depressive symptoms could predict major depressive disorder (MDD)  around 15 years later in 

white adults [5]. Hence, screening subjects with depressive symptoms in the general population 

is essential for decreasing the rate, burden, and severity of depression [6]. In addition, a high 

conversion rate of depressive symptoms to MDD [5] and the noticeable health-related and 

economic burden of depressive problems in the general population [7] make it imperative to 

identify the associated behavioral and brain factors of depressive phenotype. 

A human being's life experiences ascertain mood impairment after night(s) of sleep 

disturbances, suggesting a robust link between poor sleep and depressive symptoms [8-10]. In 

particular, several meta-analyses suggested that sleep disturbance, and particularly insomnia, 

are critical risk factors for developing depression [11-14]. On the other hand, 

insomnia/hypersomnia are among the diagnostic criteria of MDD, suggesting a bidirectional 

association. Treatment of sleep problems reduces depressive symptoms and MDD [15-17], 

suggesting that targeting sleep quality is necessary for the management of depressive problems. 

The open question is whether depressive symptoms can be predicted based on sleep quality 

scores at the individual subject level and what are the underlying behavioral and brain factors to 

their association. 

Anxiety is the most prominent mental condition that co-occurs with both sleep disturbance 

and depression [10, 18]. Moreover, a growing body of neuroimaging evidence highlighted the 

structural and functional brain alterations, mainly in the default mode and salience networks, on 

the interplay between sleep and depressive symptoms [19]. Using the Human Connectome 

Project in young adults (HCP-Young) cohort, Cheng and colleagues [20] demonstrated that 

increased functional connectivity between several brain regions mediates the association 

between depressive symptom severity (DSS) and sleep quality. Existing behavioral and 

neuroimaging studies on the link between sleep and depressive symptoms have used 

conventional statistical methods (mainly correlations) using a single cohort [19], which are prone 

to deliver poor generalizability in other samples. Thus, the “real world” challenge is a prediction 
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of symptoms (i.e., DSS) in unseen data or independent samples to achieve generalization to 

future cases that can not be answered in traditional statistical approaches based on a single 

sample. Advanced machine learning (ML) predictive models provide hope to identify the role of 

contributing neurobehavioral factors in predicting depressive problems across various general 

populations samples, which is crucial for precision psychiatry and ultimately guiding clinical 

practice [21, 22]. Thus, aiming to address the reproducibility gap in the literature, we applied ML 

approaches in the HCP-Young dataset to make a predictive model for DSS based on sleep 

quality, anxiety, and gray matter volume (GMV). Based on the trained ML models in the HCP-

Young, out-of-cohort validation of our ML algorithm was conducted on two independent large-

scale datasets (the lifespan Human Connectome Project (HCP-Aging) and enhanced Nathan 

Kline Institute-Rockland sample (eNKI)) to understand the generalizability of our models across 

different cohorts. In addition, we aimed to understand the mediatory role of anxiety and GMV in 

the association between sleep quality and DSS in the HCP-Young sample.  

 
Methods and materials  

Participants  
In this study, the HCP-Young dataset was the primary dataset acquired by the Washington 

University-University of Minnesota (WU-Minn HCP) consortium ffund [23]. Out of the 1206 

participants, we selected 1101 participants who had structural MRI images and phenotypic data 

that we were interested in in this study, i.e., sleep quality, anxiety, and depressive symptoms. For 

out-of-cohort validation, we used 334 participants from the eNKI dataset 

(http://fcon_1000.projects.nitrc.org/indi/enhanced/) [24] and 378 participants from the HCP-

Ageing dataset (https://www.humanconnectome.org/) [25]. Notably, participants of all datasets 

were from general populations. 

Behavioral measures 
Sleep quality: Sleep quality assessment was based on the self-reported PSQI questionnaire [27], 

which has 19 questions assessing sleep quality over a one-month period. The PSQI comprises 

seven components, namely subjective sleep quality, sleep latency, sleep duration, habitual sleep 

efficiency, sleep disturbances, use of sleep medicine, and daytime dysfunction. The total PSQI 

score is a sum of these components. Of note, the higher total PSQI score (> 5) reflects poor sleep 

quality.  
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DSS: Depressive symptoms were measured based on the DSM-IV-oriented depressive problems 

portion of the Achenbach Adult self-report for age 18-59 [26]. This questionnaire has 123 items 

in general, and a total depressive score obtained from 14 depressive-related items, ranges from 

0 to 28 points. The higher score reveals severe depressive symptoms. Notably, there are two 

sleep-related items in this questionnaire, which have been removed in our primary ML analyses 

and mediation analysis. These questions were “I sleep more than most other people during the 

day and/or night” and “I have trouble sleeping”. We calculated the total score of depressive 

problems after removing sleep-related items and used this total score in our analyses. Further, 

as a confirmatory analysis, we examined the original DSS involving these two sleep-related items. 

