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Abstract

Background
Patients with type 2 diabetes mellitus (T2DM) who have severe hypoglycemia (SH) poses a con-
siderable risk of long-term death, demanding urgent medical attention. Accurate prediction of SH
remains challenging due to its multifactorial nature, contributed from factors such as medications,
lifestyle choices, and metabolic measurements.

Method
In this study, we propose a systematic approach to improve the robustness and accuracy of SH
predictions using machine learning models, guided by clinical feature selection. Our focus is on
developing one-year SH prediction models using both semi-supervised learning and supervised
learning algorithms. Utilizing the clinical trial, namely Action to Control Cardiovascular Risk in
Diabetes, which involves electronic health records for over 10,000 individuals, we specifically inves-
tigate adults with T2DM who are at an increased risk of cardiovascular complications.

Results
Our results indicate that the application of a multi-view co-training method, incorporating the
random forest algorithm, improves the specificity of SH prediction, while the same setup with
Naive Bayes replacing random forest demonstrates better sensitivity. Our framework also provides
interpretability of machine learning (XAI) models by identifying key predictors for hypoglycemia,
including fast plasma glucose, hemoglobin A1c, general diabetes education, and NPH or L insulins.
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Conclusion
By enhancing prediction accuracy and identifying crucial predictive features, our study contributes
to advancing the understanding and management of hypoglycemia in this population.
Keywords: type 2 diabetes mellitus, explainable machine learning (XAI), semi-supervised learn-
ing, multi-view co-training

Background

Type 2 diabetes mellitus (T2DM) results from either reduced insulin production, insulin resistance,
or both. T2DM outnumbers both gestational diabetes and type 1 diabetes mellitus (T1DM) in
prevalence, accounting for nearly 90% of all diagnosed cases [1]. Hypoglycemia can potentially
have a critical impact on morbidity and mortality risk in T2DM [2]. From a clinical perspective,
hypoglycemia can be divided into two categories: mild hypoglycemia (MH) or severe hypoglycemia
(SH), which is determined based on whether the patient experiences loss of consciousness or needs
medical assistance [3]. One critical area of risk prediction is the estimation of SH in diabetes, as
it is marked by the need for immediate medical assistance and it is believed to be a strong risk
factor of long-term mortality [4, 5]. SH can lead to seizures, coma, and brain damage [6, 7, 8, 9],
and sometimes it can be fatal. According to a recent analysis conducted by the Action to Control
Cardiovascular Risk in Diabetes (ACCORD) study, the presence of SH with medical assistance was
linked to a 50% higher likelihood of developing heart failure [10], and youngs with Type 1 diabetes
mellitus may die from hypoglycemia in up to 10% of cases [11]. Therefore, predicting SH risks in
advance is important to prevent future heart attacks and take precautions against the resulting
impact. For this reason, the clinical motivation of the study is to help healthcare professionals
evaluate SH risks, predict the SH events and take precautions, thus protecting patients from the
side effects of SH events in the future.

Electronic health records (EHRs), which include comprehensive patient records such as demo-
graphics, laboratory results, diagnoses, and medical histories, are digitally maintained throughout
the treatment or follow-up process [12, 13]. As large datasets become increasingly available and
computing resources become more powerful, complex analyses that were previously not possible
with statistical methods have been done using machine learning (ML) techniques, enabling more
accurate and effective predictions, particularly in the medical field. The application of ML tech-
niques in EHRs data has gained significant attention in recent years [14, 15, 16], with a specific
focus on EHRs data for diabetes prediction and management [17, 18, 19]. Zheng et al. [18] sug-
gested a semi-automated ML model to distinguish between individuals with and without T2DM.
They wanted to raise recall rates while keeping false positive rates at a minimum. To accomplish
this, they performed feature engineering and then trained various conventional ML models, k-
nearest-neighbors, Naive Bayes (NB), decision tree, Random Forest (RF), support vector machine,
and logistic regression, based on the selected features. By analyzing the EHRs of 300 patients
between 2012-2014, this research has revealed a more precise and effective approach to identifying
individuals with and without T2DM. Zou et al. [8] used ML techniques (decision tree, RF, and
neural network) to predict diabetes based on data from Luzhou, China. They performed five-fold
cross-validation and used principal component analysis and MRMR to reduce the dimensionality
of the dataset. The authors found that the RF algorithm achieved the highest accuracy, 80.84%.
Nguyen et al. [19] developed a hybrid system to predict the onset of diabetes by combining wide
and deep learning models by using EHRs data. Their hybrid approach outperformed other models,
achieving an accuracy level of 84.28%. This highlights the potential to use ML to improve diabetes
risk prediction and management.

