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ABSTRACT 42 
Retinol is a fat-soluble vitamin that plays an essential role in many biological processes 43 

throughout the human lifespan. Previous work has characterised genetic influences on 44 

circulating retinol; however, small sample sizes have limited our ability to fully appreciate the 45 

genetic architecture of this trait. In this study, we performed the largest genome-wide 46 

association study (GWAS) of retinol to date in up to 22,274 participants. We identified eight 47 

common variant loci associated with retinol, as well as a rare-variant signal. An integrative 48 

gene prioritisation pipeline supported novel retinol-associated genes outside of the main retinol 49 

transport complex (RBP4:TTR) related to lipid biology, energy homeostasis, and endocrine 50 

signalling. Genetic proxies of circulating retinol were then used to estimate causal relationships 51 

with almost 20,000 clinical phenotypes via a phenome-wide Mendelian randomisation study 52 

(MR-pheWAS). The MR-pheWAS suggested that retinol may exert causal effects on 53 

inflammation, adiposity, ocular measures, the microbiome, and MRI-derived brain phenotypes, 54 

amongst several others. Conversely, circulating retinol may be causally influenced by factors 55 

including lipids and renal function. Finally, we demonstrated how a retinol polygenic score 56 

could identify individuals who are more likely to fall outside of the normative range of 57 

circulating retinol for a given age. In summary, this study provides a comprehensive evaluation 58 

of the genetics of circulating retinol, as well as revealing traits which should be prioritised for 59 

further clinical investigation with respect to retinol related therapies or nutritional intervention. 60 

 61 
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INTRODUCTION 67 

Vitamin A is an essential micronutrient that is involved in a range of important biological 68 

processes, including, vision, immune function, cell division, and neurodevelopment1,2. Vitamin 69 

A does not refer to a single compound, but rather to a group of compounds that encompasses 70 

retinol (all-trans retinol), retinoids (metabolites of retinol, such as retinaldehyde and retinoic 71 

acid), and provitamin carotenoids (beta-carotene, alpha-carotene, and beta-cryptoxanthin). 72 

Retinol is the form of vitamin A dietarily consumed from animal products, along with retinyl 73 

ester3, while plant-based materials contain precursors termed carotenoids that can be converted 74 

to retinaldehyde4. Retinoic acid, an oxidised form of retinaldehyde, is a particularly potent 75 

signalling molecule that regulates the expression of thousands of genes after binding to nuclear 76 

receptors including the retinoic-acid receptor and retinoid-X receptor subgroups5,6. 77 

 78 

The majority of dietary retinol is delivered to the liver, which is the primary organ responsible 79 

for its storage and metabolism. Retinol binding protein 4 (RBP4) is the major systemic 80 

transporter of retinol after hepatic secretion, facilitating delivery of retinol throughout the 81 

body3,7,8. RBP4 in turn complexes with the tetramer protein transthyretin (TTR), which 82 

stabilises circulating RBP4 and reduces renal filtration9. Notably, retinol can also be delivered 83 

directly to target tissues through other mechanisms, such as its postprandial packaging into 84 

lipid chylomicrons, as reviewed elsewhere3. 85 

 86 

The role of retinoid-related interventions in human disease for individuals who are not retinol 87 

deficient has been of long-standing interest. Synthetic retinoids that are structurally similar to 88 

retinol/retinoic acid are approved for dermatological indications (e.g., adapalene) and some 89 

cancers (e.g., bexarotene)10,11, with continued interest in repurposing these compounds across 90 

a range of other indications, including neuropsychiatry2,12. Currently, retinol supplementation 91 

is not specifically indicated unless an individual is deficient, which is rare in high-income 92 

countries, though much more common in low-income countries. Numerous observational or 93 

randomised controlled studies have explored the effects of supplementation, a high vitamin A 94 

diet, and/or measured circulating retinol in a variety of disease contexts. However, the data 95 

from these efforts have often either been null or conflicting between studies12–16. Despite this, 96 

recent observational evidence suggests a relationship between a greater serum retinol 97 

abundance and lower mortality in a large, prospective 30-year follow up study17. 98 

 99 
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Genetics provides a powerful tool to better characterise factors that influence the abundance of 100 

circulating retinol in serum. Moreover, estimated genetic effects on retinol can be utilised to 101 

understand potential causal relationships with human health and disease, which may be 102 

informative for supplementation, dietary intervention, or drug repurposing18,19. Family studies 103 

have suggested that circulating retinol is significantly heritable20, albeit estimated in small 104 

sample sizes. Similarly, dedicated genome-wide association studies (GWAS) of circulating 105 

retinol have also been limited to very modest sample sizes21,22. In 2011, Mondul et al. published 106 

findings of two genome-wide significant loci associated with retinol (N = 5006). These loci 107 

were plausibly mapped to the genes RBP4 and TTR, respectively, which form the primary 108 

retinol transport complex22. There has been comparatively little progress in further 109 

characterising the genetic architecture of retinol since that time relative to other micronutrients 110 

like vitamin D, for which large sample size GWAS (N > 400,000) have been released23,24. The 111 

recent adoption of untargeted high-throughput metabolomics platforms with coverage for 112 

retinol in some existing genotyped cohorts presents a new opportunity to boost statistical 113 

power. As a result, in the current study, we aim to perform the largest GWAS of circulating 114 

retinol to-date to identify novel loci and leverage these data to study how retinol relates to 115 

health and disease. 116 

 117 

RESULTS 118 

 119 

The common and rare variant genetic architecture of circulating retinol 120 

We integrated common and rare variant data from up to 22,274 individuals of European 121 

ancestry in our discovery meta-analyses to estimate genetic effects on circulating retinol 122 

(Figure 1A-B, Online Methods). Firstly, variants from the INTERVAL and METSIM studies 123 

were meta-analysed (NMeta = 17,268 – termed METSIM+INTERVAL, Figure 1, Online 124 

Methods). After harmonisation, there were 8,173,975 common and 5,091,050 rare [minor allele 125 

frequency (MAF) < 1%] overlapping variants between INTERVAL and METSIM, 126 

respectively. As retinol effect sizes were estimated in the same units in both studies (plasma 127 

SD units, quantified by the same instrument), we conducted both a fixed-effects inverse-128 

variance weighted (IVW) meta-analysis and a sample-size weighted meta-analysis of Z scores 129 

(Stouffer’s method). Secondly, we conducted an additional meta-analysis (NMeta = 22,274) 130 

which also included data from two other studies (ATBC and PLCO), termed the 131 

METSIM+INTERVAL+ATBC+PLCO meta-analysis. However, there were markedly fewer 132 

variants available in this meta-analysis after imputing the ATBC and PLCO summary statistics 133 
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and harmonising with METSIM+INTERVAL (NVar = 3,896,351, Online Methods). As a result, 134 

we focused on the METSIM+INTERVAL meta-analysis as the primary discovery dataset. 135 

 136 

Considering common variants from the HapMap3 panel (MAF > 0.05, outside of the major 137 

histocompatibility complex (MHC) region), we observed a relatively subtle inflation of retinol 138 

signals across the genome as indexed by the mean 𝜒! statistic, with mean 𝜒! values around 139 

1.03-1.04, regardless of the meta-analysis considered (Supplementary Table 1). Common 140 

variant SNP heritability (h2SNP) estimated using the linkage disequilibrium (LD) score 141 

regression (LDSR) approach and the 1000 genomes European reference panel was between 142 

6%-7% and nominally statistically significant, although with somewhat large standard errors 143 

(2.6%-3.2%) (Figure 1C, Supplementary Table 2). SNP heritability estimates of circulating 144 

retinol increased to between 10%-13%, but were still noisy, using two alternate models to 145 

estimate h2SNP and the UK Biobank (UKBB) as the LD reference (Figure 1C, Online Methods, 146 

Supplementary Table 2). Partitioned h2SNP across tissues and cell-types demonstrated nominal 147 

enrichment in biologically logical contexts such as liver, adipose, pancreas, and blood 148 

(Supplementary Figure 1). The somewhat large h2SNP standard errors are likely a product of 149 

sample size; however, we then conducted further analysis to explore the extent of the polygenic 150 

signal associated with retinol across the genome using an Empirical Bayes’ method (Online 151 

Methods). This method was utilised to model the number of non-null effects on retinol genome-152 

wide stratified by bins of LD scores that index the extent of LD a variant exhibits with other 153 

variants (Figure 1D). Across all LD score bins, we estimated that the mean fraction of common 154 

variants across the genome with non-null effects on retinol was between 1.4% to 2.4%, 155 

depending on the modelling parameters used. In line with expectation, the proportion of non-156 

null retinol effects was very high (> 50%) when considering the variants that display the most 157 

extensive LD (highest LD score bins). The application of these analyses to two GWAS of 158 

another vitamin (25-hydroxyvitamin D3) with either comparable or much larger sample 159 

sizes23,25, suggested that the less-polygenic architecture of retinol observed in this study may 160 

become more diffuse across the genome with greater sample sizes, in line with many other 161 

quantitative traits (Supplementary Figure 2). However, we caution that further investigation 162 

will be required as these data become available to confirm this. 163 

 164 

Next, we processed the common variant results of both meta-analyses to identify genome-wide 165 

significant loci associated with circulating retinol (PGWAS < 5 × 10-8). In the primary discovery 166 

meta-analysis (METSIM+INTERVAL, Stouffer’s method), we uncovered eight genome-wide 167 
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significant loci, six of which were not reported in the previous Mondul et al. retinol GWAS 168 

(Table 1). The absolute effect sizes of these lead SNPs were between 0.066 and 0.172 SD in 169 

circulating retinol per effect allele, as derived from the IVW meta-analysis. We observed 170 

minimal heterogeneity between the two cohorts for these lead SNPs, although heterogeneity 171 

was slightly more marked for rs6601299. Replication was then attempted in the TwinsUK 172 

cohort (N up to 1621, Online methods). Considering the mean association across all timepoints 173 

retinol was measured, as well as the twin pairs separately, 7 out of the 8 lead SNPs in the loci 174 

had effect sizes in the same direction, which was greater than expected by chance alone 175 

(Binomial P = 0.035, Supplementary Table 3).  176 

 177 

We also investigated the effect of retinol associated lead SNPs on factors associated with 178 

dietary intake of retinoids. Using a GWAS of retinol intake derived from a self-reported 24-179 

hour dietary recall in the UK Biobank (UKBB, N = 62,991)26, we found no evidence to suggest 180 

that any of the effect of these genetic signals on circulating retinol is mediated through 181 

influencing dietary intake behaviours (Supplementary Table 4, Supplementary Figure 3). 182 

 183 

 184 

 185 

 186 

 187 

 188 

 189 

 190 

 191 

 192 

 193 

 194 

 195 

 196 

 197 

 198 

 199 
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Table 1. Genome-wide significant common loci associated with retinol 201 

