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Abstract:  
Knee osteoarthritis is a major cause of global disability and is a major cost for the healthcare system. Lower 
extremity loading is a determinant of knee osteoarthritis onset and progression; however, technology that assists 
rehabilitative clinicians in optimizing key metrics of lower extremity loading is significantly limited. The peak 
vertical component of the ground reaction force (vGRF) in the first 50% of stance is highly associated with 
biological and patient-reported outcomes linked to knee osteoarthritis symptoms. Monitoring and maintaining 
typical vGRF profiles may support healthy gait biomechanics and joint tissue loading to prevent the onset and 
progression of knee osteoarthritis.  Yet, the optimal number of sensors and sensor placements for predicting accurate 
vGRF from accelerometry remains unknown. Our goals were to: 1) determine how many sensors and what sensor 
locations yielded the most accurate vGRF loading peak estimates during walking; and 2) characterize how 
prescribing different loading conditions affected vGRF loading peak estimates.  

We asked 20 young adult participants to wear 5 accelerometers on their waist, shanks, and feet and walk on a force-
instrumented treadmill during control and targeted biofeedback conditions prompting 5% underloading and 
overloading vGRFs. We trained and tested machine learning models to estimate vGRF from the various sensor 
accelerometer inputs and identified which combinations were most accurate.  

We found that a neural network using one accelerometer at the waist yielded the most accurate loading peak vGRF 
estimates during walking, with errors around 4.3% body weight. The waist-only configuration was able to 
distinguish between control and overloading conditions prescribed using biofeedback, matching measured vGRF 
outcomes. Including foot or shank acceleration signals in the model reduced accuracy, particularly for the 
overloading condition. Our results suggest that a system designed to monitor changes in walking vGRF or to deploy 
targeted biofeedback may only need a single accelerometer located at the waist.  
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Introduction 
Osteoarthritis (OA) is the 10th leading cause of global disability, with approximately 10% of adults in the United 
States exhibiting OA.(1)  In addition to substantial physical burden, management of OA exacts a considerable 
financial burden on our healthcare system.(2) As of 2019 in the United States, OA annually costs approximately 
$360 billion in direct costs and $550 billion in all-cause total costs.(1) Although OA risk increases with age, the 
consequences of OA are not limited to older adults. Individuals who sustain lower hip, knee, or ankle joint injuries 
are at much higher risk for developing OA early in life.(3) Considerable effort and investment has led to surgical 
and rehabilitative interventions to prevent the development and slow the progression of OA. Aberrant loading is a 
key determinant of OA onset and progression.(2–8) Unfortunately, most interventions are not specifically designed 
to optimize loading of lower extremity joints, which is critical to maintaining healthy joint tissues.(9–11) 

Healthy gait biomechanics distribute and balance forces across lower extremity joint surfaces to preserve joint 
function and tissue health.(12,13)  Joint injury and surgery are accompanied by pain, swelling, and muscle weakness 
which causes individuals to adopt atypical patterns of force distribution across lower extremity joints well after 
being discharged from formal physical therapy that seeks to correct these impairments.(14–16) Although such gait 
adaptations may allow individuals to maintain function following injury and surgery, joint tissues break down 
quickly in response to atypical and unbalanced joint forces.(3,5,7,8) Therefore, it is critical to maintain 
characteristically healthy gait biomechanics and joint tissue loading to prevent the development and/or progression 
of lower extremity OA.  

Fortunately, limb-level biomechanical outcomes are linked to joint tissue and symptom-level changes linked to OA 
onset and progression.(8,17–20) Specifically, lower first peak vertical ground reaction force (vGRF), in particular, 
associates with more deleterious biological joint tissue changes and worse patient-reported outcomes that are 
consistent with knee osteoarthritis development. (8,17–20) Altering peak vGRF magnitudes via real-time 
biofeedback may normalize limb-level gait biomechanics(21) and limit the biological changes leading to OA 
development. However, personalized prescription of joint loading cannot be feasibly implemented in the clinical 
management of patients with OA because of the expensive and often immobile force-sensing equipment required. 
Thus, there is a critical need for inexpensive and portable systems that can monitor and prescribe evidence-based 
changes to critical variable of limb-level loading for the purpose of mitigating OA onset and progression. 