Anxiety: Anxiety score was measured using six relevant items of DSM-IV-oriented Achenbach 

Adult self-report for age 18-59. None of these items are related to sleep or depressive problems. 

Similar to DSS, the total score of anxiety has been used in our study and a higher anxiety score 

shows more anxiety problems. 

Calculation of gray matter parcel volume 
T1 structural MRI images were acquired by Siemens 3T Skyra scanner and preprocessed using 

the WU-Minn HCP consortium pipelines [27]. We performed voxel-based morphometry (VBM) 

using the Computational Anatomy Toolbox (CAT12) [28], implemented in the Statistical 

Parametric Mapping (SPM12, https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). During this 

process, we corrected bias-field distortions and after noise removal and skull striping, the images 

were normalized to standard space MNI-152. Then, we segmented the brain tissue into gray 

matter, white matter, and cerebrospinal fluid. Subsequently, we modulated the gray matter 

segments for the non-linear transformations performed during normalization to obtain the actual 

volumes. GMVs of the cortical, subcortical, and cerebellar areas were assessed using 

functionally-informed in-vivo atlases (400 cortical parcels from Schaefer atlas [29], 36 subcortical 

parcels from Brainnetome [30], and 37 cerebellar parcels from Buckner [31]), resulting in 473 

brain parcels, as applied previously [32]. 

Statistical analyses 

Prediction analysis in the HCP-Young dataset 
Ensemble decision tree models were employed to predict DSS based on sleep quality using 

MATLAB R2020a software [33]. Ensemble methods of these models were LS-boost and bagging, 

which were applied as a hyperparameter to be selected by the algorithm. Further, we performed 

nested 10-fold cross-validation considering the family structure of subjects, in which twins and 
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siblings were not separated in the training, validation, and test sets to avoid potential leakages. 

Age, sex, and total GMV were regressed out from features by using the parameters from the 

regression model estimated in the training sets for the test sets. Then, features of training sets 

were ranked and sorted (from the maximum importance to the minimum importance) by the relief 

method to enable the algorithm to select features based on the maximum rank [34]. After putting 

aside the validation sets, models were trained in each remained training set ten times with ten 

different feature numbers so that the number of features was also selected automatically based 

on the minimum error of prediction in the validation sets. In this stage, hyperparameters were 

optimized using Bayesian method [35], with 100 iterations. Finally, models with minimum 

prediction error in validation sets were selected and fitted on the entire training sets (training + 

validation) and used to predict unseen test sets. Thus, in the end, we had ten models (one model 

for each test set), and our ML pipeline could select different algorithms LS-Boost/bagging along 

with its hyperparameters and different feature numbers for each fold. These predictive models 

had 19 input features consisting of PSQI questions. Subsequently, we added anxiety (total score) 

and whole-brain GMV (n = 473) features to measure the role of anxiety and GMV in DSS 

prediction. Of note, we did not perform a feature section for models with just sleep quality features. 

Moreover, in several confirmatory analyses, we removed participants with a history of diagnosed 

depression, we included sleep-related items of DSS, and we used seven components of PSQI 

(instead of individual items) as described in the supplement. 

Out-of-cohort validation in two independent datasets 
We used two independent large-scale datasets to test whether the results of ML models using 

the HCP-Young dataset are robust and generalizable to other datasets (the eNKI and HCP-

Aging). After training ML models on the HCP-Young dataset, we had ten models which we used 

to predict the individual DSS in other datasets and averaged the results of all ten models for each 

person. Of note, we did not tune our models nor perform cross-validation for two independent 

datasets. Put differently, we used these independent datasets solely for prediction and used the 

regression model of the primary dataset (HCP-Y) for regressing out age, sex, and total GMV in 

these datasets as well. All the phenotypic data (sleep quality, anxiety, and DSS) were obtained 

from the same questionnaires across the three datasets. Details of this analysis are provided in 

the supplement. 

Mediation analysis 
The structural equation modeling (SEM) using Amos 24.0 software [36] was applied to statistically 

model the underlying mechanisms of the link between total sleep quality and DSS scores. In this 
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analysis, a latent variable from brain GMV has been made and used in models. Mediation analysis 

investigates how much of the covariance between two variables can be explained by the mediator 

variable(s). Age, sex, and total GMV were controlled in mediation analyses. More details of 

mediation analysis are provided in the supplement. 

