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Abstract 

Anorexia nervosa (AN) typically emerges around adolescence and predominantly affects 

females. Recent progress has been made in identifying biological correlates of AN, but 

more research is needed to pinpoint the specific mechanisms that lead to its development 

and maintenance. There is a known phenotypic link between AN, growth and sexual 

maturation, yet the genetic overlap between these phenotypes remains enigmatic. One 

may hypothesize that shared factors between AN, energy metabolism and reproductive 

functions may have been under recent evolutionary selection. Here, we characterize the 

genetic overlap between AN, BMI and age at menarche, and aimed to reveal recent 

evolutionary factors that may help explain the origin of AN. We obtained publicly 

available GWAS summary statistics of AN, BMI and age at menarche and studied the 

polygenic overlap between them. Next, we used Neandertal Selective Sweep scores to 

explore recent evolutionary selection. We found 22 loci overlapping between AN and 

BMI, and 9 loci between AN and age at menarche, with 7 of these not previously 

associated with AN. We found that loci associated with AN may have been under 

particular evolutionary dynamic. Chronobiology appeared relevant to the studied genetic 

overlaps and prone to recent evolutionary selection, offering a promising avenue for 

future research. Taken together, our findings contribute to the understanding of the 

genetic underpinning of AN. Ultimately, better knowledge of the biological origins of 

AN may help to target specific biological processes and facilitate early intervention in 

individuals who are most at risk. 
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Introduction 

Anorexia Nervosa (AN) is a serious psychiatric disorder with long-lasting consequences 

for physical health, psychological well-being and quality of life (1–3). Symptoms of AN 

typically include severe restriction of energy intake, intense fear of gaining weight, and 

disturbed body image (2). Notably, research on AN and other eating disorders (ED) has 

lagged significantly behind that of other major psychiatric disorders (2,4), particularly 

with regard to the biological mechanisms involved in their development. Yet, AN has one 

of the highest mortality and morbidity rates of all psychiatric disorders – with a 

standardized mortality ratio of 5.9 (5). 

Restrictive EDs affect approximately one male for every 10 females, and 

commonly emerge around puberty, with a median age at onset of 12 years (6). Major 

neurodevelopmental changes occur during this period, potentially increasing the 

vulnerability to develop a mental disorder (7). Growth may also play a role, since 

children with both lower and higher body mass index (BMI) before adolescence may be 

at increased risk of EDs (8–11).  

Earlier age at onset and time spent with an ED are predictors of poorer outcomes, 

supporting the need to intervene in the early stages of the illness (2,3,12,13). Evidence 

from longitudinal studies suggests that ~30% of individuals with AN will recover in the 

first 10 years after diagnosis, and that an additional  ~30% will recover after 20 years 

(1,14,15), suggesting fair chances for recovery. Yet, a third of individual with AN will 

still be ill after 20 years, and a large proportion will live with psychiatric symptoms for a 

significant part of their lives, even after remission from their ED (14,16).  
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Understanding the genetic underpinnings of AN could provide an opportunity to 

identify biological mechanisms at play – which could eventually become targets for 

improving interventions. Yet, studying the genetic origins of AN is challenging, in part 

due to its early age at onset and sexes imbalance, but perhaps also because people with 

AN often do not seek help for their condition (4,15), adding to the difficulty of obtaining 

sufficient sample sizes for genome-wide analyses (GWAS). A recent AN GWAS 

identified eight risk loci and displayed significant pleiotropy with several psychiatric and 

metabolic traits (17). Further, they showed that AN is genetically correlated with several 

psychiatric and metabolic traits. The study also provided evidence that low weight may 

not only be a consequence of AN-related cognitions, but that some metabolic traits 

predisposing to low weight may facilitate the development and maintenance of AN 

(17,18).  

An aspect that is often overlooked in the study of AN is evolution. The heritability 

estimate of 48-74% (19) may suggest that some AN-associated genes could have been 

evolutionary advantageous, for example in terms of nutrition and reproduction (20–22). 

For example, one may hypothesize that at some point in recent human evolution, it may 

have been beneficial to be able to stay physically active in order to travel and forage 

continuously in situations where food was scarce, and some genes associated with AN 

may have conferred some metabolic advantage in this regard (20–22).  

