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Abstract 12 

The global impact of the SARS-CoV-2 pandemic has been uneven, with some regions 13 

experiencing significant excess mortality while others have been relatively unaffected. Yet 14 

factors which predict this variation remain enigmatic, particularly at large spatial scales. We 15 

used spatially explicit Bayesian models that integrate socio-demographic and endemic 16 

disease data at the country level to provide robust global estimates of excess SARS-CoV-2 17 

mortality (P scores) for the years 2020 and 2021. We find that gross domestic product (GDP), 18 

spatial patterns and urbanization are strong predictors of excess mortality, with countries 19 

characterized by low GDP but high urbanization experiencing the highest levels of excess 20 

mortality. Intriguingly, we also observed that the prevalence of malaria and human 21 

immunodeficiency virus (HIV) are associated with country-level SARS-CoV-2 excess 22 

mortality in Africa and the Western Pacific, whereby countries with low HIV prevalence but 23 

high malaria prevalence tend to have lower levels of excess mortality. While these 24 

associations are correlative in nature at the macro-scale, they emphasize that patterns of 25 

endemic disease and socio-demographic factors are needed to understand the global 26 

dynamics of SARS-CoV-2.  27 

Key words: COVID-19, human immunodeficiency virus (HV), malaria, macroecology, 28 

spatial model 29 
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Introduction 31 

Since the emergence of the SARS-CoV-2 pandemic in December 2019, there has been 32 

substantial interest in understanding the determinants of disease patterns and accurately 33 

assessing the true impact of this worldwide disaster. There have been a wide variety of 34 

approaches to estimating the mortality associated with SARS-CoV-2, but in each case, 35 

estimates of the true death toll have likely been orders of magnitude higher than reported 36 

deaths. Excess mortality, the difference in deaths due to a crisis compared to those expected 37 

under normal conditions [1], provides a more reliable estimate of COVID-19 deaths than 38 

reported deaths [2]. However, the factors shaping the heterogeneity of estimates of excess 39 

deaths across countries remain obscure. 40 

Global estimates for the first epidemic waves in 2020/2021 range from 14.8 [2] to 18.2 41 

million excess deaths [3], dwarfing the 5.94 million reported deaths for the same period. For 42 

example, the World Health Organization (WHO) estimated Indonesia to have 1.03 million 43 

excess deaths up until December 2021 (credible interval (CI) 0.75-1.29 million) whereas 0.23 44 

million excess deaths were estimated in Pakistan (CI 0.04-0.4 million) [2], even though the 45 

population sizes of these countries are comparable. Africa has experienced much lower 46 

excess mortality compared to most other regions [2–5]. Deficiencies in the input data in 47 

developing countries may underly some of this variation, but these estimates are congruent 48 

with cross-sectional studies and reports [e.g., 6].  49 

Comparing excess mortality estimates across countries is a challenging task as raw estimates 50 

are strongly dependent on population size and age structure of each country [2,7]. For 51 

example, larger populations with higher proportions of older people will have higher number 52 

of expected deaths compared to countries with smaller younger populations. To facilitate 53 

cross-country comparisons, estimates of excess deaths are often normalized by the expected 54 
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number of deaths (from all causes) across a period of time. The measurement of excess 55 

deaths, referred to as a P-score [7], takes into account both the population size and age 56 

structure (see Methods). For instance, if 100 deaths were anticipated but the actual number 57 

reached 150, resulting in 50 excess deaths, the P-score would be calculated as 50% [7]. Put 58 

another way, if a country had a P-score of 50% for a year then the reported death count was 59 

