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Abstract 

Wastewater surveillance is a powerful tool to assess the risks associated with antibiotic 

resistance in communities. One challenge is selecting which analytical tool to deploy to measure 

risk indicators, such as antibiotic resistance genes (ARGs) and their respective bacterial hosts. 

Although metagenomics is frequently used for analyzing ARGs, few studies have compared the 

performance of long-read and short-read metagenomics in identifying which bacteria harbor 

ARGs in wastewater. Furthermore, for ARG host detection, untargeted metagenomics has not 

been compared to targeted methods such as epicPCR. Here, we 1) evaluated long-read and short-

read metagenomics as well as epicPCR for detecting ARG hosts in wastewater, and 2) 

investigated the host range of ARGs across the WWTP to evaluate host proliferation. Results 

highlighted long-read revealed a wider range of ARG hosts compared to short-read 

metagenomics. Nonetheless, the ARG host range detected by long-read metagenomics only 

represented a subset of the hosts detected by epicPCR. The ARG-host linkages across the 

influent and effluent of the WWTP were characterized. Results showed the ARG-host phylum 

linkages were relatively consistent across the WWTP, whereas new ARG-host species linkages 

appeared in the WWTP effluent. The ARG-host linkages of several clinically relevant species 

found in the effluent were identified.  
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1. Introduction 1 

 The worldwide propagation and dissemination of antibiotic resistance have raised serious 2 

public health concerns. An estimated 1.27 million deaths were attributed to bacterial antibiotic 3 

resistant infections in 20191. To mitigate this risk, a comprehensive understanding of antibiotic 4 

resistance in humans, animals, and the environment is needed2. Wastewater treatment plants 5 

(WWTPs) are regarded as hotspots of antibiotic resistance in the environment3,4, and their role in 6 

the dissemination of antibiotic resistance is complex. Wastewater treatment processes generally 7 

remove antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) from sewage 8 

through different mechanisms such as, anaerobic5,6 and aerobic processes7,8, coagulation and 9 

sedimentation9, membrane filtration10,11, and disinfection12,13. In spite of the significant removal 10 

of the overall abundance of ARGs and ARB by WWTPs14–16, certain ARGs and ARB can be 11 

persistent or even enriched across the treatment units17–19, representing a major source of ARGs 12 

and ARBs in receiving waterbodies. For example, ARGs and microorganisms discharged by 13 

WWTPs can persist in receiving-river biofilms20 and sediments21,22. Furthermore, ARGs and 14 

ARB after establishing in the effluent-receiving environment can propagate to distant areas away 15 

from the discharge point21,23. 16 

 Previous studies have proposed metrics for evaluating risks associated with ARGs in the 17 

environment to public health24,25. One key component is identification of the bacterial host of the 18 

ARG, as a pathogenic bacteria harboring an ARG is a far greater public health risk as compared 19 

to a non-pathogenic environmental bacterial host of the same ARG26,27. A second component is 20 

whether an ARG is associated with mobile genetic elements (MGEs), which can directly and 21 

indirectly mediate horizontal gene transfer (HGT) of ARGs among microorganisms28–30. Thus, 22 

methods are needed that not only identify ARGs in environmental samples, but also provide 23 
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information that link those ARGs to their microbial hosts and contextual information about 24 

whether the ARGs are associated with MGEs. 25 

 One of the most widely used methods to analyze antibiotic resistance in wastewater is 26 

metagenomic sequencing31–33. Next-generation sequencing (i.e., short-read) coupled with de 27 

novo assembly recovers ARG-host and ARG-MGE linkages by screening taxonomical markers 28 

and MGEs on the assembled ARG-carrying contigs29,34,35. However, this method suffers from 29 

limited detection sensitivity due to the low percentage of raw reads mapping back to the 30 

assembled contigs36 and intergenomic assembly errors37. Importantly, a large portion of reads 31 

associated with MGEs fail to assemble because of the extended homologous and mosaic 32 

sequences found in those regions38–40. Third-generation sequencing technologies (i.e., long-read) 33 

are excellent at tracking ARG hosts in environmental samples28,41 because long-read sequencing 34 

can directly reveal the genetic context of ARGs thanks to the extended read length. For example, 35 

two wastewater metagenomic studies reported greater numbers of long reads generated via 36 