An evolutionary perspective on the genetics of AN may also provide a better 

understanding of the link between AN and puberty. Since periods of growth such as 

childhood and adolescence are energy demanding, one may hypothesize that individuals 

who matured more quickly may have become less demanding more quickly in terms of 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 9, 2024. ; https://doi.org/10.1101/2023.08.09.23293879doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.09.23293879
http://creativecommons.org/licenses/by-nd/4.0/


 5

resource use, benefiting their group. Because AN is often associated with amenorrhea, 

some authors have proposed that AN might have been a way to supress reproductive 

capacity when environmental conditions were not favourable, in order to increase 

reproductive success by saving energy for more optimal conditions (20–22). This would 

be consistent with results from studies assessing the link between AN and sexual 

maturation, which indicate possible delay in individuals with AN (23,24), although others 

have found evidence that may suggest otherwise (25). It is also possible that genes 

impacting puberty in either direction may have been beneficial in terms of survival and 

reproduction depending on environmental scenarios (26,27), yet those genes might also 

modulate the risk of AN in today’s living condition.  

One way to study such evolutionary adaptations is to compare the genome of 

modern humans (Homo sapiens) to an extinct, close relative – Homo neanderthalensis –  

which might reveal sapiens-specific features that may have provided our specie with an 

evolutionary advantage (28). Similar approaches have recently implied the role of recent 

evolution in the genetics of schizophrenia (29). 

The overarching aims of the present study were to (1) deepen knowledge of the 

genetic architecture of AN through its associations with BMI and age at menarche, and to 

identify novel loci shared between those traits, and (2) to gain a better understanding of 

the evolutionary origins of AN in general, and the identified loci in particular. 
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Methods 

Samples 

The present study uses publicly available summary statistics from GWAS of AN (17), 

BMI (30), and age at menarche (31) (see supplements for details). All GWAS included 

individuals predominantly of European ancestry. Data collection for each GWAS was 

performed with participants’ written informed consent and with approval by the 

respective local Institutional Review Boards, as specified in the respective studies 

(17,30,31).  

 

Statistical Analyses 

Genetic correlation 

We calculated genetic correlations between AN and BMI, as well as between AN and age 

at menarche, using LD-score regression (v1.0.1), available at 

https://github.com/bulik/ldsc. These genetic correlations have been reported in previous 

studies (17,18), yet with different summary statistics. Therefore, we recalculated them to 

allow for direct comparison with our genetic overlap analysis.  

 

Conjunctional false discovery rate 

We used conjunctional FDR (conjFDR) analyses to investigate genetic overlap between 

AN and BMI and between AN and age at menarche. Detailed information about the 

conjFDR statistical framework can be found in previous publications (32,33), and the 

software can be accessed online at https://github.com/precimed/pleiofdr/. We performed 

the analysis in MATLAB R2017b, and used the standard recommendation of FDR < 0.05 
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for our conjFDR threshold. Notably, the major histocompatibility complex (MHC) region 

was excluded before running conjFDR analyses (chr6:25,119,106–33,854,733). 

 

Gene mapping and functional annotation 

We uploaded the FDR statistics from our genetic overlap analysis to the FUMA platform 

(available here: https://fuma.ctglab.nl/). FUMA aims to facilitate the identification of 

most likely causal variants from GWAS results, and allowed us to functionally map and 

annotate the candidate SNPs we had identified using positional, eQTL, and chromatin 

interaction mapping (34). A detailed description of FUMA settings can be found in the 

Supplements. Novelty was assessed against related studies (17,18,25,35–39). 

 

Neandertal selective sweep score 

We used the Neandertal selective sweep (NSS) score to assess possible recent selection at 

genomic loci associated with AN (R 4.2.2; www.r-project.org). The NSS score measures 

the relative abundance of ancestral vs. non-ancestral alleles in Neandertals and humans, 

through the alignment of primates, Neanderthal and human consensus sequences – with a 

negative NSS score indicative of plausible positive selection in humans (28,40). The 

score can be downloaded from the UCSC genome browser (http://genome.ucsc.edu, 

ntSssZScorePMVar track (S-scores)) (28,40). A detailed description of the analytical 

procedure can be found in the Supplements. 
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Results 

Anorexia Nervosa genetically overlaps with Body Mass Index and Age at Menarche 

We identified significant polygenic overlap between AN and BMI, and between AN and 

age at menarche. For both BMI and age at menarche, the proportion of non-null SNPs in 

AN increased with higher levels of these phenotypes, and vice versa. Figure 1 illustrates 

the corresponding stratified Q-Q plots and shows an increasing enrichment as the 

statistical threshold becomes more stringent, supporting polygenic overlap between AN 

and BMI, and between AN and age at menarche.  