50% higher than the expected death count that year. Recent (as of February 2023) P-score 60 

estimates from the WHO have provided important insights into the relative toll of the 61 

pandemic across countries, with smaller countries in the Americas suffering relatively more 62 

excess deaths (highest P-scores), even though they experienced fewer absolute deaths 63 

compared to larger countries [2]. For example, Peru had an estimated P-score of 97% or 64 

effectively a doubling of deaths during the first waves of the pandemic [2]. Other countries, 65 

such as Australia where infection rates were low were estimated to have negative values as 66 

there were actually fewer deaths during these years than expected [2]. 67 

Clearly, differences in pandemic response explain some variation in global P-Score estimates 68 

but these are not sufficient to explain the general patterns [2]. Here we build a fully 69 

probabilistic model accounting for uncertainties in P-score estimates to test if socio-70 

demographic, economic and patterns of endemic disease could help predict these disparate 71 

estimates of excess mortality across countries. While P-scores control for age structure of a 72 

population, age is a well-known  risk factor for mortality, some countries with larger portions 73 

of the population > 70 y.o. are likely to experience higher mortality than countries with fewer 74 

people in this age bracket [e.g., 8]. As P-scores capture direct and indirect SARS-CoV-2 75 

deaths (e.g., because patients could not access treatment that would be otherwise available), 76 

the prevalence of non-communicable conditions such as heart disease [9] may also play a role 77 

in shaping these excess deaths.  Economic variables such as gross domestic product (GDP) 78 

[30] and health spending may also impact mortality rates as countries with high GDP and 79 
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health spending may lower mortality risks through, for example, better treatment. Countries 80 

with high population density and urbanisation may also experience higher mortality as 81 

transmission may be facilitated in these conditions [10] or lower, because urban populations 82 

tend to have better access to health facilities [11]. Further, our previous work has also found 83 

that variation in the prevalence of endemic pathogens including malaria (Plasmodium sp.), 84 

common intestinal parasitic worms (e.g., Trichuris trichiura, the causative agent of 85 

ascariasis) and human immunodeficiency virus (HIV) played a surprisingly important role in 86 

predicting variation in SARS-CoV-2 reported deaths [12]. For example, countries with 87 

relatively high prevalence of endemic malaria had reduced numbers of deaths, whereas 88 

countries with higher HIV prevalence had higher numbers of reported deaths (while 89 

controlling for other factors such as the mean age of the country) [12].  90 

Spatial relationships are also likely to be important in explaining variation in P-scores and 91 

need to be accounted for in global models [e.g., 13]. For example, regions or countries closer 92 

in space may have similar P-scores due to similar epidemic trajectories [14]. High 93 

connectivity between neighbouring countries could also facilitate the spread of the virus and 94 

increase mortality. International air travel is also known to facilitate SARS-CoV-2 spread 95 

among countries [13,15,16], and countries with high air travel connectivity with other 96 

countries may have increased numbers of introduction events which may result in higher 97 

mortality. Countries with high connectivity also tended to have the earliest outbreaks of the 98 

virus [17]. 99 

In this study, we introduce a Bayesian model-based framework with the aim to discover the 100 

potential drivers behind the variations in excess deaths across countries. By utilizing this 101 

model-based approach, we illuminate factors that contribute to the diverse severity of the 102 

pandemic's consequences worldwide. 103 
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Methods 104 

Data retrieval 105 

We extracted P-score estimates from the WHO excess mortality code base on the 3rd of 106 

March 2023 (the https://github.com/WHOexcessc19/Codebase). We computed the posterior 107 

mean and its standard error for the average P-score estimates across the 24 months spanning 108 

2020 and 2021. We used only data for the first wave of SARS-CoV-2 to examine infection 109 

patters without the influence of the variable roll-out of vaccines. We also used the WHO 110 

transmission classification scheme (i.e., countries with community transmission, clusters of 111 

cases only, sporadic cases and no cases) to account for differences in pandemic response (as 112 

of 29th of January 2021, the midpoint of our excess mortality estimates). 113 

We leveraged the predictor variables collated previously [see 12 for further details]. Briefly, 114 

we extracted demographic and economic variables from the World Bank dataset 115 

(https://data.worldbank.org/) for each country. These variables include per capita GDP (in 116 

current USD averaged across 2014-2019), percent of the population living in urban areas 117 