(METSIM+INTERVAL) 202 

 Lead SNP based on statistical significance from sample size weighted (Stouffer) meta-analysis. 203 
Loci boundaries as defined by FUMA (hg19 coordinates). EA = effect allele, that is, allele to 204 
which the effect size relates, NEA = non-effect allele. The effect allele frequency (EAF) is given 205 
from gnomAD v2.1.1 for non-Finnish Europeans (NFE) and Finnish Europeans (FIN). The effect 206 
size in standard deviation units (beta) is denoted for each lead SNP from the IVW meta-analysis, 207 
as well as the Z-score from the Stouffer meta-analysis. The PGWAS (statistical significance of 208 
association) and PHet (Heterogeneity between input effect sizes P value derived from Cochran’s 209 
Q) are also from the Stouffer meta-analysis. Bolded loci are known retinol signals. 210 

 211 

 212 

 213 

 214 

 215 

 216 

Lead SNP 

(Stouffer) 

Locus EA/

NEA 

EAF 

(NFE) 

EAF 

(FIN) 

 

Beta 

(IVW) 

Z-score 

(Stouffer) 

PGWAS PHet 

rs1260326 2:27598097-

27752871 

T/C 0.409 0.358 0.071  6.242  4.32e-10 0.023 

rs34898035 2:122078406-

122084285 

A/G 0.042 0.027 -0.172 -5.677 1.37e-8 0.190 

rs11762406 7:114014488-

114286611 

A/C 0.092 0.085 -0.107 -5.526 3.28e-8 0.104 

rs6601299 8:9167797-

9224907 

T/C 0.17 0.10 -0.105 -6.197 5.76e-10 0.004 

rs10882283 10:95295876-

95360964 

A/C 0.622 0.664 0.109 9.789 1.26e-22 0.192 

rs12149203 16:79696939-

79756197 

C/G 0.708 0.726 0.069 5.668 1.45e-8 0.841 

rs1667226 18:29134171-

29190174 

A/T 0.481 0.507 -0.092 -8.405 4.27e-17 0.06 

rs6029188 20:39142516-

39234223 

A/G 0.637 0.662 -0.066 -5.908 3.47e-9 0.147 
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Figure 1. Common variant influences on circulating serum retinol. (a) Manhattan plot of the 217 

meta-analysis of common variants shared between the INTERVAL and METSIM cohorts 218 

(Stouffer’s sample size weighted meta-analysis). Variant-wise -log10 P-values for association 219 

are plotted, with the dotted red line denoting genome-wide significance. The closest genic 220 

transcription start site is labelled for each lead SNP. (b) Manhattan plot, as above, for the 221 

larger sample size meta-analysis that includes the ATBC and PLCO cohorts, but with fewer 222 
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variants available for meta-analysis (c) Estimates of SNP heritability of retinol (h2), with the 223 

error bars denoting the standard errors of the estimates. The first two panels denote estimates 224 

using the BLD-LDAK model and the LDAK-thin model, respectively, both using LD tagging 225 

files from the Great British ancestry participants in the UK Biobank. The last panel estimates 226 

heritability using the LDSR model with LD from the 1000 genomes European participants. 227 

Estimates were for the METSIM+INTERVAL meta-analyses (Stouffer’s and IVW), as well as 228 

the larger meta-analysis including ATBC/PLCO. (d) Empirical Bayes’ estimation of non-null 229 

effects on retinol genome-wide, stratified by bins of ascendingly sorted LD score by magnitude. 230 

The LD score bins were different for each panel – 1000 bins, 1000 genomes European LD 231 

scores (top left); 5000 bins, 1000 genomes European LD scores (top right); 1000 bins, UKBB 232 

white British LD scores (bottom left); 5000 bins, white British LD scores (bottom right). Each 233 

point represents the proportion of non-null effect sizes for that bin, with the trendline estimated 234 

using a generalised additive model for the relationship between the LD score bin and the 235 

proportion of non-null effects.  236 

 237 

In the larger sample-size meta-analysis with fewer variants available across all input datasets 238 

(METSIM+INTERVAL+ATBC+PLCO), six of the eight genome-wide significant loci from the 239 

smaller meta-analysis were available to test for association. Five of the six loci available 240 

became more statistically significant in this larger meta-analysis, whilst the chromosome 8 241 

locus obtained a very similar level of statistical significance in both meta-analyses (Table 2). 242 

It should be noted that there was relatively large heterogeneity for the lead SNP at the TTR 243 

locus on chromosome 18 locus between cohorts. This was due to a more significant association 244 

in the ATBC+PLCO GWAS, although this region was still very strongly associated in 245 

METSIM and INTERVAL in the same direction.  246 

 247 

 248 

 249 

 250 

 251 

 252 

 253 

 254 

 255 
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Table 2. Genome-wide significant common loci associated with retinol in the larger 256 

meta-analysis (METSIM+INTERVAL+ATBC+PLCO) 257 

Lead SNP based on statistical significance from sample size weighted (Stouffer) meta-analysis for 258 
SNPs available in this extended analysis. Loci boundaries as defined by FUMA (hg19 coordinates). 259 
EA = effect allele, that is, allele to which the effect size relates, NEA = non-effect allele. The Z 260 
score is given for the full extended meta-analysis as well as the smaller METSIM+INTERVAL 261 
analysis in terms of sample size. The PGWAS (statistical significance of association) and PHet 262 
(Heterogeneity between input effect sizes P value derived from Cochran’s Q) are also from the 263 
Stouffer meta-analysis from the extended meta-analysis. Bolded loci are known retinol signals. 264 

 265 

We also estimated rare variant (frequency < 1%) effects on circulating retinol using variants 266 

available in the METSIM+INTERVAL meta-analysis. Despite relatively low power to detect 267 

rare variant association, we identified a genome-wide significant rare variant signal on 268 

chromosome five (chr5:86765041:T:C, dbSNP ID: rs138675130) associated with reduced 269 

circulating plasma retinol per C allele (-0.441 SD, SE = 0.0709, P = 6.37 × 10-9) with no 270 

significant heterogeneity between the contributing studies. The frequency of this C allele in 271 

Europeans (gnomAD v.3.1.2) ranges from 0.5% in non-Finnish Europeans to 0.8% in Finns, 272 

Lead SNP 

(Stouffer) 

Locus EA/

NEA 

Z-score 

(METSIM+ 

INTERVAL) 

Z-score 

(METSIM+ 

INTERVAL+

PLCO+ 

ATBC) 

PGWAS PHet 

rs1260326 2:27598097-

27752871 

T/C 6.242 6.714 1.90e-11 0.06 

rs6601299 8:9167797-

9224907 

T/C -6.197 -6.137 8.41e-10 0.004 

rs11187547 10:95279771-

95360964 

A/G 8.769 10.691 1.12e-26 0.11 

rs11865979 16:79696939-

79756197 

T/C 5.575 6.103 1.04e-9 0.887 

rs4799581 18:29068068-

29230411 

T/C -7.998 -11.065 1.85e-28 9.72e-6 

rs6029188 20:39152458-

39234223 

A/G -5.908 -6.407 1.48e-10 0.299 
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and whilst it is marginally rarer in Africans and South Asians, it is entirely absent in the East 273 

Asian and Middle Eastern populations in that database. The variant is intergenic and in 274 

FinnGen release 8, the C allele was associated at phenome-wide significance (P < 1 × 10-5) 275 

with increased odds of benign neoplasm of the eye and adnexa, as well as whooping cough. 276 

The closest canonical transcription start site to this variant is that of COX7C, which encodes a 277 

subunit of a terminal component of the mitochondrial respiratory chain. We also uncovered 278 

several suggestively significant rare variant signals (P < 1 × 10-5), including three non-279 

synonymous variants in the genes FREM2, NAXD, and CHD1 (Supplementary Table 5). Of 280 

these, the rare NAXD non-synonymous allele suggestively associated with lower retinol 281 

(rs3742192) had some in silico evidence to suggest deleteriousness (Supplementary Table 5), 282 

although it is classed as benign in ClinVar. Finally, to boost power, we also statistically 283 

aggregated rare variants to genes (Online Methods). There were no significant retinol genes 284 

after Bonferroni correction of these gene level association results (P < 3.02 × 10-7); however, 285 

there were two novel suggestively associated genes (P < 3.02 × 10-5), GALM and ZDHHC18 286 

(Supplementary Table 6). 287 

 288 

Prioritisation of retinol-associated genes reveals novel mechanisms influencing 289 

circulating retinol 290 

In common variant loci, prioritising causal genes can be difficult due to confounding factors 291 

like linkage disequilibrium. For circulating retinol, we employed a multi-faceted approach to 292 

prioritise genes that are confidently associated. Firstly, we sought to interrogate the eight 293 

genome-wide significant loci uncovered in the main discovery meta-analysis 294 

(METSIM+INTERVAL) to uncover plausible causal genes. This was achieved by adapting an 295 

integrative pipeline developed in previous work that considers annotation, probabilistic 296 

finemapping, integrative scoring, and in silico prediction (Online Methods, Supplementary 297 

Table 7). We describe these results further for each locus in the supplementary text but 298 

summarise the prioritisation evidence forthwith. There was quite consistent evidence in four 299 

loci for a likely causal gene (GCKR, FOXP2, RBP4, and TTR). RBP4 (chromosome 10 locus) 300 

and TTR (chromosome 18 locus) were previously associated with retinol in the only other 301 

dedicated GWAS of this trait and form the complex that transports retinol in serum22,  thereby, 302 

having a direct biological link to retinol abundance. GCKR, a gene encoding a protein that 303 

binds to and regulates the key metabolic enzyme glucokinase, was confidently the causal gene 304 

for the locus on chromsome 2 with the rs1260326 lead SNP. This gene is known to have a large 305 
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and varied metabolic association profile due to the role of glucokinase in glycaemic and lipid 306 

related processes, amongst others27–29. Interestingly, the lead SNP, and most likely causal 307 

variant derived from probabilistic finemapping, was a common missense allele (rs1260326), 308 

whereby the retinol increasing T allele corresponds to a substitution of leucine for proline in 309 

the GCKR protein. Previous experimental work suggests that this variant impacts GCKR 310 

affinity for glucokinase27,30.  311 

 312 

The transcription factor gene FOXP2 was also strongly supported by multiple lines of evidence 313 

as a causal gene for the locus on chromosome seven. The role of this gene in the brain and in 314 

relation to neurological phenotypes like language has been extensively studied31, but less so in 315 

the periphery despite relatively high expression across many different systemic tissues. 316 

Therefore, we analysed RNA-sequencing data of FOXP2 overexpression in a cell-line not 317 

derived from the central nervous system (human osteosarcoma epithelial cell line) and revealed 318 

the transcriptional correlates of FOXP2 overexpression were enriched for a broad range of 319 

pathways related to factors including extracellular matrix biology, glycosylation, and 320 

interleukin signalling, amongst many others (Supplementary Tables 8-11, Online Methods). 321 