This overlap was further supported by statistically significant shared genomic loci 

between the phenotypes. Specifically, we identified 22 shared genomic risk loci between 

AN and BMI (67 independent significant SNPs), and nine shared genomic risk loci 

between AN and age at menarche (39 independent significant SNPs). Five loci 

overlapped between these two analyses, yielding 26 distinct loci overlapping with AN in 

total. Among the loci that overlapped between the two conjFDR analyses, three 

highlighted the same lead SNP or had corresponding independent SNPs (i.e., rs773949 

(chr10), rs1351522 and rs34445652 (chr11) and rs141843711 (chr12)), possibly 

indicating that in these regions, the same variants may be relevant for the three traits.  

To the best of our knowledge, seven of the 26 distinct risk loci have not 

previously been reported to be associated with AN. Figure 2 show the corresponding 

Manhattan plot for the overlapping loci, while Supplementary Tables 1-2 provide 

further details on each of them. For comparison, genetic correlation analysis did not 

capture the overlap between AN and age at menarche (rg=-0.03; p = 0.35), and only 

identified a link between AN and BMI (rg=-0.21; p = 7.3x10-12). These correlation 
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estimates are consistent with a previous report (17) and illustrate genetic overlap in the 

absence of genetic correlation (see (41) for review). 

 
 
Specificity of the Genetic Overlap Between Anorexia Nervosa, Body Mass Index and 

Age at Menarche 

A major challenge in psychiatry is the great heterogeneity and overlap across established 

diagnostic categories. Consequently, we verified whether the loci overlapping between 

AN, BMI and age at menarche were specific to AN, or more broadly associated with 

psychiatric disorders, by running additional analyses to assess the link between BMI or 

age at menarche and major depressive disorder (MDD) and schizophrenia. Detailed 

results are available as Supplements. In short, 59% of the loci shared between AN and 

BMI and 78% of the loci shared between AN and age at menarche could be considered as 

specific for AN, as they were not identified in the schizophrenia or MDD conjFDR 

analyses. 

 
Functional Annotation of Overlapping Loci between Anorexia Nervosa, Body Mass 

Index and Age at Menarche 

The majority of the SNPs identified in the genetic overlap analyses were located in 

intronic and intergenic regions (Supplementary Figure 5). For both analyses, variants 

were mapped to genes with enriched expression in brain tissues and skeletal muscle 

(mostly downregulation; Supplementary Figure 6-7). Functions of these genes included 

neurodevelopmental, metabolic and cellular processes (Supplementary Figures 8-11).  

One of the new loci that we identified was shared between AN and age at 

menarche (locus 5) and between AN and BMI (locus 12) and mapped to PARD3, which 
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is involved in various neurodevelopmental, cellular, metabolic and developmental 

processes and has been linked to schizophrenia. We also identified ARNTL, known for its 

importance in the regulation of sleep, weight and eating behavior, as part of a locus 

shared between AN and age at menarche (locus 6) and between AN and BMI (locus 16).  

In the analysis between AN and BMI, most of the genes were related to 

neurodevelopmental processes and overlapped with mental health-related phenotypes, 

such as mood swings, schizophrenia, neuroticism and risk-taking. Other mental health 

problems previously associated with these genes include bulimia nervosa and MDD 

(NEGR1 (42,43)) autism spectrum disorders (SLC25A12, (44)) and suicide attempts 

(ADARB1 (45)). Furthermore, some of these genes (e.g., NEGR1, PTBP2, BCL11A, 

ARNTL, SLC25A12, ADARB1) were identified in a recent study investigating the genetic 

overlap between AN and mental disorders (38), further supporting their relevance to AN. 

Finally, the analysis between AN and age at menarche identified a new locus for 

AN that did not overlap with those identified in the analysis between AN and BMI. This 

locus was close to the NR5A1 gene, which is involved in gonad development, hormonal 

mediated signalling pathways and aging.  

 

Possible Evolutionary Selection at Loci Associated With Anorexia Nervosa 

Our analysis of Neanderthal Selective Sweep scores revealed that gene variants 

related to AN may have been under recent evolutionary drives in humans. The QQ-plot in 

Figure 3 illustrates enrichment of AN-related SNPs for more negative NSS scores, where 

negative NSS scores point toward recent positive evolutionary selection.  
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We next assessed NSS score patterns for BMI and age at menarche, and for SNPs 

overlapping between these phenotypes and AN. NSS score values were available for 111 

of the 275 candidate SNPs identified as overlapping between AN and BMI (40%), and 

for 38 of the 92 candidate SNPs overlapping between AN and age at menarche (41%). 