(hereafter percent urban). Global health spending estimates (USD) are calculated by the 118 

World Health Organization and include healthcare goods and services consumed each year. 119 

To analyse the importance of spatial patterns to P-score estimates we constructed a lagged P-120 

score variable based on a neighbourhood matrix. To construct the neighbourhood matrix, we 121 

extracted centroid coordinates of countries and generated spatial neighbourhood matrix based 122 

on the mean P-score estimate using  the spdep package in R [18]. To capture the role of 123 

country-level connectivity in predicting P-scores, we incorporated the 2007 air connectivity 124 

index [16]. We attempted to include an intrinsic spatial conditional autoregressive (iCAR) 125 

term to our model, yet we could not attain model convergence with this extra complexity. 126 
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We downloaded the mean estimate of prevalence of 14 endemic diseases in each country 127 

(Table S1) based on 2019 data from the Institute for Health Metrics and Evaluation (IHME) 128 

Global Burden of Disease (GBD) database (https://www.healthdata.org/research-129 

analysis/gbd). As many of the country-level disease prevalence estimates were correlated, we 130 

conducted principal component analysis (PCA) and we used the top three resultant 131 

orthogonal principal components as predictors in our models. As malaria and HIV were not 132 

correlated with any of the principal components, we included these variables separately. To 133 

measure overall infectious disease burden, we also extracted estimates of years of life lost 134 

(YLLs) for infectious diseases combined in each country in 2019 using the GBD data. We 135 

extracted diabetes prevalence and the average cardiovascular death rate for each country in 136 

2019 from the GBD also. See Table S1 for a complete list of predictors used.  137 

We imputed missing data for both datasets dataset using classification and regression trees as 138 

implemented in the multivariate imputation by chained equations (MICE) package [19]. We 139 

generated ten separate multiple imputations and combined the posterior distributions across 140 

the ten corresponding model fits to marginalise over the uncertainty of the replacement 141 

values.  We screened variables for collinearity by calculating Pearson’s correlation 142 

coefficient (ρ) and for correlated pairs excluded the variable with the highest correlation 143 

across the complete dataset.  144 

Bayesian modelling 145 

We modelled P-score variation globally using generalised additive models (GAM) with a 146 

Gaussian error distribution to facilitate the inclusion of response errors (i.e., the uncertainty 147 

of the P-score estimates) and since the P-scores values are naturally unconstrained. The 148 

advantage of GAMs over linear models is their flexibility to capture a wide range of non-149 

linear functional forms using splines while mitigating overfitting through smoothing (we set 150 
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the maximal basis dimensions of the splines to 6 to flexibly capture non-linear relationships 151 

while keeping the effective model complexity under control). Specifically, our models 152 

quantified the probability of observing P-scores (��� in country i given by: 153 

�� �� �� ��, ��, 	
� � � 
���,��
� � 	
���  

where ��� � ������ is the standard error of the response and �� and 	�

� are the modelled mean 154 

and variance, respectively. Models for each of the distributional parameters are given by: 155 

µ� � β� � �region��� � βtrans��� � � �������
�

�

�2�
 

log �� � α� � �region����3�
 

where 
�and �� are global intercepts, � and 
 are region-level (random) intercepts, βtrans is a 156 

fixed effect for transmission type, p number of predictors included in the model and �	��	�
� 157 

are smooth spline terms for each continuous predictor �	. The region-level intercepts 158 

��region���, �region���� were drawn from a bivariate normal distribution with an estimated 159 

three-parameter covariance matrix. The basis elements for each thin plate smoothing spline 160 

were generated using the R package mgcv [20] and the corresponding regression coefficients 161 

were drawn from a normal distribution parametrised by an estimated smoothing 162 

hyperparameter.  163 

All models were fit in a Bayesian framework using Hamiltonian Monte Carlo (HMC) 164 

methods [21] and ‘no U-turn sampling’ (NUTS, [22]), as implemented in the R package 165 