Cost-effective wearable sensor solutions may provide a clinically-feasible option to monitor limb loading. For 
example, accelerometers and inertial measurement units have been used to estimate vGRFs during walking. Veras 
et al. (2022) found that a hip-worn accelerometer narrowly outperformed other accelerometers (distal shank, lower 
back) in estimating vGRF loading peak during walking (hip: R2>0.96, mean absolute percentage error <7.3%).(22) 
Similarly, Alcantara et al. (2021) estimated loading peak vGRFs during running using a sacral accelerometer within 
a mean absolute error (MAE) of 4.3 %BW (percent body weight) using a quantile regression forest model and of 
4.0 %BW using a linear regression model.(23) Even more researchers have used accelerometers below the waist to 
estimate vGRF. Jiang et al. (2020) found a shank accelerometer to be the single best estimator of vGRF (within an 
root mean square error of 2%) compared to other sensors on the foot, distal thigh, and proximal thigh. However, 
those authors did not include comparisons to a waist- or hip-worn sensor.(24) Bach et al. (2022) used only shank 
accelerometers to estimate vGRF profiles with R2=0.97 and a normalized root mean square error of 5.2%.(25) 
Altogether, these studies highlight that various accelerometer numbers and locations can be used to estimate vGRF. 
However, none of these studies actively prescribed vGRF changes to determine veracity in predicting effects of 
loading interventions or to drive those interventions directly. 

Based on the available literature, researchers and clinicians seeking to estimate walking vGRF via accelerometry 
may be confused regarding where to place sensors and how many are needed for accurate outcomes. Thus, our first 
goal was to determine how many sensors and which locations yielded the most accurate vGRF loading peak 
estimates. Those individuals may also wonder whether wearable devices can reliably detect changes in loading 
profiles during walking. Accordingly, our second goal was to characterize how different loading conditions 
prescribed using biofeedback affect vGRF loading peak estimates. Ultimately, this is an important step in 
developing wearable sensor and biofeedback systems that can be deployed in real-world environments to detect, 
monitor, and treat aberrant forces associated with lower extremity OA.   
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Figure 1: A) We recorded ground reaction forces and lower body accelerations during typical walking and prescribed changes using vGRF 
targeted biofeedback displaying the loading peak on a screen in front of the participant. B) For analysis, we trained a series of MultiLayer 
Perceptron models to estimate the unilateral vertical ground reaction force (vGRF) across the gait cycle based on acceleration inputs from 
various sensor combinations that included waist, shank, and foot sensors. All trained models unilaterally estimated vGRF, only including 
sensors on that specific side (i.e., left vGRF from the waist, left shank, and left foot).  

 

Materials and Methods 
Participants, Equipment, & Experimental Design 
We recruited a cohort of 20 (10 male, 10 female) healthy young adults to participate in this study (age: 24.7±5.18 
years, height: 1.77±0.11 m, mass: 75.6±13.7 kg, typical walking speed: 1.41±0.09 m/s). We excluded any 
prospective participants who: were younger than 18 or older than 35 years of age; had a history of congenital or 
acquired cognitive, ophthalmologic, or neurological disorders; had a history of chronic peripheral or central 
vestibular disorders; began anti-seizure medication for any reason within two months of participation; had a 
BMI equal to or greater than 36; or used an assistive device and/or orthotics to walk.  We measured participants’ 
habitual overground walking speed via four passes along a 10-m walkway. We used Delsys Trigno (Natick, MA, 
USA) sensors to collect bilateral three-dimensional acceleration from the dorsum of each foot, the anterior/medial 
bony surface of the distal shank, and posteriorly on the waist.  
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Figure 2: Here we show the target vGRF signal (A) and input vector magnitude acceleration waveforms (B-D) used to estimate vGRF for 
100 steps (50 left, 50 right) for all subjects (separated by color).  