The ACCORD EHRs dataset used in this study is characterized by a considerable number
of features. Using this large dataset, clinical researchers focusing on diabetes could conduct risk
prediction studies to identify factors that contribute to SH. Recently, advancements in ML and
statistical methods have opened new avenues for predicting diabetes progression more accurately,
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offering new opportunities for future research. Supervised learning (SL) is one of the most widely
used ML sub-field in medical researches, where labeled data is used in the training process to make
decisions or make predictions such as in classification problems in pediatrics [20], early diagnosis
of cancer [21], identification of drug candidates [22], predicting 1-year cardiovascular events [23],
and predicting blood glucose level in T2D [24]. While typical SL requires labeled data exclusively,
it may not be always feasible in medical research due to limited availability or missing outcomes.
Semi-supervised learning (SSL) methods address this limitation by incorporating unlabeled data
i.e., SSL methods are another sub-field of ML that combines SL and unsupervised learning by using
both labeled and unlabeled data together. In addition, it would be more reasonable to use SSL
methods for clinical data, especially if the outputs contain unlabeled outcomes. The main purpose
of SSL methods is to increase the performance of labeled data by using unlabeled observations or
to increase the number of labels by producing pseudo labels. Due to these reasons, SSL models
have been widely applied to medical studies by integrating labeled and unlabeled data, such as in
cardiovascular risk prediction [25], diabetes disease diagnosis [26], breast cancer survival prediction
[27] and early prediction of pregnancy-associated hypertension [28] and medical image analysis [29].

In this study, we use the ACCORD EHRs dataset and propose a multi-view co-training ML
model as an effective SSL method for predicting SH events. The current study is the first to predict
SH events, especially by proposing a multi-view co-training ML model. This choice is motivated by
the unlabeled data available in the ACCORD dataset. In particular, we encountered the following
two problems with the ACCORD dataset during our study: i) Imbalanced data. The dataset
is highly imbalanced (see Fig. 2); while the imbalance rate is approximately 1:6.79 for the first
year, this ratio increases to 1:120 by the end of the sixth year. ii) Plurality of features. The
main objectives of this study are: (i) to develop a ML model for predicting long-term SH events in
patients with T2DM, which will allow patients and medical doctors to take appropriate precautions;
and (ii) to identify the most effective features for predicting long-term SH events. Specifically, we
are proposing a new multi-view co-training model for the long-term prediction, that is, predicting
the second year “(t+1)” SH events using variables in the first year (t), based on the ACCORD
[30] dataset. By achieving these goals, we hope to contribute to the development of more effective
methods for managing SH events in patients with T2DM. This research introduces one-year SH
prediction models that use both SSL and SL algorithms, and Fig. 1 provides a comprehensive visual
representation of our research methodology, highlighting the key components and steps involved in
our study. In Fig. 1, Panel (A) presents the overall structure of the pipeline, highlighting the various
stages involved in our study. Panel (B) focuses on the feature selection process, illustrating the
implementation of feature selection algorithms such as medical selection criteria (selected features
by medical doctors), LASSO, Boruta, and MRMR. We refer to medically selected features as
“MD” in this study. Panels (C) and (D) present the step-by-step processes of the single-view and
multi-view co-training ML algorithms, respectively.
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Figure 1: Research pipeline, feature selection methods and architecture of the models.
(A) The overall structure of our research pipeline. (B) Diagram of the feature selection process.
MD, LASSO, Boruta, and MRMR are feature selection algorithms. The output features of the LASSO,
Boruta and MRMR feature selection methods are listed in Table 1. (C) Single-view co-training machine
learning algorithm steps. (D) Multi-view co-training machine learning algorithm steps.

Methods

Missing data imputation. In this study, we applied two different methods, namely the last-
observation-carried-forward (LOCF), for the time-series observations, and the median imputation,
for the non-time-series observations, to handle missing data.

Outcome. We determined the response variable of the ACCORD dataset according to Fig. 2A.
According to Fig. 2A, “Glucoselt50” is assigned as a value of 1 if the blood glucose level is below
50 mg/dl, 2 if it is above 50 mg/dl, and 3 if no information is available (X: regardless of the value in
the dataset). “Medical Assist” is assigned as 1, if medical assistance is required, 0 if not required.
“Hospital Admit” is assigned as a value of 1, if the hospital admission is required, 2 if it is not
required, and 3 if there is no information. Finally, the outcome is assigned as 1, 0, or NA based on
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the information provided by the patients. Patients who provided the following information were
assigned as 1, i.e., as SH event; patients with a Blood Glucose level below 50 and either requiring
Medical Assistance or Hospital Admission. For patients who provided the following information is
assigned as 0, i.e., as non-SH; Blood Glucose is higher than 50. In addition, no medical assistance is
required, and hospital admission is not needed assigned as value 0, indicating it is a non-SH event.
Patients for whom we could not obtain information were assigned as NA, i.e. as missing-SH event;
if the Blood Glucose information is unknown or Medical Assistance is not required and unknown
Hospital Admission.