Oxford Nanopore Technology (ONT) than numbers of short-read assembled contigs, and an 37 

average long read length of 2-10 kbp, which was significantly longer than the average length of 38 

short-read assembled contigs28,42. However, because both long- and short-read metagenomic 39 

sequencing are untargeted methods, their ability to detect low abundance and rare ARGs is 40 

limited43,44. On the other hand, emerging targeted methods such as single cell fusion PCR 41 

methods, called epicPCR (Emulsion, Paired Isolation, and Concatenation PCR), can overcome 42 

sensitivity limitations. In epicPCR single cells are isolated and encapsulated in a polyacrylamide 43 

bead within which PCR takes place to fuse a target ARG with the 16S rRNA gene45. As a result, 44 

PCR amplifies the signal of the ARG and its associated host 16S DNA from the background 45 
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environmental metagenome, improving detection sensitivity. No studies to date have directly 46 

compared ARG hosts detected using untargeted sequencing and targeted fusion PCR methods. 47 

In this study, we compared the sensitivity and consistency of ARG hosts detection via 48 

three different methods: short-read sequencing, long-read sequencing, and epicPCR. In addition, 49 

for the untargeted metagenomic sequencing methods, we also analyzed the genetic context of the 50 

detected ARGs, including their associations with MGEs. We then applied these methods to 51 

samples collected across a WWTP to characterize ARG hosts shifts across the wastewater 52 

treatment process, and to identify high-risk ARGs associated with putative pathogens and MGEs 53 

in the final effluent. The results of this work reveal breadth vs. sensitivity tradeoffs associated 54 

with method selection for identifying ARG hosts in wastewater monitoring programs. 55 

 56 

2. Materials and Methods 57 

2.1. Sample collection, DNA extraction, and pretreatment for epicPCR 58 

 Wastewater samples were collected from a conventional WWTP (City of West 59 

University Place WWTP, Houston, Texas, USA) that treats an average of 2 million gallons of 60 

municipal sewage per day. This WWTP employs a conventional aerobic activated sludge process 61 

as secondary treatment, followed by chlorination disinfection (gaseous Cl2, 2-4 mg/L effective 62 

chlorine concentration, 20 mins contact time). Nine grab samples were collected from three 63 

sampling locations, WWTP influent, secondary effluent, and final effluent on three consecutive 64 

dry days (n=3 for each sampling location). All samples were collected at the same time of the 65 

day to avoid diurnal variations. After collection, samples were kept on ice, immediately 66 

transported to the lab, and processed within 45 minutes of collection.  67 
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 DNA was extracted from all samples prior to conducting long- and short-read 68 

metagenomic sequencing. A 50 mL influent sample, 250 mL secondary effluent sample, and 500 69 

mL final effluent sample were filtered through a cellulose nitrate membrane filter (pore size 0.22 70 

μm, diameter 47 mm; Millipore Sigma) to concentrate biomass. Next, filters were cut into small 71 

pieces using sterilized forceps and transferred to a 2 mL tube containing 0.1 mL glass beads for 72 

bead-beating, followed by DNA extraction. A Maxwell RSC Instrument (Cat. Num. AS4500, 73 

Promega) using Maxwell RSC PureFood GMO and Authentication kits (Cat. Num. AS1600, 74 

Promega) were used to extract DNA. For epicPCR, all influent (n=3) and final effluent samples 75 

(n=3) were centrifuged to concentrate cells for cell counting, polymerization, and cell lysis as 76 

previously described85. Only samples with good cell separation and partitioning in 77 

polyacrylamide beads (i.e., one single cell per 35-50 polyacrylamide beads) were used in the 78 

downstream experiments to avoid false positive detections. Details of DNA extraction and 79 

sample pretreatment for epicPCR are provided in Supplementary Information Section 1.2. 80 

 81 

2.2. Sequencing epicPCR product using MinION (ONT) 82 

 We selected three ARG targets for epicPCR analysis: sul1, ermB, and tetO. They were 83 

chosen because of their wide host range as previously reported24,86,87. For example, ermB, the 84 

macrolide-lincosamide-streptogramin B (MLSB) resistance gene, is of clinical relevance because 85 

it is enriched in human-related environments, harbored by human pathogens, and often carried 86 

on MGEs24. Primer sequences for the three targets used in this study are listed in Supplementary 87 

Information Table 1. Details of the epicPCR experiments consisting of fusion PCR and nested 88 

PCR are provided in Supplementary Information 1.2. After attaining nested PCR products, 89 

library preparation and sequencing were performed following the protocol “Native barcoding 90 
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amplicons (with EXP-NBD104, EXP-NBD114, and SQK-LSK 109)” (ONT). The pooled library 91 

was loaded on an R9.4 flow cell (MIN-FLO106, ONT) in a MinION device. The sequencing run 92 

was monitored via the software MinKNOW (v.20.10), targeting a >1000X depth per sample.  93 