‘brms’ [23]. We ran four chains of 12000 iterations, using weakly informative priors---the 166 

prior for the smoothing hyperparameter was half student-t distribution (df = 3, scale = 2.6), 167 

and inferences proved robust to changes in the choice of scale. To establish chain 168 

convergence, we used the rank-normalised �̂ statistic (�̂< 1.01) [24] as well as visual 169 
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inspection. We validated the model by comparing pointwise posterior-predictive intervals to 170 

the observed P-scores for each country [25]. 171 

To interrogate our model, we computed conditional effects for each covariate. For the 172 

numeric variables, we computed the estimated change in response (centred on the posterior-173 

predictive mean) as a function of changes in the value of a given predictor (centred on the 174 

global mean) while holding all other variables at their global means. Variables were 175 

considered strong predictors of P-scores if the 90% credible interval (CI) did not include 0. 176 

Variables where this was true for a smaller portion of the range were identified as weaker 177 

variables (variables where all values of the CI included 0). To test the utility of adding 178 

endemic disease variables to our macroecological models, we evaluated model performance 179 

using approximate leave-one-our cross validation (LOO, [26]) an estimate of relative 180 

expected Kullback–Leibler discrepancy and compared the model both with and without the 181 

inclusion of endemic pathogens. We also compared model performance by region. Our 182 

complete workflow and data are available on github: 183 

(https://github.com/nfj1380/covid19_macroecology). 184 

 185 

Results 186 

 187 

Our model was able to predict global P-score variation remarkably well with mean observed 188 

P-scores from 175 out of 181 countries inside the model credible intervals (Fig. 1). Our 189 

model underestimated excess mortality for five countries and only overestimated P-scores 190 

from Togo. Our model could not predict the P-score for Peru (the highest mean P-score 191 

calculated, Fig. 1 inset) but our predictive performance was high for countries with very low 192 

or negative P-scores. Our models also underestimated excess mortality in Guam, Oman, 193 
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Andorra and Armenia (Fig. S1). There was overall no difference in model performance 194 

across regions, but countries in the Americas had much higher uncertainty in P-score 195 

estimates compared to the other regions. (Fig. 1).196 
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 197 

198 

Fig. 1: Posterior predictive performance of our P-score model for each country and (inset) the global distribution of mean P-scores acr199 

countries. Countries are grouped by region and ordered by predicted values (lowest to highest). Black dots are the observed values for 200 

country and the trend line is the median posterior estimate of the models. Credible intervals (CIs) are coloured by region, with the 50%201 
CIs depicted by thick and thin lines, respectively. See Fig. S1 for predictions with each country labelled.202 
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1 

We found a mix of population, spatial patterns and endemic disease that best predicted P-203 

score variation in our models (Fig. 2). Though important at individual or within country 204 

scales, variables such as proportion over 65 y.o., population density and air-connectivity were 205 

less important at global scales (Fig. 2a). We also did not see a signature of diabetes 206 

prevalence or cardiovascular disease impacting P-score estimates (Fig. 2a, see Fig S2 for the 207 

conditional effects plots). 208 

Per-capita GDP and percent urban were strong predictors of P-score variation (Fig. 2a/b). 209 

Wealthier countries with a per-capita GDP >$20,000 had decreased P-scores (while 210 

controlling for all other predictors in the model, Fig. 2b). GDP decreased excess mortality by 211 

up to 10% in countries with a GDP of ~$60,000 (e.g., USA, Iceland, and Singapore). 212 