Unlabeled dataset. The ACCORD dataset contains 9068 unlabeled and 1176 labeled data.
First, we started working with the labeled dataset, but we could not obtain significant results, and
subsequently we decided to include the unlabeled data in our analysis.

Predictors. First, we created all 118 candidate risk features listed in supplementary material
(SM) Table 3. After that, as represented in Fig. 1B, we selected the top-12 risk factors among the
118 SH relevant measurements from the ACCORD dataset. The MD estimators of the ACCORD
dataset were chosen as follows: HbA1c, FPG, g1check, g1diabed, g1nutrit, Sulfonylurea,
Meglitinide, NPHL Insulin, Reg Insulin, La Insulin, Othbol Insulin, Premix Insulin.
As some of the features are longitudinal, we computed the mean and standard deviations of the
observations and this process resulted in the following 17 variables: hba1c mean, hba1c std, fpg
mean, fpg std, g1check mean, g1check std, g1diabed mean, g1diabed std, g1nutrit mean, g1nutrit
std, sulfonylurea mean, meglitinide mean, nphl mean, reg insulin mean, la insulin mean, othbol
insulin mean, premix insulin mean (See the SM Table 9).

Views. In our study, we propose a multi-view co-training ML model as SSL. To begin the anal-
ysis, we first started with three different views. These are, glycemic variables (View 1): FPG,
HBA1C; glycemic management and medications (View 2): g1check, g1diabed, g1nutrit, sulfony-
lurea, meglitinide, NPHL insulin, reg insulin, la insulin, othbol insulin, and premix insulin; (View
3): years of diabetes, live alone, education level, body mass index (BMI), participant waist cir-
cumference (cm), race, age, and gender. We examined and compared these three views and ranked
View 1 and View 2 as more effective. Therefore, we generated two views for classification, glycemic
variables based (View 1) and glycemic management and medications based (View 2).

Time horizon. The ACCORD dataset participants were followed for approximately 4 to 8 years
[30]. We decided to work on the second-year prediction, because the least imbalanced rate is seen
for the first year.

Feature selection and model validation The feature selection algorithm is a method
that helps to identify the most relevant variables from the input data and reduces it to a lower-
dimensional dataset. Feature selection methods for classification tasks can be categorized into two
groups [31]: expert knowledge-based feature selection methods, and automatic feature selection
methods such as filter, wrapper, and embedded feature selection algorithms. In particular, we
utilized the Boruta, MRMR, and LASSO methods as automatic feature selection algorithms. Fur-
thermore, we not only evaluate the individual performances of these three feature selection methods
but also consider the features that are selected by all of them as effective features. We incorporated
a technique into our analysis, namely the “consensus and majority vote feature selection”
rule [32], where the feature is considered an important feature if it is selected by all of the base
feature selection methods in agreement. We have provided an explanation of the feature selection
algorithms in the Feature Selection Methods subsection of the SM.
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Table 1: ACCORD dataset MD features and the outputs after applying feature selection algorithms
to them. The mean and standard deviation of the variables are calculated and included in the model.
Bold features are effective features selected by the consensus and majority vote feature selection rule.

MD Features Description Data Types Selected by
FS Algorithms

HbA1c Glycated hemoglobin (%) Continuous LASSO, Boruta, MRMR
FPG Fasting plasma glucose (mg/dL) Continuous LASSO, Boruta, MRMR
g1check Average frequency of blood sugar check Continuous LASSO, Boruta
g1diabed General diabetes education Continuous LASSO, Boruta, MRMR
g1nutrit Nutrition education Continuous LASSO, Boruta
Sulfonylureas Sulfonylureas Categorical LASSO
Meglitinides Meglitinides Categorical
Nph/L Insulin NPH or L Insulins Categorical LASSO, Boruta, MRMR
Regular Insulins Regular Insulins Categorical
LA Insulin Lispro or Aspart Insulins Categorical
Othbol Insulin Other Bolus Insulins Categorical LASSO, Boruta
Premixed Insulin Premixed Insulins Categorical LASSO

Machine learning models

Classification pipeline. All classifiers in this study are created using the caret package [33] in
R programming language 4.1.3. We start by employing conventional ML algorithms to process the
entire labeled dataset. Across the entire study, the dataset is split into two sets (see Fig. 1A): A 20%
sample of the data is used to test the classifier’s performance, while the remaining 80% is used to
train the classifier. We built models using the training dataset and tested their performance with 5-
fold cross-validation. We first assessed the performance of several distinct classifiers, including LR,
XGBoost, NB, SVM, and RF on the ACCORD dataset by calculating the classification accuracy.
Then, we further evaluated the performance of single-view co-training and multi-view co-training
models with NB and RF models.