 
Results 
Demographics 
The primary dataset of this investigation (HCP-Young) included 1101 participants (22–35 year, 

mean age = 28.79 ± 3.69, 54.3% female), 103 of whom (9%) had a history of DSM-IV-based 

depression episodes during their lifetime. The detailed demographic characteristics of participants 

are provided in Table 1. We had two other different datasets for out-of-cohort validation analysis 

i.e., the HCP-Aging and eNKI. We included 378 participants (36–59 year, mean age = 47.3 ± 7, 

57.9% female) from the HCP-Aging dataset and 334 participants (18–59 year, mean age = 37 ± 

13.8, 62% female) from the eNKI dataset. 

 

Sleep and anxiety predicted DSS in the HCP-Young dataset 
The details of ML pipeline for training and evaluation of models in the HCP-Young dataset are 

presented in Fig. 1. ML models based on sleep quality could predict DSS (unseen data during 

model training, r = 0.43, rMSE = 2.73, R2 = 0.18, CI = 3.33 – 3.50) (Fig. 2A). Adding anxiety score 

to sleep quality features improved the prediction drastically (r = 0.67, rMSE = 2.25, R2 = 0.45, CI 

= 3.33 – 3.57) (Fig. 2B). Whereas adding GMV features to the sleep quality (r = 0.41, rMSE = 

2.76, R2 = 0.16, CI = 3.35 – 3.52) and combination of sleep quality and anxiety (r = 0.66, rMSE = 

2.26, R2 = 0.44, CI = 3.37 – 3.40) did not improve their prediction (Fig. 2C,D). Furthermore, GMV 

alone could not predict DSS (r = 0, rMSE = 3.09, R2 = 0.05), but anxiety could predict DSS (r = 

0.62, rMSE = 2.37, R2 = 0.38). The combination of GMV and anxiety (r = 0.61, rMSE = 2.38, R2 = 

0.38) predicted DSS (eFigure 7 in the supplement). Based on the designed method, ML 

algorithm automatically selected different feature numbers in each fold, but the selected 

hyperparameter of the method for all folds of all models was LS-boost. To assess the robustness 

of our findings, we performed several confirmatory analyses. ML analysis after removing 103 

participants with a history of depression showed similar results e.g., a combination of sleep quality 

and anxiety predicted DSS similarly (r = 0.61, rMSE = 2.18, R2 = 0.37) (eFigure 3 in the 
supplement). Also, the results were similar for the model based on a combination of sleep quality 

and anxiety (r = 0.71, rMSE = 2.42, R2 = 0.50) using the original DSS scores (not excluding two 
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sleep-related questions from the DSS questionnaire) (eFigure 6 in the supplement). Moreover, 

repeating the analyses based on seven components of PSQI (instead of 19 questions of the self-

reported Pittsburgh sleep quality index (PSQI)) also revealed robust results in predicting DSS (r 

= 0.64, rMSE = 2.32, R2 = 0.41, based on a combination of sleep quality and anxiety) (eFigure 4 
in the supplement). The feature importance in the ML model demonstrated that sleep-related 

daytime dysfunction, sleep disturbance, and subjective sleep quality were more important than 

other sleep components in predicting DSS (eFigure 5 in the supplement). 

Sleep and anxiety predicted DSS in the HCP-Aging and eNKI datasets 
Interestingly, we were able to predict DSS in both HCP-Aging and eNKI cohorts using models 

which were trained by the HCP-Young dataset (Fig. 3A&B). In the HCP-Aging dataset, sleep 

quality features could predict DSS robustly (r = 0.57, rMSE = 2.64, R2 = 0.27, CI = 3.27 – 3.54). 

Further, adding anxiety score to sleep quality features could improve the prediction in this dataset 

(r = 0.72, rMSE = 2.19, R2 = 0.50, CI = 2.97 – 3.33). Adding GMV features to the sleep quality (r 

= 0.56, rMSE = 2.65, R2 = 0.27, CI = 3.23 – 3.48) and a combination of sleep quality and anxiety 

score (r = 0.72, rMSE = 2.21, R2 = 0.49, CI = 3.04 – 3.40) provided similar results to the primary 

(HCP-Young) dataset.  