 94 

2.3. Metagenomics sequencing (long- and short-read) 95 

 DNA extracts of all samples were measured using a Qubit Broad Range dsDNA assay kit 96 

and Qubit 2.0 fluorometer. DNA quality was then evaluated using electrophoresis to ensure a 97 

DNA size greater than 3 kbps. For short-read sequencing, DNA extracts were shipped on dry ice 98 

to BGI Tech Solutions (Hong Kong) Co., Ltd for DNBseq general DNA library construction and 99 

DNBseq platform sequencing. For long-read sequencing, 500 ng of DNA from each of the three 100 

sample replicates were combined for library preparation following the protocol “Genomic DNA 101 

by ligation (SQK-LSK 109)” (ONT). Each of the three libraries (influent, secondary effluent, and 102 

final effluent) was loaded onto a Flow Cell R9.4 (MIN-FLO106, ONT) and sequenced with a 103 

MinION device. The sequencing run was controlled via MinKNOW (v.20.10). Long- and short-104 

read sequencing statistics are provided in Supplementary Information Table 2. 105 

 106 

2.4. Analysis of epicPCR reads for ARG host range profiling 107 

 Raw reads were basecalled via guppy_basecaller (Version 4.4.1+1c81d62). Basecalled 108 

reads were trimmed by Porechop (https://github.com/rrwick/Porechop) and filtered using 109 

Nanofilt with a minimum quality score of 788. Next, all reads were searched against the 110 

corresponding linker primer sequence (RL-sul1-519F′, RL-ermB-519F′, and RL-tetO-519F′) 111 

using BLAST. The output reads were filtered using the perfect match criteria (100% identity and 112 

100% length coverage) to exclude partially fused fragments, and only complete ARG-16S rRNA 113 
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fusion structures were included for the downstream analysis. Then, we used a customized script 114 

to split the fusion structures into the ARG and the 16S rRNA gene portions based on the reverse 115 

linker position. We then conducted taxonomic classification on the 16S rRNA gene portion using 116 

Emu89 and the SILVA ribosomal RNA gene database (release 138, 2019). To avoid false 117 

positives, two actions were taken to further filter the reads: 1) The ARG portion of all split reads 118 

was aligned against the SARG database90 using BLAST, 2) for each sample, only hosts that were 119 

identified consistently from at least two sample replicates were counted. The results of epicPCR 120 

sequencing statistics can be found in Supplementary Information Section 2.1. 121 

 122 

2.5. Analysis of metagenomic sequencing reads generated by long-read and short-read 123 

sequencing 124 

 We processed long- and short-read sequencing data in an integrated pipeline as shown in 125 

Supplementary Information Fig. 1. Our metagenomic analysis included: (1) identification of 126 

ARGs on long reads (via long-read sequencing) or short-read-assembled contigs (via short-read 127 

sequencing); (2) filter ARG-carrying long reads and contigs to include only those that were 128 

chromosome-associated for the host classification step; (3) identification of MGEs that were 129 

located on the same read or contig as the ARGs, and (4) identification of ARG host by 130 

taxonomic classification of the chromosomal reads or contigs that were associated with ARGs. 131 

Detailed methods describing the pipeline used to detect ARG-carrying long reads via BLAST, 132 

ARG-carrying contigs via CARD’s Resistance Gene Identifier (RGI)91, and ARG-MGE linkages 133 

are provided in Supplementary Information Table 7. ARG relative abundance was calculated by 134 

normalizing the copy number of ARGs detected on long reads or assembled contigs to the total 135 

giga base pairs (Gbp) of the sample41. 136 
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 ARG-carrying reads or contigs were categorized as “chromosome,” “plasmid,” or 137 

“unclassified” via PlasFlow (V1.1)92. The “unclassified” reads and contigs were re-classified via 138 

megaBLAST against the NCBI nt database with a minimum bit score of 50, an E value threshold 139 

of e-10, and a 70% sequence similarity cutoff, followed by keyword match (“chromosome”) to 140 

retrieve chromosome-associated long reads and contigs. All ARG-carrying reads and contigs 141 

classified as “chromosome” were subject to taxonomic classification using Centrifuge (V1.0.4)93. 142 

ARG-host linkages were identified by summarizing the associations between each ARG and the 143 

taxonomic classification result of the corresponding ARG-carrying read or contig. Putative 144 

pathogens were scanned according to the WHO resistant pathogen list94. In addition, three 145 

publicly available datasets from NCBI SRA were downloaded, each consisting of long-read (via 146 

