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45 Abstract

46 The Omicron SARS-CoV-2 variant continues to strain healthcare systems. Developing 

47 tools that facilitate the identification of patients at highest risk of adverse outcomes is a priority. 

48 The study objectives are to develop population-scale predictive models that: 1) identify predictors 

49 of adverse outcomes with Omicron surge SARS-CoV-2 infections, and 2) predict the impact of 

50 prioritized vaccination of high-risk groups for said outcome. We prepared a retrospective 

51 longitudinal observational study of a national cohort of 192,984 patients in the U.S. Veteran Health 

52 Administration who tested positive for SARS-CoV-2 from January 15 to August 15, 2022. We 

53 utilized sociodemographic characteristics, comorbidities, vaccination status, and prior COVID-19 

54 infections, at time of testing positive for SARS-CoV-2 to predict hospitalization, escalation of care 

55 (high-flow oxygen, mechanical ventilation, vasopressor use, dialysis, or extracorporeal membrane 

56 oxygenation), and death within 30 days. Machine learning models demonstrated that advanced 

57 age, high comorbidity burden, lower body mass index, unvaccinated status, prior SARS-CoV-2 

58 infection, and oral anticoagulant use were the important predictors of hospitalization and escalation 

59 of care. Similar factors predicted death. However, prior SARS-CoV-2 infection was associated 

60 with lower 30-day mortality, and anticoagulant use did not predict mortality risk.  The all-cause 

61 death model showed the highest discrimination (Area Under the Curve (AUC) = 0.895, 95% 

62 Confidence Interval (CI): 0.885, 0.906) followed by hospitalization (AUC = 0.829, CI: 0.825, 

63 0.834), then escalation of care (AUC=0.805, CI: 0.795, 0.814). Assuming a vaccine efficacy range 

64 of 70.8 to 78.7%, our simulations projected that targeted prevention in the highest risk group may 

65 have reduced 30-day hospitalization, care escalation, and death in more than 2 of 5 unvaccinated 

66 patients. 
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67 Introduction

68 The World Health Organization (WHO) estimates that the COVID-19 pandemic has 

69 resulted in over 521 million infections and 6.2 million deaths globally [1].  High mutation rates 

70 and the relatively rapid emergence of SARS-CoV-2 variants led to multiple surges that have 

71 strained healthcare systems worldwide.  The Omicron (B.1.1.529) variant became the predominant 

72 cause of SARS-CoV-2 infections in the U.S. by January 2022 [2,3], after emerging in South Africa 

73 in November 2021 [4,5]. Although Omicron variants and sub-variants have been linked to lower 

74 rates of hospitalization and death, [3,6–8] Omicron-driven surges continued to challenge 

75 healthcare systems due to higher infectivity, partial vaccine escape, and antibody resistance [3,7]. 

76 Predictive modeling during the pandemic has provided crucial insight into clinical 

77 outcomes with COVID-19 infections; however, to date, these risk prediction tools have largely not 

78 included data for Omicron variants and have inconsistently incorporated important clinical factors 

79 such as vaccination status and prior SARS-CoV-2 infection [9–12].  In this study, we first applied 

80 machine learning (ML) models to identify baseline patient characteristics that predict risk for 

81 hospitalization, escalation of care, and mortality among SARS-CoV-2 positive US Veterans during 

82 a recent seven-month observation period (January 15 –August 15, 2022) when Omicron variants 

83 predominated.  Our models incorporated previously under-utilized factors including vaccination 

84 status and prior COVID-19 infection. Then, we extended our models to quantify the predicted 

85 impact of a mitigating strategy such as prioritized vaccination of high-risk groups on reducing the 

86 short-term risk of hospitalization, escalation of care, and death during the observation period. To 

87 do this, we utilized a well-characterized cohort of U.S. Veterans with SARS-CoV-2 infection in a 

88 national Veteran Health Administration (VHA) database.
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89 Materials and methods