Similarly, in the eNKI dataset, sleep quality predicted DSS (r = 0.50, rMSE = 2.70, R2 = 

0.16, CI = 3.54 – 3.85), and a combination of sleep quality and anxiety score predicted DSS (r = 

0.66, rMSE = 2.34, R2 = 0.38, CI = 3.31 – 3.73). Adding GMV features to the sleep quality could 

not improve the prediction (r = 0.51, rMSE = 2.68, R2 = 0.18, CI = 3.49 – 3.78) and a combination 

of sleep quality, anxiety, and GMV (r = 0.68, rMSE = 2.29, R2 = 0.40, CI = 3.34 – 3.74) revealed 

the same result as the HCP-Young dataset. 

 

Mediatory role of anxiety and GMV on the link between sleep quality and DSS in the HCP-
Young 
We observed a significant mediatory role of anxiety in the relationship between sleep quality and 

DSS (eFigure 1 in the supplement). Anxiety score partially mediated 52.6% of the total effect 

size (p < 0.001). In this mediation analysis, GMV could not mediate the link between sleep quality 

and DSS.  

 

Discussion 
The main findings of this study pointed out that sleep quality could predict DSS in three 

independent datasets and adding anxiety (but not GMV) to the sleep quality enhanced such 
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prediction. Our confirmatory ML analyses to consider sleep-related questions of DSS, excluding 

participants with a depression history, and repeating the analyses based on seven components 

of PSQI revealed similar results, indicating the robustness of our prediction results. Remarkably, 

the prediction of DSS based on sleep and anxiety features was supported in two other large-scale 

datasets, suggesting the generalizability of our ML models. Moreover, we found that anxiety (but 

not GMV) mediated the link between sleep quality and DSS. To our knowledge, this is the first 

study that assessed the prediction of DSS based on sleep quality, anxiety, and GMV using the 

ML models in three independent general population samples.  

Our findings are consistent with a body of literature showing that sleep disturbance is 

associated with depressive problems in previous meta-analyses [11-14]. In large-scale population 

cohorts, it has also been shown that sleep quality is associated with depressive symptoms [9, 20]. 

However, our study aimed to predict DSS based on sleep quality in different samples instead of 

investigating only the correlation between them. Animal models revealed that neonatal sleep 

disturbance could lead to adulthood depressive symptoms [37, 38]. Longitudinal human studies 

showed that people with sleep initiation problems might experience depression over the next 3-6 

years of their life [39, 40]. Interestingly, toddlers' sleep problems at the age of 18 months predicted 

depressive symptoms at the age of 8 years old [41]. Although these studies have not used ML 

models to be able to predict individual DSS in another sample, they suggest that poor sleep could 

be a critical predictor for DSS. A recent ML study [42] demonstrated that sleep disorder is one of 

the most important features to predict depression, particularly in individuals with hypertension. 

They predicted a binary definition (existence/nonexistence) of depression among adults with 

hypertension, while our study predicted a wide (0-28) continuous range of depressive symptoms 

in three databases. Another large-scale ML-based study found that sleep duration is one of the 

top five predictors of DSS among home-based older adults [43]. Our findings support this 

hypothesis, although does not show any causality between sleep and DSS. The cross-sectional 

nature of our study precludes the assessment of the long-term causal pathways in the general 

population. Thus, the longitudinal role of poor sleep (using both subjective and objective sleep 

assessments) in developing clinical MDD has to be examined in the future. 

In the present study, anxiety improved the prediction of DSS to sleep quality features (r = 

0.71) and also had an indirect effect (51.2%) in mediating the link between sleep quality and DSS. 

The strong interplay between sleep disturbances, anxiety, and depression has been well-

documented earlier [18, 44], and our study supports such findings. For example, short and long 

sleep duration are predictors of depression and anxiety in a large cohort [45]. The additive role of 
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anxiety to sleep in DSS prediction is further supported by the notion that sleep loss increases 

preemptive responding in the amygdala and anterior insula during the affective anticipation [46]. 

Poor sleep loss is linked to abnormal activity in the medial prefrontal cortex, amygdala, insula, 

and anterior cingulate cortex, which were associated with higher levels of next-day anxiety [47]. 