Nanopore) and short-read (via Illumina) data based on sequencing the same wastewater 147 

sample28,31. These datasets were run through identical pipelines for analyzing long- and short-148 

read sequencing data as used in this study to identify ARG-host linkages. Details regarding the 149 

three datasets are provided in Supplementary Information Table 3. Plasmid-associated ARG-150 

carrying reads and contigs were subject to plasmid mobility prediction using MOB-suite 151 

(v3.0.3)95 and MOBscan (https://castillo.dicom.unican.es/mobscan/). Furthermore, to compare 152 

long-read sequencing with epicPCR for ARG host profiling, we processed Centrifuge 153 

specifically for those long reads that were found to carry ermB, sul1, and tetO.  154 

 155 

3. Results and Discussion 156 

 157 
3.1. Long-read sequencing demonstrated superior performance for ARG host identification 158 

as compared to short-read sequencing 159 
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 Long-read sequencing identified a greater number of linkages of ARGs and their hosts 160 

than short-read sequencing (Fig. 1a). This result highlights that long-read sequencing produced a 161 

more diverse host profile than short-read sequencing, even though both methods produced 162 

similar total community bacterial composition profiles (Supplementary Information Table 4) and 163 

consistent ARG subtype profiles (Supplementary Information Fig. 2a). However, these two 164 

methods showed inconsistency in ARG host identifications. In total, 26 ARG-host family 165 

linkages, or 21 ARG subtype-host family linkages, were consistently detected by both methods, 166 

which accounts for only a small fraction of the corresponding total linkages detected by each 167 

method (Fig. 1a). Although several studies have focused on the consistency of long-read and 168 

short-read sequencing in resistome analysis28,41,46 and sample-wise taxonomic abundance 169 

estimation47–50, ours is the first to explicitly compare their ability to characterize ARG host range 170 

in wastewater and reveals inconsistencies across the methods (discussed below). 171 

  172 
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 173 

Fig. 1. Comparison of long- and short-read sequencing for wastewater ARG host identification. A. Venn 

diagrams illustrating the detections of unique linkages of a specific ARG and its host family (left), and of 

unique linkages of a specific ARG drug class subtype and its host family (right). B. Profile of ARG 

bacterial hosts on the WHO priority list. Highlighted ARGs are those conferring multidrug resistance 

(MDR), fluoroquinolone resistance, and those encoding ESBL-production and/or carbapenemase-

production. The colors denote a detection of an ARG-host (orange: detected only by long-read sequencing, 

turquoise: detected only by short-read sequencing, red: detected by both sequencing technologies). Family-

level hosts are grouped by Order on x-axis (C: Campylobacterales, E: Enterobacterales, M: Moraxellales, P: 

Pseudomonadales). C. The number of reads (X-axis) via long-read sequencing (light blue bars) and the 

number of contigs via short-read sequencing (dark blue bars) supporting each unique linkage of ARG 

subtype and host family (Y-axis; specific linkages are not annotated on the graph). The left panel consists of 

data generated in this study, and the right panel is using publicly available data of a sample collected from 

the influent of a WWTP in Boston, MA (sample ID: B_ww_1, Supplementary Information Table 3). 
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 We further compared the ARG-host linkages identified by each method, focusing 174 

specifically on those putative hosts included on the WHO’s resistant pathogen list. Long- and 175 

short-read sequencing altogether recovered 117 ARG-host linkages, covering 80 ARGs 176 

(corresponding to 17 subtypes) and 31 putative pathogenic species (Fig. 1b). Both methods 177 

identified Escherichia coli as the putative pathogenic host that carried the highest abundance of 178 

ARGs. In fact, according to global surveillance of clinical cases, among all bacterial pathogens 179 

associated with or attributable to antibiotic resistance, E. coli ranks first as the cause of direct or 180 

indirect deaths1. Not surprisingly, most putative hosts identified were within the family 181 

Enterobacteriaceae, which includes the vast majority of commensal and enteric bacteria that live 182 

in the gastrointestinal tract of humans51–53. Consistent with previous studies, Enterobacteriaceae 183 

was found to harbor multiple classes of clinically relevant ARGs, especially those encoding 184 

ESBL (extended-spectrum beta-lactamase)-production and/or carbapenemase-production51,54–56. 185 