90 Study cohort

91 Our study cohort consisted of all 192,984 Veterans who tested positive for COVID-19 

92 between January 15 and August 15, 2022, as captured by the VHA’s COVID-19 Shared Data 

93 Resource with data curation within the VHA’s Corporate Data Warehouse (CDW). Data were 

94 accessed on 10/4/22 for research purposes. No new data were collected and no direct patient (or 

95 participant) contact took place. Patients’ curated electronic health records in the VHA’s CDW 

96 were analyzed behind the VHA secured firewall as part of the VHA research data initiative, 

97 Leveraging Electronic Health Information to Advance Precision medicine (LEAP, CSP#2012), 

98 which has been approved by VHA’s Central Institutional Review Board and Research & 

99 Development Committees at 3 VA Medical Centers (Salt Lake City, Palo Alto, and West 

100 Haven). The date of the positive test is defined as the index date. For the selected cohort within 

101 the data resource, there were no missing data for the selected fields and unknown covariates were 

102 indicated as such. Patients outside the age range of 18 to 100 or outside the Body Mass Index 

103 (BMI) range of 15 to 100 were excluded from the analysis.

104 Study outcomes

105 We predicted the risk of developing one of the following three distinct, non-mutually 

106 exclusive clinical outcomes representing SARS-CoV-2 severity within 30 days of infection: (i) 

107 hospitalization, (ii) escalation of care (defined as the need for high-flow supplemental oxygen, 

108 mechanical ventilation, vasopressors, renal replacement therapy [with no prior dialysis in the 

109 preceding two years], or extracorporeal membrane oxygenation [ECMO]), and (iii) all-cause 
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110 mortality. Patients who tested positive for SARS-CoV-2 were deemed to have ‘mild’ infection if 

111 they did not experience any of the three outcomes of interest within 30 days of infection. The Upset 

112 plot was generated using the UpsetR package [13].
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113 Clinical Features

114 A total of 159 patient characteristics including medical comorbidities, demographic data, 

115 vaccination status, prior COVID-19 infection status, and comorbidity indices were available for 

116 each patient prior to feature selection. The medical history included pre-existing conditions, 

117 procedures, and medications. All medical history values were classified using a Boolean system 

118 for presence or absence of the specific medical condition within two years prior to the current 

119 COVID-19 infection. Demographic and clinical data employed in the modeling included age, sex, 

120 race/ethnicity, blood type, BMI, veteran status, whether overweight at index date, rurality of 

121 current residence, and veteran priority status (a surrogate for income status and benefits eligibility). 

122 These covariates were multimodal (float, categorical and Boolean).  Vaccination status was 

123 represented as a categorical score from 0 to 5 as follows: 0=no vaccination, 1=partial-mRNA 

124 vaccination, 2=full vaccination (two doses of mRNA or a single dose of viral vector-based vaccine) 

125 > 5 months from index date, 3=fully-vaccinated and boosted >5 months prior to the index date, 

126 4=fully-vaccinated <5 months prior to the index date, 5=fully-vaccinated and boosted <5 months 

127 prior to the index date. Vaccines given outside of the VHA were available in the VHA COVID-19 

128 Shared Data Resource and reflected in our dataset. Vaccination status accounted for a two-week 

129 efficacy window.  A veteran was considered to be positive for prior COVID-19 infection if the 

130 prior positive test was more than two weeks before the index date of the current infection. Medical 

131 comorbidity burden was assessed by Charlson Comorbidity Index (CCI) [14] and Elixhauser Index 

132 [15] scores for the two years prior to infection. An overall CCI and Elixhauser index score was 

133 also determined. A complete list of covariates is included in S1 Table.

134 Model Development and Performance 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted August 9, 2023. ; https://doi.org/10.1101/2023.08.06.23293725doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.06.23293725


8

135 For each of the 3 main outcomes of interest, we developed a distinct binary model that 

136 incorporated 159 unique covariate features using gradient boosting automated machine learning 

137 methods. A recursive feature elimination approach was used to find the most parsimonious models. 