1. Naive Bayes classifier: A classification algorithm that operates on Bayes’ theorem and
involves probabilities.

2. Random forest: An ensemble classification or regression method that uses the decision tree
algorithms[34].

Single-view co-training model. It is obvious in Fig. 1C that labeled data is split as train
and test set, and the model is initially trained (Step 1). Afterward, the trained model is used to
estimate the unlabeled data (Step 2), and the most confident pseudo-labels are selected by the
probability Θ higher than 0.90. In the next step (Step 3), the pseudo-labeled data and labeled
data are concatenated. The model then makes predictions on unseen test data (Step 4), and finally,
the results are evaluated (Step 5). Step 1 and Step 5 are repeated until new unlabeled data can
no longer be added. We also tested the heterogeneity of the data by applying the cross-validation
method.

Multi-view co-training model. Blum [35] introduced the co-training algorithm, which is
a semi-supervised learning algorithm, and numerious studies have been conducted on this topic
[36, 37, 38]. The multi-view co-training method utilizes both views in tandem to supplement a
much smaller number of labeled examples with unlabeled data. Blum [35] first defined the labeled
(L), unlabeled dataset (U) and unlabeled pools (U ′) (created for each View 1 and View 2), and
set the number of iteration k, then divided the input space X = X1 × X2, so that X1 and X2
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corresponding to two distinct sufficient and redundant views (View1 and View2) of the X, and
they trained each view from the labeled data (L) by h1 and h2 classifiers. Then, the co-training
method allows h1 to label p positive and n negative most confident labels from the unlabeled (U ′)
set (for View 2) as a pseudo label and again h2 to label p positive and n negative most confident
labels from the unlabeled (U ′) set (for View 1), so this prevents from over-training. Finally, the
algorithm adds these confident labels to L and deletes the selected confidence labels from U ′ (see
Fig. 1D). Thus, the multi-view co-training method allows learning from both a few labeled and
unlabeled data.

Combining the views. Instead of performing classification, multi-view co-training is typically
utilized to generate larger labeled data. In order to use it as a classification tool, it is necessary to
combine the views generated at the end of the iteration within the multi-view co-training. There
are many methods to combine the views, but we prefer the naive AND and OR rule to combine
final predictions coming from View 1 and View 2. The AND rule assigns the result as 1, if the
results from the ith observation of both views are 1. The OR rule assigns the result as 1, if only
one of the results from the ith observation from both views is 1.

Results

Study population. Data from 10,251 enrolled participants with clinical diagnoses of T2DM
were collected through the ACCORD study. The study’s participants were mostly middle-aged
and elderly patients ranging from 40 to 82, with an average of 62.2 years and an average diabetes
duration of 10 years. Of the total participants, the majority were white (64.8%) and male (61.4%).
In our study, after performing missing data imputation, we proceeded with the analysis using a total
of 10,244 observations. Table 4 in SM displays the mean ± standard deviations and percentages
(%) for the selected variables in the ACCORD dataset. Abbreviations used in the study are listed
in Table 5.

Data quality checking. Upon completing the labeling process based on Fig. 2A, we obtained
a total of 1,176 labeled data points, consisting of 151 cases of SH and 1,025 non-SH cases, along with
9,068 unlabeled data points. Fig. 2B is a projection of the data obtained using the t-distributed
stochastic neighbor embedding (t-SNE) method [39], as we revealed by the t-SNE, there is no clear
separation based on the target classes of SH non-SH in labeled data. For this reason, we thought
that we could obtain meaningful information from the unlabeled data. In addition, the SH rates
of these patients for 6 years are shown in Fig. 2C for each year.
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Figure 2: Visualization of the class of the dataset. (A) Related conditions for the dependent
variable to be defined as SH. (1=Yes; 0 or 2=No; 3=Unknown; X= regardless of the value in the
dataset).(B) Visualization of t-SNE of the high-dimensional dataset (17 dimensions) based on the
ACCORD dataset colored by labeled (SH/non-SH) and unlabeled. Each dot represents a sample using
MD. The labeled data is represented by green and red dots, corresponding to SH and non-SH events,
respectively. Unlabeled data is represented by blue dots. (C) Hypoglycemia rates (non-SH/SH) of the
dataset by year represented by solid circles. Class distribution of hypoglycemia events for the first year
data represented by bar charts.