An earlier study using the HCP-Young sample indicated that functional connectivity between the 

lateral orbitofrontal cortex, dorsolateral prefrontal cortex, anterior and posterior cingulate cortices, 

insula, parahippocampal gyrus, hippocampus, amygdala, temporal cortex, and precuneus 

mediated the effect of sleep quality on DSS [20]. Structural brain alterations in the postcentral 

gyrus and superior temporal gyrus mediate the link between sleep disturbance and depressive 

symptoms in a small group of shift-working nurses [48]. Another study observed that the GMV of 

the right insula mediates the relationship between sleep quality and anxiety/depressive symptoms 

among college students [49]. However, in the present study, GMV could not predict DSS in any 

dataset and has a very small mediatory effect on the link between sleep and DSS. One 

explanation could be the link between sleep disturbance and depressive symptoms anchored in 

the functional level rather than GMV [19]. However, the neurobiological underpinning mechanism 

of sleep disorders and depression is still under debate and needs further elaboration. Previous 

large-scale neuroimaging meta-analyses studies failed to identify a consistent regional 

abnormality in insomnia disorder and depression [50, 51]. Similarly, ML classification model failed 

to separate healthy individuals from subjects with insomnia based on brain volumes [52] or to 

differentiate healthy individuals from patients with depression based on brain structure and 

function values [53], indicating that neuroimaging derivatives are not optimal features to separate 

patients with insomnia or depression from healthy subjects. 

 In this cross-sectional study, we observed that sleep quality and anxiety predict DSS at 

the individual subject level, but GMV did not contribute to DSS prediction in the HCP-Young 

sample. Similar patterns were evident in two other samples. Furthermore, anxiety scores (not 

brain structure) mediated the association between sleep quality and DSS. We hope that our 

findings, based on three cohorts, incentivize clinicians to consider the importance of screening 

and treating subjects with sleep and anxiety problems as potential therapeutic targets to reduce 

the burden of depressive symptoms in our societies. 
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Table 1. The demographic characteristics of 1101 participants from the HCP-Young dataset 

Characteristic     No (%) 

Age, mean (SD), year 28.79 (3.69) 

Female 598 (54.3) 

Handedness 66.13 (43.95) 

Race   

    White  823 (74.75) 

    Other 278 (25.25) 

Education, mean (SD), year 14.91 (1.80) 

BMI, mean (SD) 26.51 (5.17) 

Total brain volume, mean (SD) mm3  

    Gray matter 686330 (67003) 

    White matter 444980 (56169) 

Twin status  

    Monozygotic 285 (25.89) 

    Dizygotic 170 (15.44) 

    Not twin  646 (58.67) 

Pittsburg sleep quality index, mean (SD)  

    Total score 4.79 (2.76) 

    Subjective sleep quality 0.89 (0.64) 

    Sleep latency 0.97 (0.82) 

    Habitual sleep efficiency 0.57 (0.82) 

    Sleep duration 0.45 (0.79) 

    Sleep disturbance 1.09 (0.48) 

    Use of sleep medications 0.23 (0.67) 

    Daytime dysfunction 0.59 (0.64) 

Adult self-report DSM-IV depressive problem scale, mean (SD)  

    Raw score 4.14 (3.44) 

    Sex-adjusted, age-adjusted t-score 53.89 (5.69) 

Adult self-report DSM-IV anxiety problem scale, mean (SD)  

    Raw score 3.87 (2.67) 

Major depressive episode  

    No 966 (87.74) 

    Yes  103 (9.36) 
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Figure 1. ML pipeline for prediction of DSS (depressive symptoms severity) considering family 

structure. First of all, 10-fold cross-validation was performed in a way that siblings were not separated 
in training/test sets. After putting aside the test set (of the first fold from now), we performed a 10-fold 

cross-validation again on the training set (of the first fold) considering family structure. In this stage, 
we split validation sets and trained models on remained training sets. On each fold we trained models 

and optimized hyper-parameters ten times with ten different feature numbers. Hence, we had ten folds 
and ten models for each fold which the algorithm had to select the model with best performance and 

minimum error across all folds. Subsequently, the selected model was fitted on the entire training set 
and then evaluated on the test set. This process repeated for all other nine folds (Note: all units in the 

figure are arbitrary). 
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Figure 2. Prediction of DSS in HCP-Young dataset. A) prediction based on sleep quality; B) prediction 
based on a combination of sleep quality and anxiety; C) prediction based on a combination of sleep 

quality and GMV D) prediction based on a combination of sleep quality and anxiety and GMV.(GMV: 
gray matter volume, DSS: depressive symptoms severity, r: correlation coefficient between real and 

predicted DSS, rMSE: root mean squared error, R2: determination coefficient) 
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Figure 3. Out-of-cohort validation of ML results in two independent datasets. A) prediction of DSS in 

HCP-Aging dataset based on sleep quality, a combination of sleep quality and anxiety, a combination 
of sleep quality and GMV, a combination of sleep quality and anxiety, and GMV; B) prediction of DSS 

in eNKI dataset based on sleep quality, a combination of sleep quality and anxiety, a combination of 
sleep quality and GMV, a combination of sleep quality and anxiety, and GMV (GMV: gray matter 

volume, DSS: depressive symptoms severity, r: correlation coefficient between real and predicted 
DSS, rMSE: root mean squared error, R2: determination coefficient) 
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Online supplement 
 