138 Our data was split chronologically with training/validation data from January 15, 2022 to April 

139 15, 2022 and our test data from April 16, 2022 to August 15, 2022. Covariates with variance lower 

140 than 1% within the training set were removed, and non-binary values were scaled from 0 to 1.

141 Model training and optimization were performed on the training and validation sets. The 

142 H2O AI package for automated machine learning was used to train each model and the validation 

143 set was used for benchmarking the optimization process [16]. An initial heuristic search through 

144 available modeling methods using this package identified gradient boosting machines as the 

145 highest performers (data not shown). All subsequent modeling was done using gradient boosting 

146 machines. Class imbalance within this study is a bias towards patients not having a severity 

147 outcome, and this was overcome by oversampling of the minority class where patients did have a 

148 severity outcome in training of the models to allow for higher predictive performance. The binary 

149 threshold for the models was calculated by finding the threshold with the max geometric mean for 

150 specificity and sensitivity on the test set. The 95% confidence intervals for the performance metrics 

151 were determined using the stat_util python package and its bootstrapping method with 100 

152 iterations [17]. 

153 All reported performance metrics were generated on the set aside test set. Receiver operator 

154 characteristic (ROC) and precision recall curves and their respective area under curve (AUC) were 

155 calculated using the scikit-learn metrics package [18]. The precision recall curves were normalized 

156 by using sample weights.

157
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158 Model Interpretation and Applications 

159 Feature importance values were extracted from the H2O generated models [16]. Relative 

160 importance is calculated as the decrease in mean squared error weighted by the number of samples 

161 passing through a given node for all trees. The percentage reported here is the fraction of a given 

162 feature against all other feature relative importance values. 

163 Shapley Additive exPlanations (SHAP) values were generated on the test set using the 

164 SHAP python package and a tree-based explainer [19].  SHAP values were calculated on random 

165 sampling of 1,000 patients from the test set. Summary plots were generated by plotting the SHAP 

166 values in a bee swarm fashion.

167 For simulating the impact of targeted vaccinations, we selected the unvaccinated subset of 

168 our cohort from our test set. For each strategy scenario, we projected the potential reduction in 

169 outcomes if the patients were fully vaccinated (4 score in our vaccination status). The projection 

170 required two steps. The first was to project how many symptomatic infections would be prevented 

171 and thus prevent the outcome. To accomplish this, we randomly sampled and removed patients 

172 from our target group based on a published vaccine efficacy 95% CI range of 0.708 to 0.787 which 

173 we sampled from in a uniform fashion [20]. The second was to project for the remaining patients 

174 in our target group whether being fully vaccinated would have prevented the outcome. For this we 

175 used our model and determined if their predicted outcome changed when we altered the 

176 vaccination status score from 0 to 4. We then summed the remaining outcomes in our target group 

177 to determine the reduction. The 95% confidence intervals for the projections were determined 

178 using the stat_util python package and its bootstrapping method with 100 iterations [17].

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted August 9, 2023. ; https://doi.org/10.1101/2023.08.06.23293725doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.06.23293725


10

179  Results

180 Patient population and clinical predictors of COVID-19 

181 infection severity

182 In a national VHA cohort of 192,984 Veterans who tested positive for SARS-CoV-2 

183 during a period in which the Omicron variant predominated (January 15-August 15, 2022), the 

184 median age was 62 years and 83.8% were men (Table 1).  The racial/ethnic composition of the 

185 cohort was typical for a US Veteran population; 65.2% of the patients were white, 19.5% were 

186 black, and 9% were Hispanic. Asian, Native Hawaiian or Pacific Islander, and American Indian 

187 or Alaskan Native Veterans each represented approximately 1 % of the cohort. (Table 1). 