First, we compared the distribution of NSS scores for SNPs associated with AN, BMI and 

those identified as shared between AN and BMI (Figure 4A). We found that AN 

candidate SNPs were enriched for negative NSS scores (mean: -1.91, sd: 1.61) compared 

to BMI candidate SNPs (mean: -0.10, sd: 2.00), with candidate SNPs overlapping 

between AN and BMI standing in-between (mean: -0.62, sd: 1.73). We repeated this 

approach for AN and age at menarche and found similar patterns as above, that is more 

negative NSS scores for AN candidate SNPs compared to SNPs associated with age at 

menarche (mean: -0.63, sd: 1.71), and with SNPs overlapping between AN and age at 

menarche (mean: -1.44, sd: 1.94) standing in-between (Figure 4B). To put these results 

into perspective, we performed a conjFDR analysis to identify genetic overlap between 

BMI and age at menarche, merged our results with the NSS score data and compared the 

NSS score distributions for candidate SNPs associated with BMI, age at menarche or 

BMI and age at menarche. We found that the distribution of NSS scores between BMI 

and age at menarche was similar and less skewed to the left (i.e. less negative NSS 

values) than what we observed for candidate SNPs associated with AN (Figure 4C), 

further supporting that recent evolutionary selection may have played a particular role in 

AN-associated variants. 
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Evolutionary Placement of AN-associated Loci and Genes  

Of all the identified loci, we investigated whether some were more likely to be subject to 

recent evolutionary dynamics. At the locus level, we found that four AN-associated loci 

overlapped with regions with the 5% smallest NSS mean score across the genome. These 

include the locus that mapped to the PTBP2 gene (chromosome 1), two loci on 

chromosome 3 (one multigenic locus including DAG1, RBM6, CCDC36, NCKIPSD, 

USP4 and USP19; and one intergenic locus in the vicinity of NSUN3) and one locus on 

chromosome 12. Two of these loci (on chromosome 3 and chromosome 12) also overlap 

with three regions identified by another evolutionary methods (i.e., Composite of 

Multiple Signal) as potential candidates for evolutionary adaptation (46), further 

supporting that these regions may have been involved in recent human evolution. Finally, 

we looked for overlap between AN-associated loci and previously identified differently 

methylated regions between humans and Neanderthals (47). We found that two AN-

associated loci overlapped with such regions (including the multigenic loci on 

chromosome 3 mentioned above). This result supports that these regions possibly played 

a role in the adaptation of modern humans to their environment. More details on these 

loci can be found in Supplementary Table 7. 

We next ranked genes by their evolutionary signal by calculating mean NSS 

scores per gene, as shown in Figure 5. For the main AN-GWAS, the genes with the most 

negative NSS scores were C3orf84 and CCDC71. CCDC71 is involved in lipid 

metabolism and fat cell differentiation, and according to our FUMA results, has been 

linked to autoimmune disorders of the gastrointestinal system. In the analysis of genetic 

overlap between AN and BMI, the gene with most negative NSS score was GNB1 
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(chromosome 1), which is involved in cell-cell signaling. Mutations in GNB1 have been 

linked to growth and (neuro)developmental delay, and gastrointestinal problems (48). In 

the overlap between AN and age at menarche, USP4 (chromosome 3) had the most 

negative NSS score. 

A common pattern that emerged among many genes with strongly negative NSS 

was the implication of chronotype as an associated process. For example, GRP7-ASB3 

has been linked to chronotype and excessive daytime sleepiness, while CAMKV, IP6K2 

and RHOA have been associated with morning-ness, and MONIA, RHOA, TCTA, AMT, 

NICN1, CAMKV relate to sleep duration. 
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Discussion 

The present study established polygenic overlap between AN, BMI and age at menarche 

and through its overlap identified seven novel loci associated with AN. Further, we found 

that the genetic risk loci associated with AN may have been subject to recent 

evolutionary selection. The current findings deepen our knowledge of the genetics of AN 

and may help to better understand the biological mechanisms involved in this debilitating 

disorder. 