 322 

The remaining four loci exhibited less clear evidence of which gene to prioritise, although all 323 

point to potentially interesting functional mechanisms. On chromosome eight, there is some 324 

evidence to support PPP1R3B as a gene that influences retinol, which encodes a catalytic 325 

subunit of the phosphatase PP1 that is implicated in relevant metabolic processes like glycogen 326 

synthesis32. However, other lines of evidence point to a role of long-noncoding RNA in this 327 

locus. The loci on chromosomes 16 and 20 are noteworthy as the closest transcription start sites 328 

to the respective lead SNPs are two transcription factors (TF) from the Maf family (MAF and 329 

MAFB). Interestingly, MAFB has been shown to regulate both TTR and RBP4 expression in 330 

various tissue contexts from human or murine studies33,34. As only some lines of evidence 331 

support these two TF, further functional characterisation of these two loci is warranted. 332 

Interestingly, in the locus on chromosome 16, two of the other genes with some evidence for a 333 

retinol-related function (MAFTRR and LINC01229) have been shown experimentally to 334 

regulate MAF expression and are also associated with other biochemical traits like urate, further 335 

supporting the role of the Maf family on retinol abundance in serum35. Finally, the remaining 336 

locus on chromosome 2 (2:122078406-122084285) had the least interpretable functional 337 

prioritisation results. The closest transcription start site to the lead SNP was another TF 338 

(TFCP2L1) that has broad physiological roles including in the kidney36. 339 
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We then sought to expand our scope for gene discovery beyond genome-wide significant 340 

retinol-associated loci through further integration of genetics with transcriptomics and 341 

proteomics (Online Methods, Supplementary Tables 12-13). Firstly, we leveraged multivariate 342 

models of genetically regulated expression (GReX) to perform a transcriptome-wide (liver, 343 

whole blood, adipose, small intestine, pancreas, and breast mammary tissue) and proteome-344 

wide (plasma) association study (TWAS/PWAS) of circulating retinol. Tissues for the TWAS 345 

were selected based on prior knowledge of retinol biology and the results of the partitioned 346 

heritability analyses (Online Methods), whilst plasma was the only relevant tissue available for 347 

PWAS. After applying multiple-testing correction to the TWAS and PWAS individually (FDR 348 

< 0.05) and testing whether there was a shared causal variant via colocalisation [Posterior 349 

probability (PP) of a shared causal variant (H4), PPH4 > 0.8], we identified strong evidence of 350 

four additional retinol-associated genes outside of genome-wide significant loci (at least +/- 1 351 

megabase away). These were as follows: MLXIPL, which binds to carbohydrate response 352 

elements to regulate triglycerides37–39; GSK3B, a gene that encodes a member of the glycogen 353 

synthase kinase family involved in metabolism and glycaemic homeostasis40; the tankyrase 354 

gene (TNKS) implicated in processes like Wnt signalling41; and INHBC, part of the inhibin 355 

family of proteins with important endocrine functionality42. Genetically predicted mRNA 356 

expression of MLXIPL in adipose, pancreas, and breast mammary tissue was inversely 357 

associated with circulating retinol levels. Conversely, TWAS analyses revealed that genetically 358 

predicted expression of GSK3B and TNKS was positively associated with circulating retinol 359 

levels. Finally, genetically predicted plasma protein expression of INHBC showed a positive 360 

correlation with retinol levels (ZPWAS = 4.72). We then used a more conservative approach 361 

whereby finemapped variants that influence protein expression (pQTLs) were used as 362 

instrumental variables (IV) to estimate the causal effect of plasma proteins on retinol using 363 

Mendelian randomisation (MR, Online Methods, Supplementary Table 14). We applied the 364 

same filters to the results (FDR < 0.05 and PPH4 > 0.8). These analyses further supported that 365 

upregulated INHBC likely increases serum retinol, with each SD increase in plasma protein 366 

expression associated with a small but highly statistically significant [0.05 per SD in 367 

expression, 95% CI: 0.03, 0.07] impact on circulating retinol. In line with expectation, pQTL-368 

MR, and subsequent colocalisation, further genetically validates that elevated RBP4 protein 369 

abundance correspondingly increases serum retinol with somewhat large effect (0.6 [95% CI: 370 

0.48, 0.72] SD in retinol per SD in plasma RBP4 expression). There was also evidence that 371 

RBP4 protein expression and retinol colocalise under the hypothesis of a single causal variant 372 

(PPH4 = 1). Considering the eight genes prioritised in this and the previous section (RBP4, 373 
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GCKR, FOXP2, TTR, MLXIPL, GSK3B, TNKS, INHBC), we found that these genes exhibited 374 

upregulated expression in the liver (PAdjusted < 0.05) upon analysing data from 54 GTEx tissues. 375 

This further consolidates the salience of hepatic processing to genetic influences on circulating 376 

retinol abundance. Pathway analyses of these genes demonstrated that they were enriched 377 

amongst factors involved in carbohydrate metabolism (Supplementary Table 15). 378 

 379 

Wide-ranging evidence of causal effects of retinol across the human clinical phenome 380 

The role of retinol in human health and disease has been of long-standing interest. However, 381 

most evidence has been observational, limiting the ability for causal inference. Moreover, 382 

randomised controlled trials (RCT) of interventions like retinol supplementation and synthetic 383 

retinoids have only been performed for a small fraction of the traits implicated through 384 

observational studies. We sought to increase our understanding of causal effects of retinol on 385 

human health by leveraging genetic variants associated with retinol uncovered in this study as 386 

IVs. Given certain assumptions are met, these genetic proxies of retinol can be utilised to 387 

estimate causal effects of circulating retinol at scale using Mendelian randomisation (MR) 388 

(Online Methods). Firstly, we utilised a single IV in RBP4 (rs10882283), as this gene has a 389 

clear and unambiguous association with circulating retinol levels, and therefore, is less likely 390 

to be prone to horizontal pleiotropy than other retinol-associated loci. We do caution, however, 391 

that RBP4 does exert some other functionality that may not be directly related to retinol 392 

transport43, although this gene is still likely the best available single IV associated with 393 

circulating retinol at genome-wide significance. We utilised this RBP4 IV 394 

(METSIM+INTERVAL meta-analysis effect size) to estimate the effect of retinol on over 395 

19,500 outcomes in the IEUGWAS database (IEUGWASdb, Online Methods, Supplementary 396 

Table 16). After multiple-testing correction (FDR < 0.01), retinol was found to putatively exert 397 

causal effects on outcomes including several lipid traits, leukocyte counts (total leukocytes and 398 

neutrophils), reticulocytes, optic disc area, and resting-state connectivity of a functional MRI 399 

(fMRI) derived network edge. For instance, each SD in circulating retinol was associated with 400 

a -0.1 SD [95% CI: -0.14, -0.06] decrease in leukocyte count, whilst this unit retinol increase 401 

was estimated to increase optic disc area by 0.22 SD [95% CI: 0.12, 0.32]. We further 402 

interrogated a representative subset of these associations using colocalisation to test if the 403 

signals are driven by a shared causal variant in RBP4 (Supplementary Table 17). Colocalisation 404 

strongly supported that the effect of circulating retinol on leukocyte count, optic disc area and 405 

the edge in the fMRI network arises from a shared causal variant in RBP4. In contrast, the 406 

effect of retinol on lipids through RBP4 was shown to likely arise from linkage due to the 407 
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proximal gene FFAR4 that encodes a free-fatty acid receptor. Therefore, the lipid findings most 408 

likely do not represent a causal impact of circulating retinol, at least through RBP4, but rather 409 

the influence of FFAR4. 410 

 411 

To boost power for discovery of causal retinol effects, we then utilised all independent (LD r2 412 

< 0.001) genome-wide significant SNPs as IVs (Online Methods). Firstly, we used the inverse-413 

variance weighted estimator with multiplicative random effects (IVW-MRE) to estimate the 414 

effect of retinol on IEUGWASdb outcomes for which at least six of the IVs were available (> 415 

17,000 outcome phenotypes). There was moderate positive correlation between the IVW-MRE 416 

and single RBP4 estimates across all traits tested (𝑟 = 0.43, Supplementary Figure 4). Whilst 417 

well powered, the IVW-MRE assumes all IVs are valid, which is unlikely in practice. 418 

Therefore, we developed a pipeline to prioritise the most confident causal relationships that 419 

survive multiple-testing correction considering the IVW-MRE estimates (FDR < 0.01, Online 420 

Methods, Figure 2A, Supplementary Tables 18-20). This was comprised of three tiers, with 421 

Tier #1 being the highest level of evidence. Retinol/outcome pairings that were assigned a tier 422 

had to exhibit no significant heterogeneity between IV-outcome effects, a non-significant MR-423 

Egger intercept (which screens for unbalanced pleiotropy), and not be driven by a single IV. 424 

Four additional MR methods with differing assumptions were then applied in this study (Online 425 

Methods). From the trait pairings that passed the above heterogeneity and pleiotropy filters, 426 

Tier #1 traits were those for which all five methods were statistically significant, whilst Tier 427 

#2 traits had 4/5 significant methods, and Tier #3 3/5 methods significant. There were no Tier 428 

#1 retinol/outcome trait pairings, but several Tier #2 and Tier #3 trait pairings (Figure 2B-C), 429 

with all of them directionally consistent with the estimates from the single RBP4 IV, supporting 430 

their validity. Broadly, we found that retinol increased body fat related measures, resting-state 431 

fMRI connectivity of several network edges, as well as food consumption phenotypes related 432 

to carbohydrates. Retinol also exhibited evidence of a relationship with the cortical thickness 433 

and surface area of several brain regions, as well as microbiome composition and keratometry 434 

measurements. These results were dominated by continuous traits, for which we are better 435 

powered, however, there were some binary traits assigned Tier #2 or Tier #3 evidence. 436 

Specifically, retinol was associated with decreased odds of tuberculosis sequalae and 437 

coxarthrosis (arthrosis of the hip), whilst it was associated with increased odds of non-specific 438 

skin eruptions, adverse asthma/COPD medication effects, and dental problems. We caution 439 

that all these inferred associations require further investigation, and should be treated with 440 

requisite caution, as reviewed elsewhere19,44,45. A consideration of this approach that leverages 441 
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multiplicative random effects with relatively few IVs (< 10), is the potential influence of 442 

residual standard errors below 1 on the estimation of the IVW standard errors. We see some 443 

evidence of this impact on the IVW-MRE estimates for Tier #2 and Tier #3 traits – as these 444 

traits exhibit no significant heterogeneity between IV estimates. Specifically, whilst all fixed 445 

effect IVW results are still highly statistically significant for these traits, they have larger 446 

standard errors than the IVW-MRE, indicative of residual standard errors < 1. This is a function 447 

of the MRE not scaling the standard error of the IVW by the model’s residual standard error 448 

like in the fixed effects model. We discuss this further in the supplementary text and in 449 

supplementary figure 5. However, these issues only impact the P-value of the IVW-MRE 450 

relative to that of the fixed effects, and Tier #2/Tier #3 traits still exhibit non-zero evidence 451 

across multiple methods and no indication of a single IV driving the association. Moreover, 452 

using instead a fixed effects IVW estimator as the primary test for trait pairings with no 453 

heterogeneity (Cochran’s Q P < 0.05) yields similar outcomes being prioritised as most 454 

statistically significant after FDR correction (Supplementary Text). It also important to 455 

consider when interpreting these estimates that MR approaches are only interpretable under the 456 

assumptions they make, and as a result, any potential causal relationship reported here requires 457 

further validation, ideally using a randomised control trial design. 458 

 459 
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Figure 2. Estimated causal effects of circulating retinol across the human clinical phenome. 508 