Conventional machine learning results. We first analyzed and compared various feature
selection algorithms on a labeled dataset. First, to prevent overfitting and informed by clinical
knowledge on SH, we performed our analysis using a total of 17 features. Consequently, we per-
formed feature selection with four different algorithms, MD, LASSO [40], Boruta [41] and MRMR
[42, 43], as shown in Fig. 1B. Following the feature selection process, we compared the performance
of representative ML algorithms. In the testing data, as seen in Table 2, the NB model with MRMR
feature selection shows the best performance among all classifiers with specificity and accuracy of
0.740 and 0.696, respectively. Also, the NB model with LASSO feature selection demonstrates
the highest performance for NPV and sensitivity of 0.942, and 0.986, respectively. Lastly, the RF
model with MD achieves the highest performance with a PPV of 0.194 and an F1-score of 0.303.
Additionally, the 5-fold AUC-ROC curves of the conventional ML algorithms can be viewed in
SM Fig. 8. We have provided an explanation of the formula for performance measures in the
Performance Measures subsection of the SM.
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Table 2: Comparison of results from conventional models using MD, LASSO, Boruta, and MRMR
feature selection algorithms. NPV: Negative predictive value; PPV: Positive predictive value; Spec:
Specificity; Sens: Sensitivity; Acc: Accuracy; F1: F1-score. In terms of predictive performance, the NB
model outperforms all other models.

MD Feature Selection

Algorithms NPV PPV Spec Sens Acc F1

LR 0.913 0.184 0.591 0.612 0.594 0.280
XGBoost 0.907 0.170 0.560 0.603 0.565 0.263
NB 0.924 0.131 0.038 0.979 0.159 0.230
SVM 0.912 0.188 0.617 0.597 0.614 0.285
RF 0.927 0.194 0.572 0.697 0.588 0.303

LASSO Feature Selection

Algorithms NPV PPV Spec Sens Acc F1

LR 0.906 0.180 0.611 0.567 0.605 0.271
XGBoost 0.909 0.172 0.559 0.617 0.566 0.267
NB 0.942 0.130 0.026 0.986 0.150 0.229
SVM 0.911 0.192 0.629 0.583 0.622 0.286
RF 0.924 0.191 0.578 0.681 0.590 0.297

Boruta Feature Selection

Algorithms NPV PPV Spec Sens Acc F1

LR 0.909 0.181 0.597 0.594 0.597 0.276
XGBoost 0.908 0.168 0.543 0.627 0.553 0.264
NB 0.938 0.130 0.027 0.986 0.150 0.230
SVM 0.912 0.187 0.608 0.601 0.607 0.284
RF 0.927 0.192 0.568 0.699 0.584 0.301

MRMR Feature Selection

Algorithms NPV PPV Spec Sens Acc F1

LR 0.910 0.184 0.623 0.574 0.617 0.277
XGBoost 0.906 0.166 0.552 0.610 0.559 0.259
NB 0.894 0.184 0.740 0.407 0.696 0.248
SVM 0.910 0.181 0.606 0.586 0.604 0.276
RF 0.917 0.180 0.559 0.657 0.571 0.282

Results based on the single-view co-training model. Despite the success of conven-
tional models in demonstrating good performance in NPV, these models have shown limitations
in other metrics that are crucial for practical implementation. Inspired by SSL, where integrating
unlabeled datasets increase the performance of ML algorithms, we aim to incorporate a multitude
of unlabeled observations in ACCORD data that remained to be explored. Due to limitations
of space, we include the results for the single-view co-training model in the SM Table 1. As the
single-view co-training method was not effective enough in improving conventional ML results, we
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switched to a different and more effective SSL method, the multi-view co-training method, as we
discuss next. In addition, the confusion matrix of the single-view co-training results is listed in SM
Fig. 6 and and mean accuracy metrics of test results for each iteration in single-view co-training
for NB using MD features can be seen in SM Fig. 10.