Our analysis of genetic overlap between AN and BMI identified 22 significantly 

overlapping risk loci. Previous research has already established the inverse genetic 

correlation between AN and BMI, and that fat mass shows one of the strongest genetic 

correlations with AN (17). These correlations and the here identified overlap support that 

energy balance may be impaired in people with AN. Yet, the association between AN and 

BMI is likely not solely linked to energy balance, as a large proportion of the genes 

identified as overlapping between AN and BMI are relevant to brain functions. Among 

these genes, the identification of NEGR1 as overlapping between AN and BMI (locus 2) 

is noteworthy, as NEGR1 is involved in neurodevelopment and has been associated with 

obesity (30), age at menarche (49) and other psychiatric disorders (42,43). Recently, a 

variant in this locus was identified as shared between AN and MDD, and between AN 

and schizophrenia (38). An epigenome-wide study also identified differently methylated 

regions between people with active AN compared to people in remission from AN or 

healthy controls at the NEGR1 gene locus (50), providing further support for its relevance 

for AN. Overall, our findings reinforce that studying EDs together with metabolic 
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conditions like overweight/obesity would be beneficial, as their underlying 

(neuro)biology may overlap (51). 

Puberty is an important time period for the development of EDs and may 

underline some of the sex differences in their prevalence and clinical presentation (52). 

Here, we identified nine significant loci overlapping between AN and age at menarche. 

This overlap is noteworthy given their weak, non-significant genetic correlation (17). 

These results may indicate that some variants may have an opposite effect on AN and age 

at menarche, or that different subtypes of AN (e.g. restrictive vs. binge/purge or early vs. 

late onset) may be differently associated with age at menarche. In this regard, a previous 

study found that an earlier age at menarche was linked to an earlier age at onset of AN in 

people with early-onset AN, but found no association between age at menarche and the 

risk of AN or with late-onset AN (25). These findings may be somewhat surprising given 

previous evidence of delayed growth and sexual maturation in youths with AN (23,24). 

Yet, this may also indicate that different AN subtypes may have diverse biological 

underpinnings, especially given that the literature on AN and age at menarche remains 

scarce, with few authors considering AN subtypes, and sample sizes being often limited. 

Further research including puberty-related variables as a primary focus (and not just as 

confounders) is therefore warranted. 

A new finding from the present study is that several genes overlapping between 

AN, BMI and age at menarche have in common that they are related to circadian-related 

phenotypes. This includes ARNTL, a major component of the circadian clock system 

(53,54). In animal models, knock-out or reduced expression of ARNTL have been 

associated with altered circadian rhythms, body weight, alterations in locomotor activity 
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and eating behaviours, delayed puberty and infertility, cognitive deficits and shortened 

lifespan (54–56). Given their role in energy homeostasis and their mutual exclusivity, 

sleep patterns and eating behaviors are closely related; however, studies on the clinical 

association between AN and sleep disorders are scarce. Existing evidence suggests that 

sleep problems, including insomnia, are common in people with EDs (57–60) and that 

sleep disruptions can worsen the severity of AN (60,61). Poor sleep and altered circadian 

rhythms have also been linked to metabolic dysregulation and obesity (62,63), and to 

woman’s reproductive health (55,56). One might therefore wonder whether the circadian 

cycle might be a key element linking AN, BMI and puberty, and whether this phenotype 

might have conferred some sort of evolutionary advantage. Depending on environmental 

conditions, being more or less "restless" might have impacted the risk to suffer from 

malnutrition and might have affected the chances of reproductive success. More studies 

are needed to clarify this, but given that AN remains excessively difficult to treat, and 

considering the results of the present study and of other recent works (64,65), the clinical 

link between AN, chronobiology and sleep, as well as a the biology behind it should be 

explored as a potential starting point for improving interventions. 

Studying AN from an evolutionary perspective revealed that some of the genomic 

regions associated with AN might have been involved in human evolution, as suggested 

by an enrichment in negative NSS scores. Although more studies are needed to confirm 

this finding, it would align with studies in other fields that have suggested various 

metabolic adaptations after exposure to developmental adversity. For example, 

longitudinal studies on the Dutch Famine and Chinese Hunger cohorts have shown that 

individuals who were exposed to hunger during pregnancy had a higher risk of long-term 
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psychiatric and metabolic disorders (66–68). Some have hypothesised that these effects 

could be mediated by epigenetic mechanisms (69). Overall, some genetic or epigenetic 

adaptations conferring a metabolic or reproductive advantage in a given environment 

may now also increase the risk of certain disorders in today’s living conditions, including 

AN.  

The present study has some important strengths, including the use of statistical 

methods allowing to explore genetic pleiotropy and the use of Neanderthal genomic data 

to employ an evolutionary lens on AN. Yet, some limitations should be considered. 