(a) Prioritisation pipeline overview for retinol causal estimates [inverse-variance weighted 509 

b 

c 
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estimator with multiplicative random effects (IVW-MRE)] that survive multiple-testing 510 

correction (FDR < 0.01). These estimates are subjected to tests for heterogeneity and 511 

pleiotropy (Online Methods), with a tier then assigned based on how many of the five 512 

Mendelian randomisation (MR) methods applied are at least nominally statistically significant. 513 

In panels (b) and (c), the left-hand plot denotes the Z-score (beta/SE) from the MR IVW-MRE 514 

estimates. Positive Z scores denote a positive IVW-MRE estimate of the effect of circulating 515 

retinol on that trait, and vice vera. The traits are coloured by their broad phenotypic category. 516 

The right-hand plot visualises the Z score using the IVW-MRE model verses that of the MR 517 

estimate using the RBP4 IV alone (Wald Ratio). The dotted lines approximately represent 518 

nominal statistical significance (P < 0.05). In panel (b), just tier #2 traits are plotted (Online 519 

Methods), whilst panel (c) plots both tier #2 and tier #3 traits. 520 

 521 

We hypothesised that the putative effect of retinol on body fat could be one explanation for its 522 

relationship in this study to brain phenotypes beyond a direct effect of retinoid signalling, 523 

particularly given that obesity and adiposity have been linked with MRI related indices46. 524 

However, using IVs for body fat percentage, we did not find any strong evidence that it is 525 

causally related to any of the retinol-associated brain regions (Supplementary Table 21), 526 

suggesting a direct effect of retinol on these regions/networks or a relationship induced through 527 

some other unobserved confounder. Reverse causality for these Tier #2 and Tier #3 exposures 528 

was then also considered, although for binary traits this should be treated purely as a test of the 529 

null hypothesis given the difficulties in using binary traits as IVs47. There was no strong 530 

evidence for reverse causality of any of these traits (Supplementary Table 22). One exception 531 

to this was in relation to expression of the protein PEAR1, for which there was very nominal 532 

evidence of bidirectional effects.  533 

 534 

A limitation of the above phenome-wide analyses is that the multiple-testing burden that arises 535 

from the inclusion of over 17,000 traits may obscure retinol effects on binary disease 536 

phenotypes, as these are usually less powered than GWAS of continuous traits. To overcome 537 

this, we also applied the above pipeline using all retinol IVs to 1141 binary endpoints with at 538 

least 1000 cases in FinnGen release 8 (not featured in IEUGWASdb), allowing a phenome-539 

wide analysis of electronic health record derived binary outcomes. There were eight disease 540 

phenotypes that retinol was associated with after multiple testing correction (Figure 3A, FDR 541 

< 0.01), which increased to 19 with an exploratory FDR < 0.1 threshold (Supplementary Table 542 

23). After applying the above pipeline to these results that considers heterogeneity, pleiotropy, 543 
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and consistency across MR methods, there were four disease endpoints with Tier #3 evidence 544 

(Figure 3B, Supplementary Table 24). Specifically, retinol was estimated to increase the odds 545 

of congenital malformations of the heart and great arteries, whilst it was protective for type 2 546 

diabetes with coma and inflammatory liver disease. As these traits had tier #3 evidence, there 547 

was some inconsistency in the strength of the results across different MR methods, and 548 

therefore, these relationships should be interpreted cautiously. One of the most active areas of 549 

research in retinol epidemiology is the relationship between retinol and cancer risk48. The 550 

estimated effect of circulating retinol on the odds of any malignant neoplasm was not 551 

significantly different than one - OR = 0.97 [95% CI: 0.91, 1.04], P = 0.423 (Supplementary 552 

Figure 6). However, there was some indication of a protective effect of retinol on squamous 553 

non-small cell lung cancer, which approached the threshold for statistical significance after 554 

FDR correction - OR = 0.64 [95% CI: 0.51, 0.80], P = 8.19 × 10-5, q = 0.01. There was also 555 

some data to support retinol having effects on other respiratory neoplasm endpoints 556 

(Supplementary Figure 6). Given previous observational evidence that retinol is protective for 557 

lung cancer48, as well as some data supporting the use of synthetic retinoids like bexarotene in 558 

lung neoplasms49, this relationship warrants further exploration.  559 

 560 
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Figure 3. Genetic estimates of the relationship between circulating retinol and binary disease 610 

endpoints in the Finnish population. (a) Volcano plot denoting the phenome-wide MR 611 
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estimates of retinol (SD units) and the log odds of each binary endpoint in FinnGen release 8. 612 

The x-axis denotes the log odds (IVW-MRE), whilst the y-axis denotes the -log10 P-value of the 613 

MR estimate. The dotted horizontal line is approximately equivalent to the magnitude of P-614 

value that is estimated at an FDR of 1%. Categories highlighted by a blue box on the legend 615 

indicate that an endpoint in that category survived multiple-testing correction. (b) Retinol 616 

effects on binary FinnGen endpoints after multiple-testing correction (FDR < 0.01) with the 617 

strongest evidence from all phenotypes tested based on heterogeneity, pleiotropy, and 618 

consistency across MR estimators (Tier #3, Online Methods). Each panel denotes the effect 619 

sizes (odds ratio with 95% confidence intervals per SD in circulating retinol) for the IVW-620 

MRE, the IVW with fixed effects (IVW-FE), the MR-Egger, Weighted median, and Weighted 621 

Mode, respectively.  622 

 623 

We also investigated evidence for bidirectional effects involving these Tier #3 traits that retinol 624 

is genetically predicted to influence. As described above, using binary traits as exposures in 625 

MR should be treated with suitable caution and are often underpowered. The use of either 626 

genome-wide significant or suggestively significant SNPs (P < 1 × 10-5) as IVs did not indicate 627 

evidence of reverse causality of these diseases to retinol (Supplementary Table 25). However, 628 

given some of the statistical limitations of these analyses, such effects warrant further 629 

consideration.  630 

 631 

Genetic evidence that lipids and kidney function influence circulating retinol 632 

It is also clinically valuable to understand exposures and diseases that impact circulating retinol 633 

abundance. To explore this in greater detail, we leveraged retinol as an outcome trait in MR 634 

analyses. We utilised a diverse range of thousands of continuous and ordinal phenotypes from 635 

IEUGWASdb as exposures in a similar pipeline described above (Online Methods). Several 636 

lipid species were demonstrated to putatively influence retinol abundance after multiple-testing 637 

correction (FDR < 0.01, Figure 4A, Supplementary Table 26); for example, triglycerides were 638 

implicated to increase circulating retinol whilst cholesteryl ester related traits decreased 639 

circulating retinol. We also saw a positive effect of the frequency of solarium and sun lamp use 640 

on retinol, which may arise from behavioural related mechanisms. Furthermore, our findings 641 

suggest that increased retinol levels are associated with a susceptibility-weighted MRI measure 642 

in the left putamen, called T2*. T2*, reflecting magnetic susceptibility relative to tissue water, 643 

can be influenced by factors such as iron and calcium content. This association may also be 644 

influenced by behavioural or other pathways that warrant further investigation.    645 
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After applying the same tiering system used for retinol as an exposure, we observed Tier #1 646 

evidence strongly supporting a causal effect of creatinine on circulating retinol. This 647 

relationship is biologically plausible and likely represents an association with kidney 648 

function50,51. Due to the biological complexity of lipid traits, we observed significant 649 

heterogeneity between IV effects, and as a result, they were not assigned a tier in our analysis. 650 

However, the effect of triglycerides on increasing circulating retinol levels is consistent with 651 

established knowledge of retinol biology, as well as this study implicating two genes that are 652 

mechanistically confirmed to impact triglycerides (GCKR and MLXIPL). We then leveraged 653 

the CAUSE model to distinguish causal effects of creatinine on circulating retinol from 654 

correlated pleiotropy that may arise between these two traits due to the extensive polygenicity 655 

of creatinine52. We found that a model that includes a causal effect of creatinine on retinol was 656 

more parsimonious than a model of pleiotropy alone (‘sharing model’) through comparison of 657 

these models using the Bayesian expected log pointwise posterior density (ELPD) method 658 

(Supplementary Figure 7, ∆ELPDSharing vs Causal = -4.34, P = 8.9 x 10-3). Given that IVs for 659 

creatinine could plausibly act through lipid species like triglycerides to influence circulating 660 

retinol, we then constructed multivariable MR (MVMR) models that estimated the creatinine 661 

to retinol relationship conditioned on high density lipoprotein (HDL), low density lipoprotein 662 

(LDL), and triglycerides (Online Methods). While there was some evidence that the effect of 663 

creatinine on retinol could arise due to triglycerides, there was also evidence to suggest an 664 

independent effect of both triglycerides and creatinine on increasing circulating retinol, 665 

depending on the modelling parameters used (Figure 4B, Supplementary Text).  In addition to 666 

investigating the causal effects of exposures on retinol, we also examined the possibility of 667 

bidirectional effects. We found very weak evidence that retinol has a negative effect on 668 

creatinine (P = 0.023), but there was no significant evidence to suggest bidirectional 669 

relationships between retinol and the other implicated exposures.   670 

 671 
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 679 
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Figure 4. Exploring the causal effects of continuous exposures on circulating retinol. (a) 680 

Exposure traits that demonstrated a significant causal estimate (IVW-MRE) on circulating 681 

retinol after multiple-testing correction (FDR < 0.01). Traits are coloured relative to their 682 

broad phenotypic category. (b) Multivariable MR (MVMR) models investigating the effect of 683 

creatinine and major lipid species on circulating retinol. Each panel represents the results 684 

from a different MVMR model (each with different underlying assumptions (Online Methods)). 685 

The exposure – retinol relationship plotted is conditional on the three other traits in the model. 686 

 687 

Finally, we explored pharmacological agents and molecular perturbagens that may influence 688 

circulating retinol (Online Methods). Considering the novel genes prioritised in this study with 689 

an assigned direction of expression (TWAS/PWAS, pQTL MR), it was found that GSK3B is a 690 

drug-target known to be inhibited by lithium and related compounds. This may be of clinical 691 

interest as it suggests that lithium, utilised as a therapy in mood disorders, may decrease 692 

circulating retinol via its inhibition of GSK3B given that genetically predicted expression of 693 

this gene was positively associated with retinol. We then employed computational signature 694 

mapping to further characterise pharmacological agents related to retinol (Online Methods). 695 

However, these analyses did not yield any compounds for which the in vitro transcriptomic 696 

signature significantly matched or opposed genetically predicted expression associated with 697 

retinol after multiple-testing correction (Supplementary Table 27). We then considered 698 

perturbagen signatures aggregated to biological pathways or overall mechanisms of action 699 