 

Participants walked at their typical overground speed on a force-instrumented treadmill (Bertec, Columbus, OH, 
USA) for five minutes (control condition, Figure 1A). We recorded synchronized acceleration (2000 Hz) and GRF 
data (1200 Hz) via Qualisys Track Manager (Qualisys, Gothenburg, Sweden). During the third minute of this control 
condition, we also recorded vGRF profiles using custom Matlab (Mathworks, Natick, MA, USA) scripts(26) to use 
in subsequent trials with targeted biofeedback (Figure 1A). Specifically, participants performed two additional five-
minute walking trials while responding to real-time biofeedback designed to prescribe, in randomized order, 5% 
higher and 5% lower loading peak vGRF (overloading and underloading, respectively) during the first 50% of the 
stance phase (Figure 1A). Participants viewed a screen showing two bar plots, representing their left and right vGRF 
loading peak, updated in real time as the average from the two previous steps (Figure 1A). The ±5% target values 
for these loading conditions were based on the side-specific averages measured during the control condition and 
were designed to emulate different lower extremity loading phenotypes. To facilitate synchronization, we asked 
participants to stomp on each force plate with their left and right foot in succession prior to starting or stopping the 
recorded data.  The pre/post-trial stomp provided a sufficient timestamp via a high magnitude signal for a reliable 
cross correlation analysis.  

Data Reduction & Model Descriptions 
Out of the 60 total trials recorded, two trials needed to be manually adjusted due to a timing error between the 
acceleration and force data. For these two trials, we synchronized the acceleration and force data by identifying the 
relative lag using a cross-correlation function and truncating or appending empty frames to the acceleration signal, 
keeping the force signal constant.  
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We extracted the first 50 valid left and right strides for a total of 100 strides per walking condition. We resampled 
acceleration and GRF signals to 100 Hz in post processing. For consistency across both vGRF and acceleration 
signals, we extracted gait cycles using a peak-finding algorithm on body weight (BW) normalized force data, 
identifying stance phases with a minimum height of 0.95 BW, a minimum prominence of 0.8 BW, a minimum 
width of 0.15 s, and a minimum distance of 0.5 s between peaks. We selected these identification parameters based 
on manual observation across the entire dataset (all subjects and biofeedback conditions).     

We extracted accelerometer signals in time series for foot, shank, and waist with time-matched vGRF data and 
resampled each stride to 100 data points (Figure 1B). We calculated 3D acceleration vector magnitudes (via 
Euclidian normalization) to remove any bias of sensor orientation and sidedness. Figure 2 shows the measured 
vGRF and acceleration data for all input steps.   

We tested seven different sensor combinations by altering the number and location of accelerometers used as model 
inputs, as displayed in Figure 1A. Each model included steps across all loading conditions (control/under/over). We 
trained Multi-Layer Perceptron regressor models from the Sci-Kit Learn(27), with a convergence max iteration of 
500, logistic activation functions, and a single hidden layer (size = 200 neurons) based on preliminary parameter 
tuning. To benchmark model accuracies, we performed 5-fold cross validation, splitting the training and testing 
steps on an 80:20% (16:4 subjects) ratio in a subject leave-out approach. In line with common k-fold cross validation 
practices, we changed which 20% the model was tested on for each k-fold iteration.  

Statistical Comparisons 
We quantified accuracy via mean absolute error (MAE) between measured and predicted vGRF both across the 
entire gait cycle (GC) and at the loading peak. We characterized the ability to distinguish between loading conditions 
by performing two-way repeated measures ANOVA using each of the three most-accurate models, testing for main 
effects of mode (measured vs estimated), condition (under, control, & over-loading), and for interaction effects 
(mode x condition). We also ran one-way repeated measures ANOVA across the MAE estimates across the GC and 
at the loading peak. When a significant main effect was found, Tukey’s post-hoc tests identified significant pairwise 
differences between measurement modes and across loading conditions. We report effect sizes for ANOVAs as 
partial eta squared (ηp

2) and post-hoc analyses using eta squared (η2).  