Results based on the multi-view co-training model. We fixed the number of iterations
at 30, as experimented by Blum [35]. However, we executed different ratios of positive and negative
pseudo-labels for selection, and we list the 5 negative/1 positive selection results in Table 3. Table 3
shows the accuracy measures for the first and the last iterations, as well as the percentage of gain
or loss for each model and view. We highlight the positive contributions for five selected negative
and one positive pseudo confident label. Table 3 indicates that in View 2, the highest contribution
rates are observed for specificity (144.732%) and accuracy (90.416%) in the RF MRMR feature
selection model. Additionally, performance curves of the accuracy, NPV, and AUC-ROC results
are presented in SM Fig. 3. Moreover, we provide the confusion matrix of the multi-view co-
training model results in SM Fig. 7, while in SM Fig. 9 displays the 5-fold AUC-ROC curves of
the multi-view co-training algorithms.

Table 3: Comparing multi-view co-training model results on MD and MRMR selected data
with an under-sampling imbalanced solution. Results of the MD data and MRMR data.
Percentage=(ViewX.last-ViewX.1st)×100/ViewX.1st. Both NB and RF achieve great improvements
using these two selected features.

NB

MD MRMR
NPV PPV Spec Sens Acc F1 NPV PPV Spec Sens Acc F1

View1.1st 0.883 0.168 0.775 0.311 0.714 0.217 0.887 0.192 0.804 0.314 0.740 0.233
View1.last 0.884 0.204 0.867 0.230 0.785 0.212 0.883 0.213 0.874 0.224 0.790 0.214
Percentage 0.075% 21.238% 11.971% -25.943% 9.878% -2.180% -0.457% 10.870% 8.674% -28.643% 6.785% -8.149%
View2.1st 0.905 0.157 0.485 0.649 0.506 0.252 0.910 0.172 0.570 0.609 0.575 0.267
View2.last 0.876 0.149 0.842 0.190 0.758 0.155 0.876 0.176 0.876 0.155 0.784 0.155
Percentage -3.174% -4.844% 73.755% -70.640% 49.759% -38.270% -3.720% 2.066% 53.583% -74.495% 36.396% -41.921%

RF

MD MRMR
NPV PPV Spec Sens Acc F1 NPV PPV Spec Sens Acc F1

View1.1st 0.898 0.162 0.564 0.568 0.564 0.251 0.897 0.157 0.544 0.579 0.548 0.246
View1.last 0.891 0.183 0.757 0.368 0.708 0.244 0.884 0.161 0.747 0.333 0.693 0.216
Percentage -0.789% 12.805% 34.099% -35.115% 25.491% -2.853% -1.502% 2.817% 37.150% -42.596% 26.345% -12.420%
View2.1st 0.906 0.163 0.528 0.624 0.541 0.258 0.931 0.161 0.393 0.785 0.444 0.266
View2.last 0.886 0.177 0.789 0.308 0.728 0.224 0.874 0.221 0.961 0.065 0.845 0.136
Percentage -2.273% 8.279% 49.543% -50.626% 34.592% -13.252% -6.130% 37.319% 144.732% -91.745% 90.416% -49.023%

Combining the views of multi-view co-training model. Up to now, we have assessed
the performance of each view created through the multi-view co-training model. Subsequently,
we interpret the results of combining the information obtained from these views. Multi-view co-
training is often used to increase the number of labeled data, but to employ multi-view co-training
as a classification method, we need to combine the outputs. We employ a naive approach where
the results are combined using both AND and OR rules. AND and OR rule results can be seen in
SM Table 2 and the comparison of these combined results with other findings is presented in Table
4, showing the top-performing outcomes. We list the 5 negative/1 positive selection results in SM
Fig. 1 while the other results (3 negative and 1 positive, and 7 negative and 1 positive) can be
found in the SM Tables 5-8 and in SM Fig. 4-5.

Accordingly, we note that the AND rule produces better results for specificity, accuracy, and
PPV measures, with values of 0.993, 0.868, and 0.300, respectively. On the other hand, the OR
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rule outperforms in terms of NPV, sensitivity, and F1, with values of 0.906, 0.589, and 0.267,
respectively. (see more details in SM).

Summarizing the best models. Finally, we can compare the top-performing results from
conventional, single-view co-training, and multi-view co-training ML algorithms in Table 4. It is
seen in Table 4 that the conventional models are only successful in predicting the majority class
(non-SH) events, with NPV at 0.942 and sensitivity at 0.986, respectively. On the other hand, the
multi-view models demonstrate a higher success rate in predicting SH events, achieving the best
result for PPV at 0.300, specificity at 0.993, and accuracy at 0.868, respectively.

Table 4: Performance comparison of the conventional, single-view co-training and multi-view co-training
ML model results. Multi-view co-training performs the best, but only the conventional NB LASSO meets
the clinical criteria of high sensitivity.