(MOA) groups of compounds (Online Methods). After multiple-testing correction (FDR < 700 

0.05), there were 13 gene-set based perturbagen signatures that were significantly similar to 701 

the directionality of genetically predicted expression associated with retinol (Supplementary 702 

Table 28). For example, the expression signature of compounds in the HDAC inhibitor MOA 703 

opposed expression genetically predicted to increase serum retinol. This can be interpreted as 704 

while no single HDAC inhibitor was significantly associated with retinol, there was at least 705 

some evidence for the overall relationship with this MOA. This accords with the suggested 706 

effect of HDAC inhibitors like valproic acid on downregulating expression of RBP453–55, a 707 

gene not included in the signature mapping analyses given the large effect of its encoded 708 

protein on retinol.  709 

 710 

 711 

 712 
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Genetically proxied retinol can identify individuals outside of the normative range of 713 

circulating retinol for a given age 714 

We were also interested in evaluating the performance of a genetically proxied index of 715 

circulating retinol, that is, a circulating retinol polygenic score (PGS). The independent 716 

TwinsUK cohort was utilised to tune and evaluate retinol PGS (Online Methods). We used 717 

several methods to evaluate the performance of a retinol PGS in this cohort. Firstly, we test 718 

different retinol PGS configurations in a random selected training subset of the model (70% of 719 

cohort), using a linear mixed model to account for relatedness between the twin pairs. The best 720 

performing retinol PGS configuration in the training subset explained approximately 2.12% of 721 

the phenotypic variance of retinol when applied to the remaining 30% of the cohort (mean 722 

variance explained across three retinol measurement timepoints). We also found similar 723 

performance when applied to each subset of twin pairs (Supplementary Table 29). A limitation 724 

of this approach for using the same cohort for tuning and testing the retinol PGS is that the 725 

estimated effect sizes may not be representative. As a result, we employed an approach to tune 726 

weights for the PGS using the summary statistics alone. This was achieved through leveraging 727 

the principles of probabilistic finemapping to update variant weights by their posterior 728 

probability of association (Online Methods). Due to the modest polygenicity of retinol, this 729 

method upweights a small number of variants. Despite this, these scores were still significantly 730 

associated with circulating retinol in TwinsUK (Supplementary Table 29). 731 

 732 

Like most micronutrients, circulating retinol has been shown previously to have a complex 733 

relationship with age56. However, population-level approaches investigating these effects do 734 

not account for inter-individual variability. We hypothesised that normative modelling could 735 

be used to characterise individual patterns of circulating retinol, and to evaluate the 736 

contribution of genetics to these individualised effects. Normative modelling, derived from the 737 

application of growth charts in paediatric medicine, aims to estimate normative reference 738 

ranges of variation in the population (e.g., of circulating retinol) based on age and/or other 739 

relevant variables. Here, we established reference ranges for circulating retinol as a function of 740 

age using generalised-additive models for location, scale, and shape (GAMLSS) frameworks 741 

in the TwinsUK dataset (Online Methods, Supplementary Text). These models were 742 

constructed in the full cohort, as well as in one twin subset only for comparison. Briefly, this 743 

involved identifying the optimal distribution for the GAMLSS model using all samples, 744 

followed by splitting the data into two partitions. One partition was utilised to estimate centiles 745 

(5th, 25th, 50th, 75th and 95th), and the left-out subjects were benchmarked against this reference 746 
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chart to determine the position of their individual retinol measurement (Online Methods). This 747 

process was then repeated using the opposite subject allocation. An individual’s retinol level 748 

was classified as infra-normal if their measured retinol fell below the 5th percentile for their 749 

age, and as supra-normal if their retinol value exceeded the 95th percentile for their age.  750 

 751 

We then investigated the extent to which retinol PGS was associated with these individual 752 

profiles of circulating retinol with respect to age (Supplementary Table 30). By way of 753 

example, we report results forthwith from the more conservative modelling approach which 754 

only used one half of the twins. Retinol PGS was at least nominally significantly associated 755 

with supra and infra-normal deviations except for supra-normal deviations at the first (youngest 756 

visit) for which there was only a trend observed (Supplementary Figures 8-9). For example, at 757 

the second visit each SD in retinol PGS was associated with an approximately 70% [95% CI: 758 

23%, 136%] increase in the odds of exhibiting supra-normal retinol levels for a given age 759 

relative to all remaining participants, whilst conversely reducing the odds of displaying infra-760 

normal levels by approximately 37% [95% CI: 12%, 55%]. These data suggest that genetics is 761 

a non-zero contributor to circulating retinol levels that fall outside the normative range for a 762 

given age. In future, a normative modelling approach could be utilized to examine additional 763 

factors, including dietary intake, as well as the interplay between genetics and other influences, 764 

that might contribute to individualized deviations in retinol levels relative to the population 765 

benchmarks. 766 

 767 
DISCUSSION 768 
We conducted the largest GWAS of circulating retinol to-date, revealing important novel 769 

insights into genetic influences on this trait.  The sample sizes in this study facilitated the first 770 

published estimate of SNP heritability for circulating retinol, plausibly between 5-10%. 771 

However, the large standard errors accompanying these estimates reinforces that greater 772 

sample sizes are still needed. Moreover, we were able to uncover confident genetic signals 773 

associated with retinol at genome-wide significance outside of the RBP4:TTR transport 774 

complex. The gene prioritisation pipeline applied both within and beyond genome-wide 775 

significant loci prioritised eight genes with high-confidence for a role in retinol biology. These 776 

genes were highly expressed in the liver and overrepresented amongst biological pathways 777 

including carbohydrate metabolism. The liver is known to be the key organ responsible for 778 

retinol storage and processing1, which is represented strongly by the genetic data in this study. 779 

Further, the prioritised genes assigned as overrepresented in the regulation of carbohydrate 780 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 10, 2023. ; https://doi.org/10.1101/2023.08.07.23293796doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.07.23293796
http://creativecommons.org/licenses/by-nd/4.0/


 26 

metabolic process pathway (GCKR, GSK3B, and MLXIPL1) are all broadly known to be related 781 

to hepatic energy metabolism. As lipids are directly mechanistically linked to retinol 782 

absorption, storage, and delivery1,3, it is plausible that the varied metabolic roles of these genes 783 

converge on changes in the abundance of different lipid species. The role of lipids in circulating 784 

retinol abundance is also highlighted by our Mendelian randomisation analyses. However, it is 785 

still likely that glycaemic homeostasis may impact circulating retinol via mechanisms not 786 

directly linked to lipid biology; for example, expression of the insulin-controlled glucose 787 

transporter GLUT4 is postulated to be related to RBP4 protein levels57. In summary, our results 788 

suggest that the most identifiable common variant influences on circulating retinol are either 789 

mediated through direct effects on transport or metabolic factors, particularly related to lipids. 790 

We also prioritised genes like FOXP2 for which a mechanistic relationship to retinol is less 791 

inherently clear. Our analyses of transcriptomic correlates of FOXP2 supported the immense 792 

biological pleiotropy associated with this transcription factor, reinforcing its significance 793 

outside of its traditionally conceived association in the literature with neurological phenotypes 794 

like language. Work is now needed to disentangle the mechanisms which specifically underlie 795 

this relationship between FOXP2 and circulating retinol that were infer from these genetic 796 

findings. 797 

 798 

Our study also represents a significant advancement as it is the first to perform a high-799 

throughput, hypothesis free, analysis investigating the potential causal effects of retinol across 800 

a wide range of human clinical phenotypes using Mendelian randomisation. This work 801 

recapitulated known influences of retinol on ophthalmological measures58, the innate and 802 

adaptive immune response59, and congenital heart malformations60. However, we also 803 

uncovered some more novel relationships that may be of direct clinical relevance. We highlight 804 

forthwith the example of circulating retinol being genetically predicted to impact the thickness 805 

and surface area of several brain regions, as well as indices of brain connectivity. Retinoic acid, 806 

a downstream metabolite of retinol, is considered one of the most intrinsic central nervous 807 

system signalling molecules, particularly as it exerts control over processes like neuronal 808 

differentiation in utero and adult neurogenesis, as reviewed elsewhere2. It is, therefore, logical 809 

that retinol would plausibly influence brain structure and connectivity throughout the lifespan. 810 

However, the regions implicated in this study require further examination with respect to their 811 

clinical significance. By way of example, we associated increased circulating retinol with a 812 

reduction in thickness in the right rostral anterior cingulate cortex. This cortical region has been 813 

identified by a large international mega-analysis from the ENIGMA consortium to exhibit 814 
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increased thickness in individuals with the neuropsychiatric disorder schizophrenia compared 815 

to controls61, suggesting a potential protective effect of retinol in this region with respect to 816 

schizophrenia. This accords with previous evidence linking retinoids to schizophrenia2,62. It is 817 

known clinically that both retinol deficiency and toxicity can have harmful neurological 818 

effects, highlighting the complexity of the relationship of retinol to the brain throughout the 819 

human lifespan. This complexity is also seen with synthetic retinoids. For instance, isotretinoin 820 

(13-cis retinoic acid), indicated for conditions like acne, has been shown to have opposing 821 

effects on adult neurogenesis relative to all-trans retinoic acid and putatively increases the risk 822 

of suicide63,64, although evidence for this association is mixed65. Conversely, another synthetic 823 

retinoid, bexarotene, with different receptor affinities to isotretinoin, has demonstrated some 824 

promise as a potential adjuvant to antipsychotics in schizophrenia66. Future work should 825 

attempt to understand these relationships with greater fidelity by investigating genetic 826 

influences on other retinoids beyond retinol, as well as how tissue-specific abundance can 827 

differ from what circulates in serum67. Emerging methods for non-linear Mendelian 828 

randomisation would also be useful in this context given that retinol often exerts dose 829 

dependent effects68. The causal estimates generated in this study also need to be treated with 830 

appropriate caution due to the limitations of MR and require further validation in study designs 831 

that can enable causal inference, such as randomised control trials. As reviewed 832 

previously18,19,69, MR tests are only unbiased when their assumptions are plausibly satisfied, 833 

which is why we implement a suite of different methods and sensitivity analyses with quite 834 

distinct underlying assumptions in this study. Genetic estimates on circulating retinol used as 835 

IVs could also be confounded by factors including uncontrolled population stratification, 836 

selection bias, and measurement error. In summary, we provide a large resource to the literature 837 

of putative effects of circulating retinol across the human clinical phenome that will be 838 

informative for future investigation of this trait. 839 

 840 

Finally, we make some recommendations for future GWAS of retinoid molecules. An 841 

important limitation of our analyses is that we only investigated genetic effects on circulating 842 

retinol, rather than retinol availability within target tissues. Given the complexities of retinol 843 

homeostasis, it is plausible that genetic effects on factors like retinol entry into the cell (e.g., 844 