 

Prediction of depressive symptoms based on sleep quality, anxiety, and brain 
structure 
eMethod 
eFigure 1. Mediation analysis of GMV and anxiety on the link between sleep quality and 

DSS. 
eFigure 2. Correlation between sleep quality features. 

eTable 1. Sleep quality assessment using PSQI. 
eFigure 3. Prediction of DSS after excluding participants who experienced depression. 
eFigure 4. Prediction of DSS based on seven components of PSQI. 
eFigure 5. Feature importance of 7 PSQI components.  
eFigure 6. Prediction of DSS after including sleep-related items of DSS.  
eFigure 7. Prediction of DSS based on GMV, anxiety, and combination of GMV and 

anxiety. 
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Participants and data preprocessing 
This investigation had 1101 subjects from the HCP-Young dataset for main analyses and 

334 subjects from the eNKI, and 378 subjects from the HCP-Aging datasets for out-of-

cohort validation of trained ML models, obtained from the HCP-Young. All participants 

who had phenotypic and neuroimaging data were included in this study, and there were 

no inclusion/exclusion criteria based on a diagnosis of sleep disturbances, anxiety, or 

depression. The phenotypical data (sleep quality, anxiety, DSS) were measured by the 

same questionnaires in all three datasets. In addition, the HCP-Young dataset has 

provided information about the history of diagnosed depression with the question “Has 

the participant experienced a diagnosed DSM-IV major depressive episode over his/her 

lifetime?”. We excluded participants who had at least one episode of depression in 

confirmatory analyses (eFigure 3) to test the robustness of models for participants who 

never had a history of depression.  

In addition, we used structural MRI images of the HCP-Young dataset, which were 

acquired by Siemens 3T Skyra scanner and preprocessed using the HCP pipelines [1]. 

These T1 weighted MRI images were collected with 0.7mm voxel size isotropic resolution, 

time of repetition  (TR) = 2400 ms, time of echo (TE) = 2.14 ms, time of inversion (TI) = 

1000 ms, with flip angle of 8 degrees, and the field of view was 224×224 mm [2].  

 

Mediation findings 
Standard mediation analyses were performed using Amos v.24 software, which is a 

powerful software in path analysis and SEM. In all mediation analyses, age, sex, and total 

GMV were controlled. The significance of the models was tested by bias-corrected 

bootstrapping using 5000 random subsampling. 

The main hypothesis of the mediation analyses was to assess the underlying 

mechanisms of the association between sleep quality and DSS. Hence, we made a latent 

variable of brain GMVs which had a significant correlation with sleep quality, and used it 

in the model as GMV. Of note, there was no GMV parcel correlated with DSS or anxiety. 

Since anxiety scores were not correlated with GMV, the mediational role of anxiety scores 

was assessed in parallel with the latent variable of GMV eFigure 1. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 13, 2023. ; https://doi.org/10.1101/2023.08.09.23293887doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.09.23293887


 20 

 
eFigure 1. Mediation analyses of GMV and anxiety. The standardized total effect of sleep quality on DSS 

is 0.38, and the direct effect is 0.18. The standardized indirect effect of sleep quality on DSS is 0.20. The 

direct effect of sleep quality on anxiety is 0.32, and on GMV is 0.-0.17. In addition, the direct effect of 

anxiety on DSS is 0.60, and the direct effect of GMV on DSS is -0.44, but it is insignificant. Hence, GMV 

has no mediatory role in the link between sleep quality and DSS, but anxiety has a partial mediatory role 

(52.6% of total effect size) in the link between sleep quality and DSS. 
Comparing the results of mediational analyses, we found anxiety problems score as a 

strong mediator of the link between sleep quality and DSS, while GMV has no mediatory 

role in the link between sleep quality and DSS.  

 

Machine learning-based prediction 
 

ML models 
The ensemble decision tree model was used in this investigation, which is one of the most 

interpretable and powerful ML technics available. Hyperparameters of these models were 

the ensemble aggregation method (bagging/LS-Boost), number of ensemble learning 

cycle [10,50], learning rate (0,1], and minimum number of leaf node observations. 