Merging the GWAS data with the NSS data left us with several SNPs for which NSS 

scores were not available and thus some AN-associated signal could not be explored in 

terms of evolution. Furthermore, most retained SNPs had a negative NSS score (pointing 

toward recent selection), and we cannot exclude that the enrichment of negative NSS 

scores at SNPs related to AN may have other explanations. For example, some of the 

variants may not confer an evolutionary advantage but may instead have been inherited 

along with other variants with beneficial functions, through linkage disequilibrium. We 

circumvented this potential issue by comparing NSS distributions between phenotypes, 

which overall suggests more pronounced effects for AN. Further, four of the AN-

associated loci overlapped with regions of the genome with the 5% smallest NSS scores 

(28), and some of those regions have also been identified by others as being under 

plausible evolutionary drive (46,47), which is reassuring. Another limitation is that the 

current data did not allow us to study subtypes of AN or sex, although there may be 

relevant differences between these groups (70,71). Given the great heterogeneity in ED 

diagnostic categories, including within the AN diagnosis itself, an important question that 
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remains is whether some of the associations highlighted here are specific to certain AN 

subtypes, or if they could be extended to other type of EDs. Phenotypically, there is 

evidence that sleep patterns may vary between ED categories (e.g., restrictive vs. purging 

(72)). Future genomic efforts in the field of EDs will eventually allow for a better 

understanding of the genetic subtilities underlying different categories, not only in regard 

to AN-R vs. AN-BP, but also other type of EDs. Finally, an important perspective for 

future work is the need for longitudinal studies, together with the use of other statistical 

frameworks to investigate causality in genetic associations between metabolism, sexual 

maturation and mental health (e.g., (73)). Ultimately, this will provide a better 

understanding of the developmental course and potential causal relationships between 

AN, BMI and age at menarche that could not be addressed in the present study. 

In conclusion, the present study has identified genes that overlap between AN, 

BMI and age at menarche, and found that some of these genes may have been undergoing 

recent evolutionary selection. We identified genes relevant to circadian rhythms in the 

association signal between AN, BMI and age at menarche, and with Neanderthal scores 

pointing at recent selection. Our study emphasizes the utility of employing an 

evolutionary lens in psychiatric genetics and the results identify candidates for future 

studies, such as detailed investigations into the genetic link between chronobiology and 

AN. As such, analysis of pleiotropy and evolutionary context may go hand in hand in 

further deciphering the mechanisms underlying this debilitating disorder.  
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Figure legend 

 
Figure 1: anorexia nervosa genetically overlaps with body mass index and age at menarche 

Figure legend: Stratified quantile-quantile (QQ) plots displaying (A) increasing levels of SNP 

enrichment for AN conditioned on association p-values for BMI, and vice versa; (B) increasing levels 

of SNP enrichment for AN conditioned on association p-values for age at menarche, and vice versa 

 

Figure 2: Identification of loci shared between anorexia nervosa and body mass index, and 

anorexia nervosa and age at menarche 

Figure legend: Manhattan plots presenting in color the significant loci identified as shared between 

(A) AN | BMI and; (B) AN | Menarche. 

 

Figure 3: Comparison to Neanderthal genome suggests recent evolutionary selection for 

SNPs associated with anorexia nervosa  

Figure legend: Quantile-Quantile (QQ) plot showing the enrichment of more negative Neanderthal 

Selective Sweep scores in SNPs associated with AN, pointing toward recent positive evolutionary 

selection. 

 

Figure 4: Compared to body mass index and age at menarche, SNPs associated with 

anorexia nervosa appear to be under stronger evolutionary selection  

Figure legend: Distribution of Neanderthal Selective Sweep scores for candidate SNPs associated with 

(A) AN, BMI and those shared between AN | BMI; (B) AN, age at menarche and those shared 

between AN | Menarche; (C) BMI, age at menarche, and those shared between BMI | Menarche. 

Negative Neanderthal Selective Sweep scores point toward recent positive evolutionary selection. 

 

Figure 5: Genes associated with anorexia nervosa, highlighted from an evolutionary 

perspective  

Figure Legend: Genes mapped to the loci associated with AN (top panel), AN | BMI (middle panel) or 

AN | Menarche (bottom panel). The x-axis represents Neanderthal Selective Sweep scores, with more 

negative Neanderthal Selective Sweep scores pointing toward recent positive evolutionary selection. 

Neanderthal Selective Sweep score per gene was determined as an average of the SNPs from which 

the gene was mapped. Location on y-axis is random (jitter) and was used for legibility of otherwise 

overlapping text. Darker colours are used to highlight genes with the lowest mean NSS scores. 
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