STRA6 receptor) and esterification for storage (e.g., lecithin retinol acyltransferase) are 845 

obscured when considering only retinol present in serum or plasma. Therefore, future studies 846 

should attempt to measure retinol abundance in different tissues from genotyped samples, 847 

although this will pose a challenge in terms of obtaining sufficient sample sizes. Moreover, it 848 
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would be of interest to characterise the genetic overlap between effects on retinol versus other 849 

retinoids like retinaldehyde and all-trans retinoic acid. Despite these limitations, and the need 850 

for concerted efforts to collect more data, we believe this study demonstrates the value in 851 

conducting retinol GWAS to both better characterise retinoid associated biology and its clinical 852 

significance.  853 

 854 

ONLINE METHODS 855 

Study cohorts 856 

The proceeding section outlines the datasets included in the genome-wide meta-analysis of 857 

circulating retinol, as well as the replication cohort. 858 

 859 

INTERVAL 860 

The largest constituent cohort of the meta-analysis was drawn from the INTERVAL study, 861 

comprised of recruited blood donors from the United Kingdom70. Retinol abundance was 862 

measured from plasma using the high-throughput metabolomics platform DiscoveryHD4® 863 

(Metabolon, Inc., Durham, USA), as outlined in the supplementary text. Briefly, after 864 

adjustment for various technical/biological confounders and outlier effects, residualised 865 

plasma retinol was inverse-rank normal transformed before association testing. Whole-genome 866 

sequencing of this cohort was performed as described elsewhere71. A GWAS of the normalised 867 

residuals was performed in HAIL via multiple-linear regression adjusted for INTERVAL 868 

metabolon batch and 10 genetic PCs72. The final GWAS sample size was 11,132 European 869 

ancestry participants.  870 

 871 

METSIM 872 

Plasma retinol was also measured using the DiscoveryHD4®  high-throughput platform in a 873 

recent metabolome-wide GWAS of the METSIM (Metabolic Syndrome in Men) study73. The 874 

METSIM cohort consists of middle-aged men recruited from Northern Finland between 2005-875 

201074. As described by Yin et al.73, METSIM participants were genotyped using the Human 876 

OmniExpress-12v1_C BeadChip and imputed using a custom METSIM panel of whole 877 

genome-sequenced participants in the study. A linear mixed model implemented in EPACTS 878 

v.3.2.6 was then leveraged to perform GWAS on residualised retinol, subjected to inverse-rank 879 

transformation after adjustment for technical and biological confounders. The final GWAS had 880 

a sample size of 6136 METSIM participants (European ancestry).  881 

 882 
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ATBC+PLCO 883 

The largest previous dedicated GWAS of circulating retinol from 2011 was also included in 884 

this study22. This GWAS comprised data from two studies that measured serum retinol: the 885 

Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study, a Finnish randomised 886 

control trial of beta-carotene/alpha-tocopherol supplementation for cancer prevention75, and 887 

the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial, a United States 888 

trial of cancer screening effectiveness76. The inclusion criteria, measurement of serum retinol, 889 

and genotyping have been outlined by Mondul et al.22. Briefly, ATBC/PLCO samples were 890 

genotyped using the Illumina HumanHap550/610 arrays and imputed to the HapMap Central 891 

European reference panel, whilst serum retinol concentrations were estimated using reversed-892 

phase liquid chromatography. The retinol GWAS (N=5006) was performed in R (version 893 

2.10.1) using multiple linear regression adjusted for age at sample collection, SNP derived PCs, 894 

cancer status, serum cholesterol, and body mass index. The retinol units for the GWAS effect 895 

sizes were in natural log transformed μg/L. A limitation of using summary statistics from this 896 

study is that only < 600,000 variants were available for inclusion in the GWAS, as was common 897 

at the time before more recent advances in imputation pipelines that result in larger post-898 

imputation yield.  Therefore, to increase the number of variants available for meta-analysis, we 899 

applied a summary statistics-based imputation procedure to boost the number of variants 900 

available for meta-analysis. After harmonisation with the 1000 genomes phase 3 reference 901 

panel, we applied Gaussian summary statistics imputation (ImpG) as implemented by the FIZI 902 

v0.7.2 python package (https://github.com/bogdanlab/fizi) with the default window size of 250 903 

kb77. The ImpG model leverages the assumed Gaussian distribution of GWAS Z scores with 904 

mean zero and variance that arises due the LD-induced correlation between variants. As 905 

outlined elsewhere77, Z scores of unobserved (imputed) variants can be estimated given the LD 906 

correlation matrix derived from the reference panel, along with a metric of imputation accuracy 907 

(R2) using the conditional variance. We retained only confidently imputed variants (R2 > 0.8).  908 

 909 

TwinsUK 910 

We performed a serum retinol GWAS in the TwinsUK cohort to serve as a replication dataset. 911 

High-throughput metabolomics profiling in this cohort has been described extensively 912 

elsewhere78. TwinsUK is a prospective population-based study of mostly female twin pairs 913 

which has been profiled using a variety of multiomic technologies79. As outlined by Shin et al., 914 

genotyping was performed with a combination of Illumina arrays (HumanHap300, 915 

HumanHap610Q, 1M-Duo and 1.2MDuo 1M)80. This was followed by imputation to the 1000 916 
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genomes phase reference panel after quality control and retaining individuals of predominantly 917 

European ancestry after PCA. We retained physically genotyped variants and those with 918 

moderate imputation accuracy for GWAS (R2 > 0.3) in 5654 samples. Our strategy for GWAS 919 

in this cohort given the limited sample size with measured retinol available was to split the 920 

twin pairs into two separate cohorts and ensure individuals in each sub-cohort were unrelated. 921 

Relatedness testing in both sub-cohorts containing one of the two possible twin pairs was 922 

performed separately using KING as implemented by plink2 (PLINK v2.00a3LM AVX2 923 

Intel), with one participant from third-degree relative or greater pairs randomly removed81,82. 924 

Kinship estimation via KING was performed for autosomal variants physically genotyped on 925 

the array, with a MAF > 0.05, outside of regions of long-range LD like the MHC83, and in 926 

relative linkage equilibrium (r2 < 0.05). PCA was then applied in each sub-cohort using plink2 927 

to calculate eigenvectors for use as downstream covariates. Retinol was measured from 928 

samples at three timepoints. The mean age of participants at each timepoint was 51.5 (SD = 929 

8.41), 58.6 (SD = 8.38), and 64.7 (SD = 8.41), respectively. There were only a very small 930 

number of males in this cohort (~ 3%), so only females were retained for further analysis (N = 931 

1696) due to this imbalance in sex composition. After merging with the genotyped split twin 932 

cohorts, as described above, there were up to 916 and 717 genotyped participants with 933 

measured retinol at three timepoints in each subset, respectively. Six GWAS were performed: 934 

in each sub-cohort (one or two), multiple linear regression was utilised to test the additive effect 935 

of each variant on measured retinol at one of the three measured time-points covaried for age, 936 

five SNP derived PCs, and metabolomics batch. These GWAS was performed using the --glm 937 

flag in plink2, resulting a 9,051,192 by three matrix of estimated retinol effect sizes for both 938 

sub-cohorts. 939 

 940 

Genome-wide meta-analyses 941 

We conducted genome-wide meta-analysis of common variants (MAF ≥ 0.01) using METAL 942 

(version March 2011), followed by a rare variant (MAF < 0.01) meta-analysis also with 943 

METAL. The METSIM and INTERVAL cohorts were integrated for the primary meta-analysis 944 

as they both had expansive genome-wide coverage of common and rare variants. A sample size 945 

weighted meta-analysis of Z scores (Stouffer’s method) was utilised for this purpose. We also 946 

conducted the METSIM+INTERVAL meta-analysis via an inverse-variance weighted 947 

estimator with fixed effects to estimate the effect sizes of effect alleles in SD units of plasma 948 

retinol given this was the unit of both the METSIM and INTERVAL GWAS, as well as both 949 

studies using the same Metabolon Inc. platform for metabolite quantification. Heterogeneity 950 
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between the studies was assessed using Cochran’s Q test. We then conducted a meta-analysis 951 

with fewer available variants that also included ATBC+PLCO using Stouffer’s method (as the 952 

unit for this GWAS differed from METSIM and INTERVAL). This larger sample-size meta-953 

analysis was also restricted to common variants as there was very limited rare variant coverage 954 

in ATBC+PLCO.  955 

 956 

The FUMA v1.4.1 (Functional Mapping and Annotation of Genome-Wide Association 957 

Studies) platform was utilised to annotate variants, define lead SNPs, and infer loci boundaries 958 

for genome-wide significant signals (P < 5 x 10-8)84. We utilised the default settings for 959 

defining independent significant SNPs (r2 ≤ 0.6) and lead SNPs (r2 ≤ 0.1). LD estimation was 960 

achieved using the 1000 genomes phase 3 European reference panel, with LD blocks within 961 

250 kb of each other merged into a single locus. We then attempted to replicate the lead SNPs 962 

from the eight genome-wide significant loci (METSIM+INTERVAL) in TwinsUK, as 963 

described in the previous section. Given the small sample size of TwinsUK, we sought to 964 

ascertain if the lead SNPs were directionally consistent with the meta-analysis. This was 965 

achieved by taking the mean SNP Z score across the three timepoints for the two sub-cohorts 966 

of unrelated participants, with a binomial test utilised to infer whether the number of lead SNPs 967 

(mean Z) that were directionally consistent was greater than chance alone (Binomial P < 0.05).  968 

 969 

In the rare-variant meta-analysis, we annotated variants using the Functional Annotation of 970 

Variants (FAVOR) online resource85. Phenome-wide association profiles of selected variants 971 

were also investigated using the pheweb browser collated from FinnGen release 8 972 

(https://r8.finngen.fi/)86. Rare variants were then aggregated to genes through leveraging the 973 

characteristics of the Cauchy distribution87,88. In this approach, gene-wise P values are summed 974 

and then transformed to approximate a Cauchy distribution, which due to its heavy tail is 975 

insensitive to correlations amongst the P values. This behaviour of the Cauchy distribution is 976 

important as covariance amongst rare variants is difficult to estimate, and therefore, this 977 

approach guards against inflated type I error due to potential unknown covariance/LD between 978 

rare variants. Code for implementing the Cauchy aggregation was adapted from 979 

https://github.com/yaowuliu/ACAT.  980 

 981 

SNP heritability estimation 982 

Summary statistics for the meta-analyses were ‘munged’ using the munge_sumstats.py script 983 

from the ldsc repository of scripts (https://github.com/bulik/ldsc) and only common (MAF > 984 
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0.05) HapMap3 variants outside of the MHC retained. SNP heritability was then estimated 985 

using the LDSR model and the 1000 genomes phase 3 reference panel89. By way of 986 

comparison, we then estimated SNP heritability using the LDAK model via the SumHer 987 

implemented in LDAK v.5.2 (https://dougspeed.com/)90. Pre-computed tagging files derived 988 

from 2000 white British individuals in the UKBB for HapMap3 SNPs were utilised to calculate 989 

SNP heritability using the LDAK-thin and BLD-LDAK models, as described elsewhere90,91. 990 