Long-read sequencing detected ARG-host connections across six host families and 68 ARGs, 186 

whereas short-read sequencing only detected Enterobacteriaceae and Pseudomonadaceae as the 187 

host families for 24 ARGs (Fig. 1b). Hence, despite having a significantly shallower sequencing 188 

depth (long-read method sequenced only 10.12% of the total bases sequenced by short-read 189 

method for the same wastewater sample; Supplementary Information Table 2), long-read 190 

sequencing detected a more comprehensive profile of putative pathogenic hosts of ARGs than 191 

short-read sequencing (Supplementary Information Table 5).  192 

 To investigate the inconsistency between the two sequencing methods, we compared the 193 

number of reads supporting the ARG-host linkages detected by long-read sequencing and the 194 

number of contigs supporting the ARG-host linkages detected by short-read sequencing (Fig. 195 

1c). In addition, we also compared our results with an existing publicly available dataset 196 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 13, 2023. ; https://doi.org/10.1101/2023.08.08.23293828doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.08.23293828


containing short- and long-read metagenomic sequencing data of the same wastewater microbial 197 

community (ID: B_ww_131; Fig. 1c, right; Supplementary Information Fig. 3). As expected, 198 

long-read sequencing demonstrated more ARG subtype-host family linkages as compared to 199 

short-read sequencing. Quantitatively, the numbers of long reads were generally greater than the 200 

numbers of contigs across the vast majority of the ARG subtype-host family linkages (Fig. 1c). 201 

For those reads and contigs that supported the same linkages, their numbers were moderately 202 

correlated (n=21, Spearman’s Rho=0.43, p<0.05 for this study; n=18, Spearman’s Rho=0.47, 203 

p<0.05 for B_ww_1), which indicates some degree of consistency between these two methods in 204 

quantifying the linkages of ARG subtypes and host families.  205 

 Thus, our results show that long-read sequencing demonstrated superior performance 206 

over short-read sequencing in detecting ARG hosts in two respects: 1) it captured a wider host 207 

range for different ARGs (Fig. 1b) and ARG subtypes (Fig. 1c, Supplementary Information Fig. 208 

1a, 4); and 2) quantitatively, it detected ARG-host linkages by generating greater numbers of 209 

reads supporting the linkages as compared to short-read derived contigs (Fig. 1c, Supplementary 210 

Information Fig. 3). Of note, the evaluation was based on comparing the detection via long reads 211 

with the detection via contigs assembled from short reads, rather than directly comparing the raw 212 

reads generated by both sequencing methods. Several previous studies used raw short reads 213 

without assembly and identified putative ARG hosts through correlation analysis that compared 214 

the abundance of ARGs and taxonomical markers57,58. However, using raw reads to assign ARG 215 

hosts for wastewater surveillance has several challenges. First, this approach relies heavily on 216 

statistical correlation analysis which requires multiple sample replicates. Obtaining and 217 

processing multiple replicate samples significantly increases the amount of work required for 218 

sample collection, preparation, and sequencing, as well as the time and cost involved in routine 219 
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surveillance. Most importantly, the raw read approach is prone to introduce false positives when 220 

detecting ARG-host linkages59. Thus, while using assembly is a relatively conservative means to 221 

identify ARG-host linkages as compared to using raw short-reads, it is less likely to generate 222 

false positives, which is crucial in wastewater surveillance and risk assessment. Furthermore, the 223 

substantial processing time and computational memory requirements of read assembly of short-224 

read sequencing data can be massively reduced by using long-reads. Recent studies have shown 225 

that ONT, one of the leading long-read sequencing technologies, can rapidly and reliably detect 226 

resistomes and pathogens in one hour in wastewater50.   227 

 228 

3.2. EpicPCR detected more ARG hosts as compared to long-read sequencing 229 

 Since long-read sequencing revealed more ARG hosts than short-read sequencing, we 230 

next compared the ARG hosts detected using long-read sequencing to the host range of three 231 

ARG targets (sul1, ermB, and tetO) detected by epicPCR. We found that epicPCR detected a 232 

greater number of host species for the three ARG targets than long-read sequencing (Table 1). As 233 

expected, epicPCR was more sensitive than long-read sequencing for ARG host detection as it is 234 

a targeted method that includes a PCR amplification step that enhances the signal of the target 235 

ARGs and bacterial host marker genes. An additional reason why epicPCR may be more 236 

sensitive than metagenomic sequencing is because it includes plasmid-associated linkages that 237 

may have been overlooked by metagenomics. With epicPCR, as long as the target ARG is 238 

present in the cell, it can be fused with the taxonomical marker (i.e., 16S rRNA gene) via PCR 239 

for host classification regardless of whether the ARG is located on a plasmid or chromosome. 240 

However, metagenomics analysis pipelines generally only classify hosts for ARGs that are 241 

located on the chromosome because the analysis requires the presence of taxonomic markers co-242 
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located on the ARG read, which are more frequently found in the chromosome than on plasmids. 243 