Method NPV PPV Spec Sens Acc F1

Conventional NB LASSO 0.942 0.130 0.026 0.986 0.150 0.229
Conventional RF MD 0.927 0.194 0.572 0.697 0.588 0.303
Single-view co-training RF MD 0.924 0.186 0.561 0.689 0.577 0.293
Multi-view co-training RF MD-OR Rule 0.906 0.173 0.584 0.589 0.585 0.267
Multi-view co-training RF MRMR-AND Rule 0.873 0.300 0.993 0.020 0.868 0.037

Discussion

In this study, ML models were developed to predict the occurrence of SH events and identify the
effective features that contribute to such predictions for patients with T2DM in the ACCORD
data. The key findings of the study are: (1) top-12 features were selected by expert knowledge-
based selection for predicting SH events; (2) one-year SH prediction models were developed using
both SSL with a multi-view co-training method and SL with RF or NB models; and (3) the most
effective features were proposed based on both expert knowledge-based selection and automatic
feature selection methods for predicting SH events. (4) a shiny app [44] was designed to facilitate
further analysis by researchers using the proposed multi-view co-training ML method.

The findings indicate that the suggested multi-view co-training approach exhibits superior per-
formance in attaining elevated levels of specificity, positive predictive value (PPV), and overall
accuracy. However, conventional ML algorithms surpass it in terms of sensitivity, negative pre-
dictive value (NPV), and F1 measures when predicting SH. Throughout this study, we employed
different feature selection techniques prior to constructing the predictive model. Specifically, we
explored the most suitable methods from both automatic and expert knowledge-based feature se-
lection approaches. Specifically, we applied Boruta, MRMR, and LASSO method for automatic
feature selection algorithms, while the expert knowledge-based method used in the study was re-
ferred as the MD method. Nevertheless, we achieved better results in predicting SH when we used
automatic feature selection methods rather than merely MD method. Among them, we learned
that the MRMR feature selection algorithm was the most effective at identifying the optimal fea-
tures for the multi-view co-training model. In addition, we identified the effective features for the
one-year SH prediction that are the common selection of these four features using the “the con-
sensus and majority vote feature selection” rule [32]; fast plasma glucose (FPG), hemoglobin
A1c (HbA1c), general diabetes education (other than nutrition)(g1diabed) and NPH
or L Insulins (NPHL insulin). Our framework also provides explainable artificial intelligence
(XAI) [45] by identifying key predictors for hypoglycemia. Notably, HbA1c, FPG and NPH or L
Insulins are beyond the control of patients and medical doctors, but general diabetes education can
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be controlled, and the development of effective self-management skills in patients has the potential
to lower the incidence of hypoglycemia and increase knowledge regarding hypoglycemia [46]. Addi-
tionally, there is a risk between HbA1c [47, 48, 49] or FPG [47, 48] and higher risk of hypoglycemia.
Finally, the most promising results are obtained by implementing the RF multi-view co-training
method with the MRMR feature selection using the AND rule; NPV: 0.873, PPV: 0.300, specificity:
0.993, and accuracy: 0.868 and conventional NB model with LASSO feature selection; NPV:0.942,
and sensitivity: 0.986. Multiple ML approaches were considered in this study, in order to determine
the “best” modeling technique. However, it is crucial to know that there is not just one ideal
model. For example, if the goal is to avoid SH, then “best” might be the model with the highest
sensitivity [50], or high specificity would be “best” if the goal is to avoid unnecessary treatments
or interventions. Therefore, we recommend the conventional NB LASSO to avoid SH, and the
multi-view co-training RF MRMR-AND rule to avoid unnecessary intervention.

Conclusion.

We proposed ML methods in predicting SH events for T2DM patients and systematically exam-
ined our approaches using a seven-year clinical trial, namely ACCORD. We used SSL, specifically
a novel multi-view co-training method, with SL methods, such as RF and NB, to improve ac-
curacy. The study identified four key features that were highly effective in SH prediction: fast
plasma glucose (FPG), hemoglobin A1c (HbA1c), general diabetes education (other than nutri-
tion) (g1diabed), and NPH or L Insulins (NPHL insulin). For this reason, this study offers XAI,
revealing the factors that influence the predictions. Our results suggest that the multi-view co-
training approach can significantly improve the PPV, specificity and accuracy of SH event pre-
dictions. Our proposed multi-view co-training method can use data with missing labels, and
this could benefit the T2DM patient population by improving SH event prediction accuracy and
ultimately leading to more personalized treatment plans and overall improved patient health man-
agement. Additionally, using the proposed features can help clinicians to make better decisions.
Finally we created a shiny app [44] for the proposed multi-view co-training method hosted on
https://datascicence.shinyapps.io/MultiViewCoTraining/. In this app, the user can select
the views and run multi-view co-training algorithm on naive bases (nb) and random forest (rf).