We also estimated partitioned SNP heritability via LDSR using a multi-tissue and cell-type 991 

panel92. 992 

 993 

Empirical Bayes’ modelling of the genetic architecture of retinol 994 

We investigated the polygenicity of the genetic architecture of circulating retinol using an 995 

Empirical Bayes’ adaptive shrinkage method termed ashR93. Functions to perform this method 996 

were implemented via the ashR R package v2.2-54 (https://github.com/stephens999/ashr). 997 

Briefly, this approach models effect sizes, along with their standard error, as a mixture of zero 998 

and non-zero effects. Empirical Bayes’ inference is performed under the assumption that the 999 

distribution of these variant effects is unimodal, which is a realistic assumption for genetic 1000 

effects on complex traits. The METSIM+INTERVAL IVW meta-analysis was utilised for this 1001 

as it provides an interpretable effect size and standard error for each variant (plasma SD units). 1002 

In line with previous work94, we annotated each HapMap3 variant with its corresponding LD 1003 

score from the 1000 genomes phase 3 European reference panel, as well LD scores from the 1004 

UKBB White Great British samples for comparison, and sorted these into bins of similar LD 1005 

scores (NBins=1000 and NBins=5000). The ashR Empirical Bayes’ inference of the proportion 1006 

of non-zero effects was undertaken in each LD score bin, followed by calculating the mean 1007 

across all bins. We utilised a generalised additive model to plot a smoothed trend line of the 1008 

relationship between increasing LD score bin (higher LD score) and the proportion of non-zero 1009 

effects. 1010 

 1011 

Gene prioritisation 1012 

Gene prioritisation was performed within genome-wide significant loci, as well as outside of 1013 

loci that obtained genome-wide significance. Due to the better coverage of common variants, 1014 

we focused on the METSIM+INTERVAL meta-analysis for this analysis. The pipeline for 1015 

prioritising putative causal genes within the eight genome-wide significant loci was adapted 1016 

from a previous GWAS performed by our group95. The following criteria were utilised in this 1017 

study: 1) closest transcription start site (TSS) to the lead SNP, 2) closest gene (any) to the lead 1018 
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SNP, 3) gene encoding retinoid transporter or enzyme in locus, 4) non-synonymous variant in 1019 

locus, 5) the most statistically significant GTEx eGene [expression quantitative trait loci 1020 

(eQTL) signal] in locus, 6) most significant GTEx eGene in finemapped credible set for eQTL 1021 

signal [posterior inclusion probability (PIP) > 0.1, DAP-G method]96,97, 7) strongest plasma 1022 

pGene [protein quantitative trait loci (pQTL) signal] drawn from finemapped pQTLs (PIP > 1023 

0.5)98, 8) highest CADD score99, 9) lowest RegulomeDB score100, 10) the OpenTargets V2G 1024 

predicted gene for the lead SNP101, and 11) genes physically mapped to SNPs in the 95% 1025 

credible set derived from probabilistic finemapping (assuming a single causal variant such that 1026 

LD did not have to be modelled)102. We used a prior variance of 0.15 to approximate Bayes’ 1027 

factors from variant-wise effect sizes (METSIM+INTERVAL IVW meta-analysis), in line 1028 

with previous work finemapping association signals with quantitative traits103. We 1029 

characterised which genes satisfied the greatest number of the above criteria on a per locus 1030 

basis.  1031 

 1032 

FOXP2 was one of our confidently prioritised genes but its biological significance outside of 1033 

the brain is less well understood. To investigate this, we analysed RNA sequencing data from 1034 

an in vitro experiment that overexpressed FOXP2 in a human osteosarcoma epithelial cell line 1035 

(U2OS) via transfection of wild-type FOXP2 expressing plasmids. Raw read counts from five 1036 

control cell line replicates versus five plasmid transfected FOXP2 overexpression replicates 1037 

were downloaded from the Gene Expression Omnibus (GEO) resource (GEO Accession: 1038 

GSE138938). Data normalisation, filtration, and differential expression analyses were 1039 

performed using the edgeR package version 3.34.0104. Specifically, raw counts were firstly 1040 

normalised to library size and lowly expressed genes with fewer than 10 raw counts in the 1041 

smallest library removed via a counts-per-million thresholding approach. Data were inspected 1042 

before and after the filtration step via coefficient of variation (BCV) and multidimensional 1043 

scaling (MDS) plots (Supplementary Figure 10). Differential expression for each gene that 1044 

survived quality control was then performed using exact tests for differences in the means 1045 

between two groups of negative-binomially distributed counts. We defined a differentially 1046 

expressed gene as those which survived multiple-testing correction using the Bonferroni 1047 

method (PCorrected < 0.05), with three different absolute log2 fold change (FC) cut-offs 1048 

considered: |log2FC| > 1.5, |log2FC| > 2, and |log2FC| > 5. The use of Bonferroni correction and 1049 

large absolute FC thresholds is very conservative; however, given the volume of differentially 1050 

expressed genes, and a relatively large number of replicates for a cell line experiment boosting 1051 

power, we believe these strict parameters are warranted to priortise the most salient FOXP2 1052 
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associated signals. The overrepresentation of each set of candidate genes amongst biological 1053 

pathways and other ontology sets was tested using g:Profiler105. 1054 

 1055 

To identify potential causal genes that have not reached genome-wide significance at our 1056 

current sample size, we integrated the circulating retinol GWAS with genetic effects on mRNA 1057 

and protein expression. Firstly, we conducted a transcriptome and proteome-wide association 1058 

study (TWAS/PWAS) of circulating retinol using the FUSION approach106. As outlined 1059 

previously107–110, FUSION leverages models of cis-acting genetically regulated expression 1060 

(GReX) that exhibit statistically significant non-zero heritability. Variant weights from GReX 1061 

models are integrated with the effect of those same variants on retinol to estimate the direction 1062 

of genetically regulated expression associated with increasing circulating retinol. TWAS 1063 

GReX (mRNA) were estimated previously using GTEx v8 1064 

(http://gusevlab.org/projects/fusion/). We selected the following biologically informative 1065 

tissues to perform TWAS based on known retinol biology or tissues that exhibited at least 1066 

nominally significant (P < 0.01) enrichment of SNP heritability in the partitioned-LDSR 1067 

model. The selected tissues were: small intestine terminal ileum, pancreas, liver, adipose 1068 

(visceral omentum), adipose (subcutaneous), breast (mammary tissue), and whole blood. It has 1069 

been suggested previously that TWAS signals from tissues that are less directly trait relevant 1070 

can induce spurious associations, which is why we limited our hypothesis space to these 1071 

tissues111. Protein GReX were derived from plasma (ARIC study), as outlined elsewhere98. We 1072 

applied Benjamini-Hochberg false discovery rate (FDR) correction across all TWAS Z, 1073 

followed by all PWAS Z. Colocalisation between GReX models and retinol was performed for 1074 

all TWAS/PWAS signals that were at least nominally significant via the coloc package as 1075 

implemented by FUSION (single shared variant hypothesis)103. We then considered a more 1076 

conservative approach to priortise proteins for whom expression could be causally linked to 1077 

circulating retinol through leveraging finemapped plasma pQTLs (PIP > 0.5, ARIC) as 1078 

instrumental variables (IV) for Mendelian randomisation19,44,98. The Wald ratio method was 1079 

implemented for proteins with single IVs, whilst an inverse-variance weighted estimator with 1080 

fixed effects was utilised for proteins with more than 1 IV. Fixed effects were used for the IVW 1081 

rather than multiplicative-random effects in this instance as no protein had > 4 IVs. The use of 1082 

IV based approaches for identifying trait-associated genes versus GReX has been discussed 1083 

extensively elsewhere109. Colocalisation was also performed for proteins that survived FDR 1084 

correction. Mendelian randomisation was performed using the TwoSampleMR package v0.5.6, 1085 
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with IVs clumped through leveraging LD from the 1000 genomes phase 3 European reference 1086 

panel to retain only independent pQTLs (r2 < 0.001). 1087 

 1088 

Finally, we investigated the tissue specificity of prioritised genes from GWAS loci and the 1089 

TWAS/PWAS/MR approach using FUMA. To do this, we compared the expression of these 1090 

prioritised genes using a t-test (one-sided and two-sided) against all other available genes in 1091 

GTEx v8 on a per tissue basis (54 tissues), followed by applying Bonferroni correction to these 1092 

P-values84. We also conducted pathway analyses of these genes using g:Profiler with default 1093 

parameters105. 1094 

 1095 

Causal inference 1096 

We developed and implemented a comprehensive pipeline to leverage this retinol GWAS to 1097 

identify putative causal effects of retinol on traits across the human clinical phenome, as well 1098 

as traits that causally influence retinol in the reverse direction. This was achieved using 1099 

Mendelian randomisation (MR), which has been reviewed extensively elsewhere19,45,69. Firstly, 1100 

we considered circulating retinol as the MR exposure. The lead SNP in RBP4 was first chosen 1101 

as a single IV to proxy circulating retinol as out of all the genes implicated in genome-wide 1102 

significant loci, RBP4 has exhibits the most specificity in terms of its relationship with serum 1103 

retinol. We utilised the Wald ratio method to estimate the effect of the circulating retinol 1104 

increasing rs10882283-A allele (METSIM+INTERVAL IVW effect size) on over 19,000 1105 

outcomes in the IEUGWASdb v6.9.2 resource via the ieugwasr package version 0.1.526. To 1106 

correct for multiple testing, we applied the false discovery rate (FDR) method, and we retained 1107 

only those retinol/outcome pairs with estimates that were significant below the 1% FDR 1108 

threshold (q < 0.01). Subsequently, we investigated whether significant trait pairs colocalised 1109 

using coloc v5.1.0 with default priors. 1110 

 1111 

Although the single IV approach is more conservative, power to detect causal effects can be 1112 

boosted by using all available independent (r2 < 0.001, 1000 genomes phase 3 European 1113 

reference panel) genome-wide significant SNPs as IVs. The inverse-variance weighted 1114 

estimator with multiplicative random effects (IVW-MRE) was utilised to estimate the effect of 1115 

retinol on outcomes from IEUGWASdb for which at least 6 IVs were available in that 1116 

GWAS112. The IVW approach has a zero percent breakdown level as it assumes all IVs are 1117 

valid for use in Mendelian randomisation, which is often unrealistic in practice. We developed 1118 

pipeline to prioritise the most reliable causal estimates from the IVW-MRE that survived 1119 
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multiple-testing correction (q < 0.01). This involved identifying retinol MR estimates on traits 1120 

for which the following applied: i) no significant heterogeneity (P < 0.05) between IV 1121 

exposure-outcome effects tested with Cochran’s Q113, ii) a non-significant intercept of an MR-1122 

Egger model that does not constrain the intercept to pass through the origin114, and iii) no 1123 

evidence that leaving out any single IV ablates the statistical significance (at least P < 0.05) of 1124 

the estimate115. Traits satisfying these criteria were then assigned a tier (Tier #1, Tier #2, Tier 1125 

#3) based on the statistical significance of the retinol causal estimate using other MR methods 1126 

besides the IVW-MRE that have different assumptions regarding IV validity. These were: the 1127 