Thus, epicPCR should generate a more comprehensive host profile than metagenomics, because 244 

ARGs are widely distributed on plasmids28,42,60.  245 

  246 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 13, 2023. ; https://doi.org/10.1101/2023.08.08.23293828doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.08.23293828


Table 1. The number of ARG-associated reads and host species detected by epicPCR and long-read 247 

sequencing in WWTP influent and effluent samples (n=3). The comprehensive list of hosts detected by 248 

epicPCR can be found in Supplementary Information Table 6. 249 

250 

 The significantly lower number of hosts identified via long-read sequencing as compared 251 

to epicPCR was likely due to the low fraction of chromosomal reads among the total ARG-252 

associated reads. To further investigate, we selected all long reads that were found to carry sul1, 253 

ermB, and tetO disregarding whether they were on chromosomes. As expected, the vast majority 254 

of ARG-carrying reads were not classified as chromosomal reads for the three ARG targets 255 

(Table 1). Unfortunately, it is not feasible to classify hosts using metagenomics for non-256 

chromosomal ARGs, such as plasmid-associated ARGs. This is because phylogenetic analysis of 257 

plasmids is extremely challenging, due to the hardship to reconstruct the potentially shared 258 
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“core” genes61 by plasmid subtypes62,63. In addition, plasmids can be horizontally transferred 259 

among different hosts and the transfer pattern is still not fully unveiled.  260 

Despite epicPCR’s improved detection sensitivity over long-read sequencing, one 261 

undeniable value of long-read sequencing is its ability to capture the genetic context of an ARG. 262 

For instance, long-read sequencing identified the associations between ermB and the gene 263 

encoding conjugative transposon proteins in Clostridioides difficile (data not shown), 264 

highlighting ermB’s potential to be horizontally transferred. EpicPCR results in only a short, 265 

fused product of the target gene and taxonomic marker gene, retaining no additional contextual 266 

information in the sequenced amplicons. Thus, there is a tradeoff between sensitivity and 267 

contextual information that should be considered when deciding whether to use epicPCR versus 268 

long-read sequencing for ARG detection and risk assessment in environmental monitoring. 269 

 270 

3.3. The ARG-host phylum linkages were relatively consistent across WWTP influent and 271 

effluent, whereas new ARG-host species linkages appeared in the WWTP effluent 272 

 ARGs were efficiently removed via conventional activated sludge treatment followed by 273 

chlorination disinfection, where we observed a 93.6% removal rate of all ARGs based on the 274 

relative abundance of total ARGs across the WWTP (Fig. 2a). The removal rate across the 275 
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activated sludge treatment process (91.8%) was comparable to those reported in previous 276 

studies14,30,64. The chlorination process further removed chromosomal ARGs, but resulted in a 277 

slight increase in the relative abundance of plasmid-associated ARGs, leading to limited removal 278 

of total ARG relative abundance (21.0%) from the secondary effluent (Fig. 2a). Although the 279 

role of chlorination remains under debate with respect to its impact on antibiotic resistance13, 280 
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Fig. 2. Dynamics of resistomes and ARG hosts across the WWTP revealed by long read sequencing. 

A. The relative abundance of ARGs across the WWTP (influent, secondary effluent and final 

effluent, n = 3 for each sampling location). ARGs were grouped by their location (red: plasmids, 

green: chromosome). B. The composition of chromosomal ARGs across samples. ARGs are colored 

by drug class subtype. C. The composition of plasmid-associated ARGs across samples. ARGs are 

colored by drug class subtype. D. The ARG host phyla across samples. ARGs are grouped by subtype 

(y-axis) and hosts are grouped by phyla (x-axis). The size of dots represents the relative abundance of 

ARGs corresponding to the specific subtype and host phylum. Dot colors indicate sampling location. 
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several studies have shown that chlorination has a limited or even negative effect on the removal 281 

of ARGs from secondary effluent19,65–67.  282 

 To further understand the dynamics of resistomes across the treatment processes, the 283 

composition of ARGs on chromosomes and plasmids was assessed separately with respect to 284 