Code availability: All codes are available on GitHub at http://github.com/melihagraz/XX.
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Abbreviations

Table 5: Abbreviations used in the study.

Abbreviation Description

ACCORD Action to Control Cardiovascular Risk in Diabetes
AUC Area Under the Curve
EHRs Electronic Health Records
ICT Intensive Treatment Group
LASSO Least Absolute Shrinkage and Selection Operator
LOCF Last Observation-Carried-Forward
LR Logistic Regression
MD Medically Selected Features
MH Mild Hypoglycemia
MRMR Maximum Relevance-Minimum Redundancy
NB Näıve Bayes
NHLBI National Heart, Lung, and Blood Institute
NPV Negative Predictive Value
PCA Principal Component Analysis
PPV Positive Predictive Value
RF Random Forest
SCT Standard Treatment Group
SH/non-SH Severe Hypoglycemia/non-Severe Hypoglycemia
SL Supervised Learning
SM Supplementary Material
SSL Semi-Supervised Learning
SVM-RFE Recursive Feature Elimination for Support Vector Machines
T1DM Type 1 Diabetes Mellitus
T2DM Type 2 Diabetes Mellitus
t-SNE t-Distributed Stochastic Neighbor Embedding
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training. Advances in Neural Information Processing Systems, 20, 2007.

[39] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of
Machine Learning Research, 9(11), 2008.

[40] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

[41] Miron B Kursa and Witold R Rudnicki. Feature selection with the boruta package. Journal
of Statistical Software, 36:1–13, 2010.

16

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 10, 2023. ; https://doi.org/10.1101/2023.08.08.23293518doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.08.23293518
http://creativecommons.org/licenses/by-nc-nd/4.0/


[42] Hanchuan Peng, Fuhui Long, and Chris Ding. Feature selection based on mutual informa-
tion criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 27(8):1226–1238, 2005.

[43] Zhenyu Zhao, Radhika Anand, and Mallory Wang. Maximum relevance and minimum redun-
dancy feature selection methods for a marketing machine learning platform. In 2019 IEEE
International Conference on Data Science and Advanced Analytics (DSAA), pages 442–452.
IEEE, 2019.

[44] Winston Chang, Joe Cheng, JJ Allaire, Carson Sievert, Barret Schloerke, Yihui Xie, Jeff Allen,
Jonathan McPherson, Alan Dipert, and Barbara Borges. shiny: Web Application Framework
for R, 2023. R package version 1.7.4.9002.

[45] Scott M Lundberg, Bala Nair, Monica S Vavilala, Mayumi Horibe, Michael J Eisses, Trevor
Adams, David E Liston, Daniel King-Wai Low, Shu-Fang Newman, Jerry Kim, et al. Explain-
able machine-learning predictions for the prevention of hypoxaemia during surgery. Nature
biomedical engineering, 2(10):749–760, 2018.

[46] N Hermanns, B Kulzer, T Kubiak, M Krichbaum, and T Haak. The effect of an educa-
tion programme (hypos) to treat hypoglycaemia problems in patients with type 1 diabetes.
Diabetes/metabolism Research and Reviews, 23(7):528–538, 2007.

[47] Eric L Johnson. Glycemic variability in type 2 diabetes mellitus: oxidative stress and macrovas-
cular complications. Diabetes: An Old Disease, a New Insight, pages 139–154, 2013.

[48] Chen Long, Yaling Tang, Huang Jiang Sheng, Suo Liu, and Zhenhua Xing. Association of
long-term visit-to-visit variability of hba1c and fasting glycemia with hypoglycemia in type 2
diabetes mellitus brief title: Variability of hba1c, fasting glycemia, and hypoglycemia. Fron-
tiers in Endocrinology, page 1870, 2022.

[49] Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of
diabetes on the development and progression of long-term complications in insulin-dependent
diabetes mellitus. New England journal of medicine, 329(14):977–986, 1993.

[50] Michael Fralick, David Dai, Chloe Pou-Prom, Amol A Verma, and Muhammad Mamdani.
Using machine learning to predict severe hypoglycaemia in hospital. Diabetes, Obesity and
Metabolism, 23(10):2311–2319, 2021.

17

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 10, 2023. ; https://doi.org/10.1101/2023.08.08.23293518doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.08.23293518
http://creativecommons.org/licenses/by-nc-nd/4.0/