Results 
Benchmarking Accuracy Across Sensor Configurations 
Figure 3 shows all measured and predicted vGRFs for all steps in the testing set across each configuration (panels) 
and k-fold iteration (colors). Qualitatively, all sensor configurations yielded model predictions that reflected the 
double-hump shape of vGRF across the gait cycle. Compared to other models, the Waist model (Fig. 3H) appeared 
to best reflect the variability of measured vGRFs across participants and conditions (Fig. 3A). 

Figure 4 shows MAE between measured and estimated vGRFs over the gait cycle (A) and at the instant of the 
loading peak (B) for each sensor configuration (x-axis) and k-fold iteration (colors). The model driven exclusively 
by Waist accelerations outperformed all other models (GC MA: 4.0 %BW, loading peak MAE: 4.3 %BW). The 
Foot-Waist configuration performed second best (GC MAE: 4.3 %BW, loading peak MAE: 4.9 %BW) followed 
by the Shank-Waist configuration (GC MAE: 4.5 %BW, loading peak MAE: 5.2 %BW). All other sensor 
configurations produced estimates with higher than these reported MAE values, and generally above 5 %BW.  

Model-Predictions of Altered Lower-Extremity Loading 
Compared to the control condition, the measured and average estimated vGRF loading peaks increased and 
decreased consistently with the biofeedback target values (condition main effect: p<0.001, ηp

2=0.719). Compared 
to the control condition, the measured vGRF loading peaks significantly differed only for the overloading condition 
(Tukey’s: p=0.009, η2=0.177, Fig. 5C,G,K).  
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Figure 3: For qualitative comparison convenience, we show the measured vGRF signal (A) and all model estimates (B-H) for all steps across 
each k-fold validation (color). All models successfully estimated the double-humped vGRF profile across the gait cycle. The Waist model 
seemed to best reflect the true variability of the original signal.  

 

The Waist model successfully distinguished between overloading and control vGRF loading peaks (condition: 
p<0.001, ηp

2=0.719) and yielded values that were indistinguishable from those measured (mode: p=0.160, 
ηp

2=0.101, Fig. 5C). Waist model MAEs did not significantly change between conditions across the gait cycle 
(condition: p=0.368, ηp

2=0.051, Fig. 5B) nor at the loading peak (condition: p=0.222, ηp
2=0.076, Fig. 5D).  

Compared to the control condition, the Foot-Waist model (condition: p<0.001, ηp
2=0.722) did not distinguish 

loading peaks for overloading (p=0.092, η2=0.107), but did yield a significant difference for underloading (p=0.026, 
η2=0.149, Fig. 5G). Compared to measured values, the Foot-Waist model yielded a different loading peak vGRF 
for overloading (p=0.023, η2=0.124, Fig. 5G) but not underloading (p>0.533, η2<0.010). The Foot-Waist model 
also yielded similar estimates of the vGRF across the gait cycle (condition: p=0.386, ηp2=0.049, Fig. 5F). 
Conversely, Foot-Waist model accuracy at the loading peak varied across conditions (condition: p<0.001, 
ηp2=0.362, Fig. 5H) with overloading error significantly higher than for underloading and control conditions 
(p≤0.001, η2≥0.224).  
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Figure 4: Model accuracy varied across each of the sensor combinations yet was relatively stable across each k-fold iteration. The Waist 
sensor configuration yielded the most accurate model on average for both the gait cycle MAE (A) and loading peak MAE (B). The Foot-
Waist model was 2nd best, and Shank-Waist model 3rd best across both outcomes.  