ARG subtypes (Fig. 2b). Chromosomal and plasmid-associated ARGs shared 16 ARG subtypes, 285 

whereas ARGs encoding resistance to fosfomycin and mupirocin were only detected on 286 

chromosomes, and ARGs conferring resistance to colistin and glycopeptide were only found on 287 

plasmids. The distribution of ARGs across chromosomes and plasmids is likely influenced by 288 

their resistance mechanism. We observed that ARGs causing antibiotic inactivation, 289 

replacement, or protection of the antibiotic’s target, were more frequently associated with 290 

plasmids than chromosomes, while ARGs associated with efflux pumps were more frequently 291 

located on chromosomes (Supplementary Information Fig. 4). This distribution pattern is 292 

consistent with a recent study investigating the distribution of ARGs across chromosomes and 293 

plasmids in major groups of Enterobacteriaceae68. 294 

 In general, the ARG subtypes present in secondary effluent and final effluent samples 295 

were a subset of those in influent samples (Fig. 2b,c). However, chromosomal ARGs (Fig. 2b) 296 

demonstrated a less consistent composition profile across the treatment processes as compared to 297 

plasmid-associated ARGs (Fig. 2c). Among the chromosomal ARGs, a spike of rifamycin 298 

resistance genes (i.e., rpoB2, RbpA, and efpA) in was observed in the secondary effluent and was 299 

likely attributed to the growth of their putative host Actinobacteria (Fig. 2d), whose relative 300 

abundance increased substantially in secondary effluent as compared to in the influent (data not 301 

shown). Similarly, the fraction of multidrug resistance genes (MDRs) increased in the secondary 302 

effluent (Fig. 2b), and these MDRs were also carried by Actinobacteria (Fig. 2d). The growth of 303 
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Actinobacteria bacteria, which are common aerobes69, was likely the result of the presence of 304 

high dissolved oxygen concentrations in the activated sludge treatment process. In contrast, the 305 

relative abundance of the obligate anaerobic Bacteroidetes and the facultatively anaerobic 306 

Firmicutes decreased in the secondary effluent (Supplementary Information Table 5). 307 

Consequently, associations between Bacteroidetes or Firmicutes bacteria with ARGs were only 308 

observed in the influent samples (Fig. 2d). Proteobacteria was the dominant host phylum for 309 

ARGs across the entire wastewater treatment process (Fig. 2d), which is consistent with previous 310 

studies70–72. Our results indicate that the shift in the microbial community, and specifically the 311 

growth and decay of certain phyla drove changes in the resistome across the WWTP (Fig. 2b,c). 312 

 WWTP influent and effluent hosts were similar at the phylum level, as shown by both 313 

epicPCR and long-read sequencing (Supplementary Information Table 6 & Fig. 5), which is 314 

consistent with another study that used Nanopore sequencing for ARG host detection in WWTP 315 

influent and activated sludge42. However, at the species level, ARG hosts in the WWTP effluent 316 

were not entirely a subset of those in the WWTP influent due to the emergence of new hosts in 317 

the effluent (Supplementary Information Fig. 5). To gain a deeper understanding of the 318 

mechanisms responsible for the removal and selection of ARG hosts by different wastewater 319 

treatment unit processes, future research should focus on understanding the relative importance 320 

of horizontal gene transfer versus vertical propagation of ARGs via the growth and decay of 321 

ARG host, as well as the impact of environmental and operational variables on ARG propagation 322 

mechanisms73. 323 

 324 

3.4. ARGs associated with pathogens and mobile genetic elements were present in the final 325 

effluent 326 
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 We narrowed our focus to ARGs that were most likely to pose a public health risk using 327 

the following criteria: 1) presence in the final effluent, 2) association with an MGE, and 3) 328 

association with a pathogenic host species. Given the strong performance of long-read 329 

sequencing (i.e., high detection sensitivity on resistomes, hosts and MGEs), we performed this 330 

analysis using information obtained via long-read sequencing results. Notably, among all ARG-331 

carrying reads in the effluent, 41.3% of them contained MDRs. ARGs associated with pathogens 332 

were abundant in the influent, which contained high abundances of enteric bacteria and as well 333 

as a diverse array of ARGs and ARG-carrying pathogens (Fig. 3).  334 
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We observed several ARG-carrying pathogens in the secondary effluent that were not detected in 335 

the influent, such as Mycobacterium species carrying rifamycin-resistance genes (Fig. 3).  336 

Mycobacterium is ubiquitous in wastewater and activated sludge and is considered a scavenger 337 

of insoluble compounds in wastewater74,75. One of the detected putative Mycobacterium 338 

pathogens, Mycobacterium tuberculosis (TB), was found to carry efpA which encodes an efflux 339 

pump system capable of extruding the isoniazid to the exterior of the cell76. This is particularly 340 

concerning because isoniazid is a drug commonly used in TB therapy. However, ARG-carrying 341 