Interestingly, in all models, LS-Boost was selected as the best method in the optimization 

process. ML pipeline in this investigation consisted of three sequential steps (cross-

validation, feature selection, model training, and evaluation): 

Cross-validation: First of all, a standard nested 10-fold cross-validation was performed 

to assess the generalizability of models. The following protocol was applied for nested 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 13, 2023. ; https://doi.org/10.1101/2023.08.09.23293887doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.09.23293887


 21 

10-fold cross-validation: HCP subjects were divided into 10 non-overlapping folds. Each 

fold was used as a held-back test set, whilst all other folds collectively constructed the 

training set. Another 10-fold cross-validation was applied to each training set, and made 

10 validation sets in each training set. Further, to consider the family structure of HCP 

subjects in ML analyses, we paid special attention that siblings were not separated in 

train/validation/test sets. 

Feature selection: In models with 473 GMV features (Fig 3B&D), a filter-based feature 

selection method was applied in order to reduce the computational cost, prevent 

overfitting, and improve model performance. Hence, features of training sets were ranked 

and scored by the relief method (If there is a feature value difference in a neighboring 

instance pair with a different target, the relief method increases the feature rank [3]). 

Afterward, 10 different numbers of top-scoring features (20, 30, 40, 50, 60, 70, 80, 90, 

100, 110 highest-scoring features) were checked in each inner fold for model training so 

the algorithm could select the best feature number in each fold automatically. Although, 

in models with 19 PSQI or 20 PSQI and anxiety features (Fig 3A&C), we did not perform 

feature selection. Further, we checked the non-existence of feature redundancy between 

sleep quality features by correlation analysis eFigure 2. 

Model training and evaluation: Model training and hyperparameter optimization with 

100 iterations were performed in the inner loop of cross-validation and repeated 10 times 

with 10 different feature numbers. Therefore, a total of 1000 models were evaluated by 

validation sets, and then 10 models with the minimum MSE were selected. These models 

were fitted on the entire training sets and evaluated by the unseen test sets. Finally, the 

average performance of models is reported in Fig .3.  

 

Confirmatory machine learning analysis 
We performed three confirmatory analyses in the HCP-Young dataset to show the 

robustness of our results. In the first stage of confirmatory analyses, we removed 103 

participants with a history of depression (eFigure 3). Importantly, results of this stage 

were significant in which prediction based on sleep quality resulted in (r = 0.39, rMSE = 

2.53, R2 = 0.15) and based on both sleep quality and anxiety resulted in (r = 0.61, rMSE 

= 2.18, R2 = 0.37). In the second stage, we assessed the predictability of DSS based on 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 13, 2023. ; https://doi.org/10.1101/2023.08.09.23293887doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.09.23293887


 22 

7 components (subjective sleep quality, sleep latency, sleep duration, habitual sleep 

efficiency, sleep disturbances, use of sleep medicine, and daytime dysfunction) of PSQI 

(eFigure 4) and feature importance of this model has been shown in eFigure 5. In the 

third stage of confirmatory analyses, we included two sleep-related items of DSS which 

had been removed at first. Sure enough, including sleep-related items of DSS improved 

predictability. The results of these analyses are provided in eFigure 6. Further, in other 

analyses, we examined the predictability of DSS based on only GMV and/or anxiety 

features (eFigure 7) which clarified that GMV alone could not predict DSS. 

Out-of-cohort validation 
To test the generalizability of our findings, we predicted DSS in the eNKI and HCP-Aging 

datasets based on ten models which had been trained on the HCP-Young dataset. In this 

way, every single model was used to predict DSS, and predictions of all ten models were 

averaged for each sample. Of note, features in out-of-cohort validation and main 

predictions were the same.  
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eFigure 2. Correlation between sleep quality features. All correlations are significant p-value < 0.05 (PSQI: 

Pittsburgh Sleep Quality Index). For more details see eTable 1. 

 
eTable 1. Sleep quality assessment using PSQI 
PSQI_Score The total score across all items on the PSQI [4]. 
PSQI_BedTime During the past month, when have you usually gone to bed at night?  
PSQI_Min2Asleep During the past month, how long has it usually taken you to fall asleep each night. 
PSQI_GetUpTime During the past month, when have you usually gotten up in the morning? 

PSQI_AmtSleep During the past month, how many hours of actual sleep did you get at night? (This may be 
different than the number of hours you spend in bed.) 