 

The Shank-Waist model (condition: p<0.001, ηp
2=0.708) was unable to distinguish between loading conditions 

(p>0.064, η2=0.138, Fig. 5K). Additionally, the Shank-Waist model estimates were different from the measured 
vGRF loading peaks (mode: p=0.025, η2=0.239), with the overloading condition estimates different from measured 
values (p=0.009, η2=0.161, Fig. 5K). The Shank-Waist model yielded estimates with consistent errors between 
conditions across the gait cycle (condition: p=0.205, ηp

2=0.080, Fig. 5J). However, the Shank-Waist model errors 
at the loading peak varied between conditions (condition: p<0.001, ηp2=0.411, Fig. 5L) with overloading error 
significantly higher than underloading and control conditions (p≤0.002, η2≥0.163).  

Seeking Interpretability 
Figure 6 attempts to explore characteristics of the neural-network prediction model for the Waist-only sensor 
configuration. The estimated vGRF (horizontal axis and top sub-axis) received strong positive weights during early 
(5-15% GC) and late (50-60% GC) stance phase, as well as strong negative weights during leg swing (60-100% 
GC). Although the vGRF weights during midstance (15-50% GC) included both positive and negative values, those 
weights were relatively smaller. Model weights for the input Waist acceleration vectors (vertical axis and right sub-
axis) were more complicated. However, we tended to see more positive weights during the stance phase (0-50% 
GC) and more negative weights during the swing phase (60-100% GC).  
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Figure 5: We further explore the 3 most accurate sensor configurations, analyzing the Waist (A-D), Shank-Waist (E-H), and Foot-Waist (I-
L) models across each of the loading conditions (underloading=blue, control=black, overloading=red). Asterisks indicate a significant 
difference from the control condition for that measurement type, whereas hashes (#) represent a significant difference between measurement 
modalities (true vs estimated).  

Discussion 
Our goals were to: 1) determine how many sensors and what sensor placement and locations yielded the most 
accurate vGRF loading peak estimates during walking; and 2) characterize how prescribing different loading 
conditions affected vGRF loading peak estimates. We found that a neural network using one waist-mounted 
accelerometer yielded the most accurate loading peak vGRF estimates during walking, with errors around 4.3% 
BW. Furthermore, this waist-only configuration was able to distinguish between control and overloading conditions 
prescribed using biofeedback, matching measured vGRF outcomes. Including foot or shank acceleration signals in 
the model reduced accuracy, particularly for the overloading condition. Our results suggest that a system designed 
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to monitor changes in walking vGRF or to deploy targeted biofeedback may only need a single accelerometer 
located at the waist. 

 
Figure 6: To address interpretability of the Waist model, we show the resultant model weights for the input (vertical axis) and output 
(horizontal axis) layers of our multilayer perceptron neural network model. Model weights are shown via heatmap across their respective 
time series (along each axis top to bottom and left to right), with higher positive weights in red, lower negative weights in blue, and zero 
weights in black. Along each sub-axis, we also show the mean-normalized summed weights for each column/row as a bar graph, with higher 
relative weights shown above or to the right of the axes. For additional context, we also overlay the average input Waist vector magnitude 
acceleration signal along the vertical sub-axis and the average estimated vGRF signal along the horizontal sub-axis, both shown in gray.   
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The novelty in our scientific contributions is twofold. First, we systematically compared model-prediction 
accuracies across multiple sensor configurations. Previous studies designed to predict walking vGRF values from 
wearable sensors have generally quantified model accuracies based on a single accelerometer placed at, for example, 
the feet versus shank or waist. By using multiple combinations of sensors, we see the effects of how the various 
sensor locations affect vGRF estimates (Fig. 2). A second innovation comes from our characterization of 
accelerometers to detect changes in vGRF across multiple loading phenotypes, prescribed herein using real-time 
biofeedback. As one clinical application, vGRF profiles during walking are indicative of patient-reported and 
biological outcomes among individuals during recovery from anterior cruciate ligament (ACL) 
reconstruction.(19,20) Thus, this study suggests that wearable sensors can be used to detect and monitor vGRF 
changes between overloading and typical walking, which could help improve clinical outcomes during 
rehabilitation. 