Conversely, countries with >60% urban population had higher P-scores (Fig. 2b). Spatial 213 

patterns played a role and the effect was non-linear (Fig. 2a/b). Countries with neighbours 214 

having average P-scores >12 also exhibited higher P-scores (Fig. 2b). 215 

We also detected divergent (but weaker) relationships with malaria and HIV prevalence on P-216 

scores (Fig. 2a). While holding all other variables in the model at their mean value, countries 217 

with relatively high prevalence of malaria had decreased P-scores, whereas countries with 218 

relatively high HIV prevalence had higher P-scores. The estimated LOO scores indicated that 219 

retaining endemic disease variables in the model did not improve model fit overall (ELPD 220 

difference = – 1.4, SE = 4.4), although including endemic disease did improve predictions in 221 

the Western Pacific (Fig. 2c). There was also some evidence that the fit was improved by 222 

endemic disease in Africa but the LOO scores were highly variable which could indicate that 223 

we are missing important variables in this region. For Europe and the Americas in contrast, 224 

model fit was improved by not including the endemic disease variables (i.e., LOO model 225 
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difference scores above 0). Collectively, there appears some regional scale context-dependent 226 

relationships between SARS-CoV-2 P-scores and endemic disease. 227 

  228 
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 229 

Fig 2: Conditional effects of model predictors on the expected change in global P-scores. a) 230 
and direction of covariate effects on P-scores. Pos = positive, Neg = negative. Covariates 231 
without a corresponding circle (i.e., blank) had little impact on P-score estimates (see Fig. 232 
S2). b-f) Conditional plots showing the expected difference in P-scores as a function of the 233 
difference between a given covariate value and the mean observed covariate vales (CIs have a 234 
width of 0 at the mean, see Methods). span the predictors included in the model. Solid lines 235 
denote the posterior means and the associated intervals (dashed lines) denote the 90% 236 
credible intervals (CIs). Predictors are colour-coded based on variable type (dark blue = 237 
associated with a country’s economic capacity, light red = country level pathogen prevalence 238 
estimate, light grey = estimated prevalence of non-infectious disease, light green= spatial 239 
variable, purple = population characteristic. Spatial: estimates of cases in neighbouring 240 
countries. HIV: Human immunodeficiency virus. (see Table S1 for details). g) Leave one out 241 
(LOO) comparisons of our model with all co-variates compared to a model leaving out the 242 
endemic disease variables summed across regions. Region level estimates not overlapping the 243 
0 LOO difference were considered significant. W.o  = without. 244 

  245 
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Discussion 246 

 247 

Our study provides some important insights into the divergent impacts of the SARS-CoV-2 248 

pandemic. Our Bayesian analytical approach combined with robust estimates of excess deaths 249 

from the WHO revealed that GPD, urbanisation and spatial patterns played an important role 250 

in predicting excess mortality across countries. We also found that malaria and HIV were 251 

associated with excess deaths, particularly in the Western Pacific and African regions, but not 252 

necessarily in other regions of the world. Studies at this scale, while necessarily associative, 253 

can help identity plausible drivers of variation in SARS-CoV-2 mortality at large spatial 254 

scales.  255 

 256 

We identified that highly urban countries with low GDP and surrounded by countries with 257 

high P-Scores had the highest levels of excess mortality during the first waves of the 258 

pandemic. Endemic disease patterns also had some association, but comorbidities such as 259 

diabetes prevalence and proportion of the population > 65 y.o. were less relevant at the scale 260 

of our analysis. The relationship between GDP and SARS-CoV-2 mortality has generally 261 

been found to be positively correlated with the number of reported deaths higher in countries 262 

with higher GDP [e.g., 27]. Our model using the more robust P-score estimates of excess 263 

mortality suggest the opposite trend; potentially as our estimates are less-impacted by 264 

reporting biases in countries with fewer resources. GDP is strongly correlated with health 265 

spending, so it is possible that the quality of health care afforded by countries with high GDP 266 

is associated with reduced excess mortality. However, even after accounting for GPD, the 267 

burden of excess mortality is not shared evenly. Highly urban populations are known to be 268 

vulnerable to SARS-CoV-2 mortality as urban areas are densely populated and are travel 269 
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hubs, both of which facilitate transmission [10,12,16,27]. Despite the benefits of living in 270 

cities, such as better access to medical resources, our study demonstrates that urban areas face 271 