PSQI_Latency30Min 
During the past month, how often have you had trouble sleeping because you...  (a) Cannot 
get to sleep within 30 minutes; 0=Not during the past month, 1=Less than once a week, 
2=Once or twice a week, 3=3 or more times a week 

PSQI_WakeUp 
During the past month, how often have you had trouble sleeping because you...  (b) Wake up 
in the middle of the night or early morning; 0=Not during the past month, 1=Less than once a 
week, 2=Once or twice a week, 3=3 or more times a week 

PSQI_Bathroom 
During the past month, how often have you had trouble sleeping because you...  (c) Have to 
get up to use the bathroom; 0=Not during the past month, 1=Less than once a week, 2=Once 
or twice a week, 3=3 or more times a week 

PSQI_Breathe 
During the past month, how often have you had trouble sleeping because you...  (d) Cannot 
breathe comfortably; 0=Not during the past month, 1=Less than once a week, 2=Once or 
twice a week, 3=3 or more times a week 

PSQI_Snore 
During the past month, how often have you had trouble sleeping because you...  (e) Cough 
or snore loudly; 0=Not during the past month, 1=Less than once a week, 2=Once or twice a 
week, 3=3 or more times a week 

PSQI_TooCold 
During the past month, how often have you had trouble sleeping because you...  (f) Feel too 
cold; 0=Not during the past month, 1=Less than once a week, 2=Once or twice a week, 3=3 
or more times a week 

PSQI_TooHot 
During the past month, how often have you had trouble sleeping because you...  (g) Feel too 
hot; 0=Not during the past month, 1=Less than once a week, 2=Once or twice a week, 3=3 or 
more times a week 

PSQI_BadDream 
During the past month, how often have you had trouble sleeping because you...  (h) Had bad 
dreams; 0=Not during the past month, 1=Less than once a week, 2=Once or twice a week, 
3=3 or more times a week 

PSQI_Pain 
During the past month, how often have you had trouble sleeping because you...  (i) Have pain; 
0=Not during the past month, 1=Less than once a week, 2=Once or twice a week, 3=3 or 
more times a week 

PSQI_Other 
During the past month, how often have you had trouble sleeping because of...  (j) Other 
reason(s), as described in 5j. pt2 0=Not during the past month, 1=Less than once a week, 
2=Once or twice a week, 3=3 or more times a week 

PSQI_Quality During the past month, how would you rate your sleep quality overall?  0=Very good, 1=Fairly 
good, 2=Fairly bad, 3=Very bad 

PSQI_SleepMeds 
During the past month, how often have you taken medicine (prescribed or \"over the counter\") 
to help you sleep?  0=Not during the past month, 1=Less than once a week, 2=Once or twice 
a week, 3=3 or more times a week 

PSQI_DayStayAwake 
During the past month, how often have you had trouble staying awake while driving, eating 
meals, or engaging in social activity?  0=Not during the past month, 1=Less than once a week, 
2=Once or twice a week, 3=3 or more times a week 

PSQI_DayEnthusiasm 
During the past month, how much of a problem has it been for you to keep up enough 
enthusiasm to get things done?  0=No problem at all, 1=Only a very slight problem, 
2=Somewhat of a problem, 3=A very big problem 
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PSQI_BedPtnrRmate 
Do you have a bed partner or roommate?  0=No bed partner or roommate, 
1=Partner/roommate in other room, 2=Partner in same room, but not same bed, 3=Partner in 
same bed 

 

 

eFigure 3. Prediction of DSS based on sleep quality and combination of sleep quality and 

anxiety in the HCP-Young dataset. Results of prediction after excluding 103 participants who 

experienced at least one episode of depression (DSS: depressive symptoms severity, r: correlation 

coefficient between real and predicted DSS, rMSE: root mean squared error, R2: determination 
coefficient). 
 

eFigure 4. Prediction of DSS based on seven components (subjective sleep quality, sleep latency, sleep 

duration, habitual sleep efficiency, sleep disturbances, use of sleep medicine, and daytime dysfunction) of 
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PSQI in the HCP-Young dataset (PSQI: Pittsburgh Sleep Quality Index, DSS: depressive symptoms 

severity, r: correlation coefficient between real and predicted DSS, rMSE: root mean squared error, R2: 

determination coefficient). 
 

 

 
eFigure 5. Feature importance in prediction of DSS (depressive symptoms severity) based on seven 

components of sleep quality. 

 

 
eFigure 6. Prediction of DSS in the HCP-Young dataset after including two sleep-related items of DSS 

(DSS: depressive symptoms severity, GMV: gray matter volume, r: correlation coefficient between real 

and predicted DSS, rMSE: root mean squared error, R2: determination coefficient). 
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eFigure 7. Prediction of DSS based on GMV, anxiety, and a combination of them in the HCP-Young 

dataset (GMV: gray matter volume, DSS: depressive symptoms severity, r: correlation coefficient between 

real and predicted DSS, rMSE: root mean squared error, R2: determination coefficient).  
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