IVW with fixed effects (does not model heterogeneity like with MRE), the weighted median 1128 

method116, the weighted mode method117, and the MR-Egger method114. The underlying 1129 

assumptions and methodological considerations of using these methods have discussed 1130 

extensively elsewhere118,119. Traits for which the effect of retinol was at least nominally 1131 

statistically significant using all five methods were assigned as Tier #1, whilst four tests being 1132 

statistically significant was Tier #2, and three tests being statistically significant was Tier #3. 1133 

The F-statistic and I2 of the IVs was also assessed to ensure they were well powered (F > 10) 1134 

and suited for MR-Egger (I2 > 0.9), respectively120. To investigate the effect of body fat 1135 

percentage on the retinol associated MRI indices, we used IVs from a non-overlapping GWAS 1136 

of that trait (N=65,831)121. We then repeated the above process of binary outcomes with at least 1137 

1000 cases from FinnGen release 8, which is not included in the current version of 1138 

IEUGWASdb at time of analysis, to increase power to detect effects on disease endpoints.  1139 

 1140 

We also systematically investigated continuous outcomes that may causally impact circulating 1141 

retinol. Continuous outcomes were our focus as causal estimates from binary exposures are 1142 

difficult to interpret and are often less powered in the context of MR47. Exposures were filtered 1143 

from phenotypes available in IEUGWASdb to retain continuous traits, with further filtering to 1144 

identify traits with ≥ 5 genome-wide significant, independent (r2 < 0.001, 1000 genomes phase 1145 

3 European reference panel) IVs available in the retinol GWAS. The same pipeline as above 1146 

was then applied (IVW-MRE FDR < 0.01, followed by sensitivity analyses and tier 1147 

assignment). The causal estimate of creatinine on retinol was a Tier #1 trait, and due to the 1148 

pervasive polygenicity of creatinine afforded by its large sample size, we followed up this 1149 

relationship using the MR model “Causal Analysis Using Summary Effect Estimates” 1150 

(CAUSE), as described elsewhere using the CAUSE R package v1.2.052. Briefly, this method 1151 

is a more polygenic approach and seeks to distinguish casual effects from correlated pleiotropy 1152 

by fitting competing models that account for these terms and comparing them using ELPD. 1153 
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After using 1 million random variants to estimate nuisance parameters, LD clumping and 1154 

thresholding was applied to the serum creatinine summary statistics (IEUGWASdb trait ID: 1155 

met-d-creatinine) in line with the original CAUSE publication (P < 0.001, r2 < 0.01, 1000 1156 

genomes phase 3 European reference panel). The competing CAUSE models were then fit 1157 

(null, sharing, and causal), ensuring that all Pareto k estimates were < 0.5 during the model 1158 

comparison using ELPD.  1159 

 1160 

We then performed a multivariable MR (MVMR) analysis to estimate causal effects of 1161 

creatinine on retinol conditioned on three major lipid species using GWAS from the global 1162 

lipids genetics consortium (LDL, HDL, and triglycerides)122. MVMR was undertaken in 1163 

accordance with previous work using the R packages MVMR v0.3 and 1164 

MendelianRandomization v0.6.0118. Briefly, this entailed identifying variants associated at 1165 

genome-wide significance with at least one of the four exposures that are independent (r2 < 1166 

0.001), calculating a conditional F-statistic for multivariable instruments123, and applying four 1167 

MVMR models (IVW, Egger regression, Weighted Median, and a LASSO based penalised 1168 

regression approach for selecting the optimal IV configuration)124. 1169 

 1170 

Drugs and perturbagens associated with circulating retinol 1171 

We also considered drugs that may influence circulating retinol. We searched genes prioritised 1172 

from our pipeline with an assigned direction of retinol-associated expression using DGIdb 1173 

v4.2.0 and DrugBank v5 to identify retinol associated genes targeted by drugs125,126, outside of 1174 

known drugs that target RBP4 and TTR. Retained drug-gene interactions were restricted to 1175 

those with known mechanism of action and > 2 lines of supporting evidence. We also utilised 1176 

computational signature mapping to identify pharmacological agents that may enhance or 1177 

inhibit the expression of genes associated with circulating retinol. To boost power for signature 1178 

mapping, we considered all gene that were nominally associated with retinol in the 1179 

TWAS/PWAS (P < 0.05) that exhibited moderate colocalisation of a shared causal variant 1180 

(PPH4 > 0.4). These genes were uploaded to the Connectivity Map Query online tool to quantify 1181 

the similarity, termed connectivity, with drug perturbagen associated expression profiles, as 1182 

outlined in detail elsewhere127. 1183 

 1184 

Polygenic scoring 1185 

We used the independent TwinsUK replication cohort, described in a preceding section, to 1186 

investigate retinol polygenic scores (PGS). PGS were applied to genotyped variants and high 1187 
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confidence imputed variants (R2 > 0.8) in TwinsUK. There were two different methodologies 1188 

implemented to construct PGS: LD clumping and thresholding (LD C+T) and a probabilistic 1189 

finemapping based method that scales variant effect sizes based on their posterior probability 1190 

of causality, thereby upweighting signals more likely to be causal (RápidoPGS)128,129. In the 1191 

LD C+T approach, variants were clumped using the within sample LD of TwinsUK at the 1192 

following P-value thresholds: 5×10-8, 1×10-5, 1×10-3, 0.01, 0.05, 0.1, 0.5, and 1. Additive PGS 1193 

were then profiled using PRSice2 v2.3.5130. The RápidoPGS applies probabilistic finemapping 1194 

(with Bayes’ factors approximated using Wakefield’s method) to independent LD blocks 1195 

genome-wide such that variant-wise posterior probabilities of causality can be estimated. This 1196 

in essence is a ‘shrinkage’ approach to PGS to account for double-counting effects that arise 1197 

due to correlated effect sizes induced by LD; however, does not inherently require an 1198 

independent genotyped sample from the GWAS for tuning. Approximate Bayes’ factors in 1199 

each LD block were derived assuming a prior variance of 0.15, conventionally used for 1200 

quantitative traits. This parameter choice was compared to a data driven approach to estimating 1201 

the prior variance based on SNP heritability, as outlined elsewhere129. Variant-wise effect sizes 1202 

are multiplied by their posterior probabilities before PGS calculation, as above. 1203 

 1204 

As we are using a twin cohort, there were two different approaches we utilised to tune the 1205 

optimal PGS configuration from the LD C+T approach. Firstly, we randomly split the cohort 1206 

into a training (70% of participants) and test (30% of participants) partition. A linear mixed 1207 

model was then fit in the training partition with fixed effects of PGS, age, and metabolomics 1208 

batch and a random effect of family ID to account for twin relatedness. This was applied for 1209 

retinol measured at each of the three visits for all the P-value thresholds. The marginal R2 from 1210 

a null model with no PGS was subtracted from the full model to infer the best performing PGS 1211 

in the training partition (mean marginal R2 across three visits). The variance explained of the 1212 

best performing P-value threshold was then estimated using the same approach in the test 1213 

partition. By way of comparison, we also split the twins into separate unrelated cohorts and 1214 

used one set as training and one as testing. Fixed effects instead of mixed effects linear 1215 

regression was then implemented in a similar fashion to above, additionally covaried for five 1216 

SNP derived principal components. We then repeated all the above for the two probabilistic 1217 

finemapping weighted PGS (prior variance = 0.15 and data driven prior variance). 1218 

 1219 

 1220 

 1221 
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Normative modelling 1222 

We built a normative model of retinol as a function of age per study visit in TwinsUK. This 1223 

was achieved using a generalised additive model for location (𝜇), scale (𝜎), and shape 1224 

(GAMLSS)131,132, implemented in R v4.4.1. The GAMLSS approach is useful in this 1225 

application as it is semi-parametric and able to account for factors such as heteroskedasticity 1226 

and non-Gaussian distributions. Our modelling approach can be summarised as follows: we 1227 

firstly fit a GAMLSS model in the full sample for a variety of GAMLSS distribution families 1228 

implemented by the gamlss R package v5.4.12. The model on retinol at visit 𝑖, 𝑖	𝜖	{1,2,3} for 1229 

each of the GAMLSS families set the 𝜇 term as the first order fractional polynomial of age, 1230 

along with metabolomics batch as an additional covariate, with the term 𝜎 just the first order 1231 

fractional polynomial of age to model the scale of the distribution. The model fit of each of the 1232 

tested families was then assessed using the Bayesian information criterion (BIC) and the 1233 

Akaike information criterion (AIC). We repeated the above also including measured body mass 1234 

index (BMI) at that timepoint in the 𝜇 term by way of comparison. We chose the GAMLSS 1235 

family (Box-Cox t distribution) through considering the model performance (minimum AIC 1236 

and BIC) over all three visits (Supplementary Text, Supplementary Figures 11-12). We then 1237 

split the cohort in half, separating the twins, and fit normative centile curves using the selected 1238 

GAMLSS family to one half of each batch of retinol measurement, and computed deviations 1239 

on the other independent sample half on a per batch basis. We repeated this process with the 1240 

modelling and deviation subsets reversed to compute deviations for all samples. Individuals 1241 

whose measured retinol was above the model derived 95th percentile were classified as having 1242 

supra-normal retinol for their age, while those below the 5th percentile were classified as 1243 

having infra-normal retinol. To guard against overfitting due to the relatedness of twins 1244 

between the two subsets, we then performed all of the above just using one half of the twins as 1245 

the full cohort for model fitting, followed by splitting this subset as described above. We tested 1246 

the relationship between scaled retinol PGS (mean = 0, SD = 1) and infra-normal retinol at 1247 

each visit was tested in half of the cohort (unrelated) using binomial logistic regression 1248 

additionally covaried for five SNP derived PCs. The same models were also constructed for 1249 

supra-normal individuals. 1250 

 1251 

Software and operating systems 1252 

The primary analyses in this manuscript were performed either on a MacBook Pro (OS X: 1253 

Ventura 13.3), an in-house linux cluster (Ubuntu 18.04.5 LTS), or the High-Performance 1254 
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Computing Research Compute Grid of the University of Newcastle [Red Hat Enterprise Linux 1255 

release 8.1 (Ootpa)]. The primary R version utilised was version 4.1.1 (2021-08-10), with some 1256 

additional analyses using R version 4.0.3 (2020-10-10) (linux cluster). The Python version 1257 

utilised was either Python 2.7.17 or Python 3.6.9, depending on the requirements of the 1258 

analyses.  1259 

 1260 
DATA AVAILABILITY 1261 

Genome-wide summary statistics will be uploaded to GWAS catalog upon final publication. 1262 

In the interim, summary statistics can also be found at the following: 10.5281/zenodo.7905523. 1263 

TwinsUK data can be accessed by approve researchers upon application 1264 

(https://twinsuk.ac.uk/resources-for-researchers/our-data/).  1265 

 1266 

CODE AVAILABILITY 1267 

Code used in this study is freely available at the following GitHub repository - 1268 

https://github.com/Williamreay/Retinol_GWAS_code. 1269 
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