amplified SARS-CoV-2-related mortality [11].   272 

 273 

Highly urban countries are often more connected to other countries, yet higher air 274 

connectivity alone did not explain P-score variation in our model. Spatial relationships as 275 

well as regional variability were more important and similar results have been found in 276 

models focusing on global patterns of confirmed deaths [12]. In our analysis, a clear 277 

threshold emerged indicating a spatial effect, where mean P-scores increased when the 278 

average of neighbouring countries exceeded approximately 10. This finding suggests 279 

geographically constrained patterns, with countries experiencing high transmission and 280 

mortality influencing neighbouring P-scores through cross-border transmission.  281 

 282 

We also provide further evidence for the effect of endemic pathogen prevalence on global 283 

SARS-CoV-2 mortality with countries with lower malaria prevalence but higher HIV 284 

prevalence tending to have higher P-scores. While the effect at a global level was marginal, 285 

our interrogation of regional level patterns found that endemic pathogens were associated 286 

with P-score patterns in the regions with high burdens of endemic disease. Our findings are 287 

similar to other studies modelling deaths at this scale and our previous work [12,16]. In these 288 

regions, coinfections with either of these pathogens and SARS-CoV-2 were common and 289 

coinfection can impact the severity of SARS-CoV-2 [28–30]. For example, 290 

immunocompromised HIV patients can face a higher risk of severe SARS-CoV-2 infection 291 

[31]. At a coarser scale, countries in Africa with high-levels of mortality also had the highest 292 

prevalence of HIV [16]. Additionally, there is evidence suggesting that malaria can influence 293 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 9, 2023. ; https://doi.org/10.1101/2023.08.06.23293729doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.06.23293729
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

the mortality rates of SARS-CoV-2 by mitigating the severity of the illness [29,32]. For 294 

instance, a study conducted on healthcare workers in India revealed that individuals 295 

coinfected with malaria and SARS-CoV-2 experienced an average recovery period that was 296 

eight days shorter than those who were infected with SARS-CoV-2 alone [29]. 297 

  298 

Though our model for the most part could predict country-level P-scores well, it is important 299 

to acknowledge that this was not the case for all countries. For example, the P-score for Peru 300 

exceeded our model estimates. Why Peru is globally unique is unclear, but may be linked to 301 

failures in the health system coupled with diverse populations with high levels of poverty 302 

[33]. Although we gathered a diverse range of predictors, the dataset is not comprehensive, 303 

and we may have missed important axes of variation. Our objective was to include as many 304 

countries as possible in the analysis while minimizing missing data. Our data was also 305 

aggregated at the country-level and we possibly missed important variation within countries 306 

that may provide high resolution predictions of SARS CoV-2 mortality. Moreover, while our 307 

model was able to propagate the estimated uncertainty with the WHOs modelled P-scores, it 308 

is important to recognise some features of WHOs generation of the P-scores themselves. The 309 

WHO found that tracking excess mortality directly in some parts of the world, particularly in 310 

sub-Saharan Africa, was not possible and within-country estimates relied on statistical 311 

models [2]. We urge caution when interpreting our cross-country models in the region. Still 312 

as reported deaths data are likely a severe undercount in sub-Saharan Africa [2,34], model-313 

based P-score estimates provide the most reliable estimates of SARS-CoV-2 mortality in the 314 

region. 315 

 316 
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Our study highlights factors associated with variation in excess mortality across countries and 317 

provides insights into why some countries were impacted more by the pandemic than others. 318 

By understanding the predictors of P-score variation across countries and gaining insights 319 

into the differential impacts of the pandemic, we may be able to better inform global 320 

strategies for outbreak management and response. For example, our model estimates suggest 321 

that targeting medical resources to highly urban countries with low GDP and high HIV 322 

prevalence may reduce mortality during future outbreaks. Future investigations should aim to 323 

explore these global factors using increasingly accurate mortality estimates and consider the 324 

dynamics of new waves of SARS-CoV-2.  325 
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