Fig. 3. ARG-carrying putative pathogens detected in the influent, secondary effluent, and final 

effluent. ARGs are grouped by drug class subtype on y-axis; pathogenic species are shown on the 

x-axis. Dot size indicates the relative abundance of ARGs. Dot color indicates the sample 

location. The heatmap shows the taxa relative abundance of pathogenic species in each sample. 
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Mycobacterium species were not found in the final effluent, indicating its effective removal in 342 

the disinfection process. Burkholderia pseudomallei, which can cause the disease melioidosis77, 343 

was an ARG host detected in the final effluent, but not in the influent or secondary effluent. It 344 

was associated with MuxB, a resistance-nodulation-cell division (RND) antibiotic efflux pump 345 

gene that significantly reduces susceptibility to macrolide, beta-lactams, and fluoroquinolones in 346 

bacteria. 347 

 Overall, six out of seven ARG-carrying putative pathogens present in the final effluent 348 

were also detected in the influent (Fig. 3). It is worth noting that the relative abundance of ARGs 349 

carried by E. coli, especially those encoding resistance against multidrug, beta-lactam, and 350 

nucleoside, were persistent across the entire treatment process (Fig. 3). In addition, the estimated 351 

relative abundance of total E. coli decreased significantly from influent to final effluent (Fig. 3). 352 

Together, these results suggest that the chlorination process may have selected for resistant E. 353 

coli. Previous studies have also observed that multidrug-resistant E. coli was persistent during 354 

wastewater treatment78 and was capable of escaping the oxidation by disinfectants79. 355 

 A variety of ARG-associated MGEs including IntI1s, recombinases, transposases, and 356 

integrases were frequently observed in the effluent samples (Supplementary Information Table 357 

7), which suggests they may be involved in the HGT of ARGs among bacteria80–82. Recent 358 

studies revealed the striking prevalence of insertion sequences (IS) in resistant pathogens and the 359 

relatively consistent linkages between certain IS and specific ARGs across highly diverse 360 

bacterial genotypes, indicating the role of IS in mediating the HGT of these ARGs83,84. Similarly, 361 

we also found diverse IS families that were associated with ARGs across samples. Particularly, 362 

the IS6 family transposase was found to be frequently associated with two macrolide resistance 363 

genes across samples, namely, msrE and mphE (Supplementary Information Table 7). In 364 
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addition, this specific mphE/msrE-the IS6 family transposase association was found on a 365 

conjugative plasmid equipped with the T4SS and MOBQ machinery, highlighting its potential 366 

for HGT via the interaction of IS and a conjugative plasmid. 367 

 368 

4. Conclusions 369 

 The bacterial host and genetic context of an ARG present in our water and wastewater 370 

systems is critical to assessing its potential risk to human health. Specifically, ARGs of highest 371 

priority for further study are those hosted by pathogenic bacteria and/or with the potential to be 372 

horizontally transferred to pathogens (i.e., associated with an MGE). In this study, we evaluated 373 

and compared long and short-read metagenomics as well as epicPCR for identifying ARG hosts 374 

and associations with MGEs. We found that long-read sequencing outperformed short-read 375 

sequencing by generating a higher relative abundance of ARGs, especially of ARGs associated 376 

with MGEs, as well as a more diverse ARG host profile. Moreover, long-read sequencing 377 

generally yielded a greater number of reads supporting ARG-host linkages compared to the 378 

number of contigs assembled from short reads. EpicPCR outperformed long-read sequencing in 379 

terms of the breadth of hosts detected for three ARG targets (ermB, sul1, and tetO), however, it 380 

does not provide any additional contextual information (e.g., whether the ARG is associated with 381 

an MGE). When we applied these methods to understand ARG host dynamics across the WWTP, 382 

we observed consistent trends using long-read sequencing and epicPCR. Overall, the linkages of 383 

ARGs and host phyla in the WWTP effluent resembled those in the WWTP influent. However, 384 

at the species level, ARG hosts in the WWTP effluent were no longer a subset of those in the 385 

WWTP influent, which reinforces the need for more and longer-term surveillance of emerging 386 
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effluent ARG hosts, and the importance of understanding the mechanisms of removal and 387 

selection of ARG hosts across treatment. 388 

 These results suggest that for environmental surveillance, long-read sequencing has many 389 

advantages as a tool for ARG detection and host tracking due to its high sequencing efficiency 390 

and because it does not require assembly. However, if any clinically-relevant ARG targets, such 391 

as MCRs (colistin resistance genes), are of particular concern to public health, epicPCR assays 392 

could be developed and applied to capture a more comprehensive host profile to complement 393 

routine metagenomic screening. Future studies should focus on evaluating standardized methods 394 

for wastewater-based surveillance of antibiotic resistance, developing guidelines for better 395 

reproducibility, and establishing a risk estimation framework for ARGs in the environment. 396 
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