Generally, our measured vGRFs were able to differentiate between control and overloading conditions and the 
Waist model replicated those findings. Interestingly, the Foot-Waist model detected a significant difference between 
underloading peak vGRF and the control condition that was not detected using the measured vGRF signals (Fig. 
5G). Although loading peaks did decrease on average during the underloading condition, no other model or 
measurement mode detected a significant difference from the control vGRF. Loading peak errors were also higher 
on average during the underloading condition (Fig. 5H), which may have contributed to this unanticipated finding. 
In combination with inaccuracy during overloading, we suggest that the Foot-Waist configuration is unlikely to 
yield accurate vGRF loading peak estimates across biofeedback conditions.    

Our Waist model aligns with other groups that have used machine learning or regression equations to estimate 
vGRF loading peak during walking or running.(22,23) Although lower leg sensor sites can accurately estimate 
vGRF signals under different scenarios,(24,25) we found that accelerometers placed near the body’s center of mass 
may provide optimal features to estimate vGRF during walking. This outcome is theoretically supported by simple 
Newtonian physics-based models of walking(21), in that acceleration of the body’s center of mass is proportional 
to the net external force acting on the body. While the other lower-limb sensors may contain salient features that 
can accurately estimate vGRF, we contend that sensor locations that track center of mass acceleration are more 
reliable and accurate.  

We chose an accelerometer-based solution for vGRF estimation because of their low cost and simplicity, both of 
which are beneficial to delivering options for estimating vGRF outside of the research laboratory. Compared to 
other potential solutions (pressure-sensing insoles, instrumented walkways), accelerometers and inertial 
measurement units are adaptable across patients of any size, simple to change between patients, and can be applied 
to a wide variety of outpatient environments. Unlike previous studies, we used the acceleration vector magnitude 
in our model, combining the 3-dimensional components into one composite acceleration measure. This processing 
strategy simplifies sensor placement orientation, is agnostic to left/right sidedness, and reduces data processing 
complexity which should enable high-throughput assessment.  

As scientists, engineers, and clinicians increasingly utilize machine learning models to estimate biomechanical 
parameters, interpretation of the data produced by these models remains a challenge for successful utilization of 
model-based techniques.(28) We assessed the interpretability of our most accurate model by mapping the input and 
output weights from the neural network multilayer perceptron model (Fig. 6). We found that model weights tended 
to align with notable events from the gait cycle, including stance and swing phase as well as local maximums in the 
vGRF signal during early and late stance. Our interpretability plot reveals some of the underlying features that our 
model may use to estimate the vGRF waveform. By calculating and displaying our model weights, we aim to work 
toward a better understanding of how machine learning models make predictions, and what input features are most 
influential, with the hope of understanding and explaining model estimates. 

Limitations 
One limitation is that this study only includes young, healthy participants. Thus, our models may not extend to 
individuals expressing pathologic gait or who may be at risk for developing OA. Another limitation is that our input 
data only included acceleration signals, lacking the gyroscope and magnetometer signals common to inertial 
measurement units. Although accelerometers likely contain the most relevant features for vGRF estimation, it is 
possible that the other signals may contain salient features that could aid in vGRF estimation and perhaps help 
distinguish between loading conditions.  
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Conclusion 
We can accurately estimate the vGRF loading peak within 5% of body weight and distinguish between biofeedback-
induced loading conditions using only a waist accelerometer by implementing a multilayer perceptron neural 
network model. However, other lower-body segment accelerations may be helpful in other ways, identifying gait 
events which are necessary to parse gait cycles from the acceleration signal stream. We suggest that a wearable 
sensor system comprised of a single waist sensor is not only sufficient, but optimal for implementing a biofeedback-
based therapy system to prescribe limb loading during gait retraining.   
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