188

189 Table 1. 30-day outcomes after a positive SARS-CoV-2 test.

Mild Hospitalized Escalation Death Overall
Characteristics  n=170,422 

(88.3%)
n=20,267 
(10.5%)

n=4,756 (2.5%) n=2,635 
(1.4%)

n=192,984

Age, median [IQR] 60 [46, 72] 72 [63, 78] 72 [64, 77] 77 [72, 85] 62 [48, 73]

 BMI, mean (SD) 30.3 (6.2) 28.3 (6.9) 28.6 (7.1) 26.7 (6.7) 30.1 (6.3)
 Men, No.  (%) 140,223 (82.3) 19,149 (94.5) 4,515 (94.7) 2,583 (98.0) 161,554 (83.7)
Race, No. (%)
  White 110,204 (64.7) 13,892 (68.5) 3,406 (71.4) 2,050 (77.8) 125,858 (65.2)
  Black 32,741 (19.2) 4,525 (22.3) 901 (18.9) 311 (11.8) 37,544 (19.5)
  Asian 2,696 (1.6) 128 (0.6) 36 (0.8) 15 (0.6) 2,844 (1.5)
  Native 
American/Alaska 
Native 

1,388 (0.8) 169 (0.8) 39 (0.8) 22 (0.8) 1,576 (0.8)

  Native Hawaiian/ 
Other Pacific Islander

1,833 (1.1) 146 (0.7) 43 (0.9) 23 (0.9) 2,005 (1.0)

  Unknown 21,560 (12.7) 1,407 (6.9) 344 (7.2) 214 (8.1) 23,157 (12.0)
  Hispanic or Latino, 
No. (%)

16,041 (9.4) 1,687 (8.3) 420 (8.8) 177 (6.7) 17,864 (9.3)
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Previous Covid-19 
Infection, No. (%) 16,247 (9.5) 4,352 (21.5) 1,173 (24.6) 104 (3.9) 20,721 (10.7)
Vaccination status, 
No. (%)
  0-Unvaccinated 54,027 (31.7) 5,987 (29.5) 1,599 (33.5) 1,099 (41.7) 60,900 (31.6)
  1-Partial mRNA (1 
dose)   

3,243 (1.9) 455 (2.2) 96 (2.0) 65 (2.5) 3,745 (1.9)

  2-Fully Vaccinated, > 
5 months prior

44,417 (26.1) 5,356 (26.4) 1,246 (26.1) 741 (28.1) 50,404 (26.1)

  3-Fully Vaccinated, 
with Booster > 5 
months prior

41,886 (24.6) 5,118 (25.3) 1,049 (22.0) 374 (14.2) 47,399 (24.6)

  4-Fully Vaccinated, 
<5 months prior

3,317 (1.9) 379 (1.9) 87 (1.8) 39 (1.5) 3,735 (1.9)

  5-Fully Vaccinated 
with Booster <5 
months prior

23,532 (13.8) 2,972 (14.7) 692 (14.5) 317 (12.0) 26,801 (13.9)

Comorbidities (2 
years prior), No. (%)
  Asthma 12,535 (7.4) 1,394 (6.9) 337 (7.1) 102 (3.9) 14,074 (7.3)
  Bronchitis 7,059 (4.1) 1,270 (6.3) 306 (6.4) 116 (4.4) 8,417 (4.4)
  Cardiomyopathy 4,529 (2.7) 1,782 (8.8) 432 (9.1) 221 (8.4) 6,475 (3.4)
  Cancer 21,769 (12.8) 5,346 (26.4) 1,298 (27.2) 842 (32.0) 27,729 (14.4)
  Cerebrovascular 
Disease

2,725 (1.6) 1,124 (5.5) 254 (5.3) 134 (5.1) 3,938 (2.0)

  Congestive Heart 
Failure

9,467 (5.6) 4,747 (23.4) 1,205 (25.3) 672 (25.5) 14,684 (7.6)

  Cirrhosis 2,881 (1.7) 1,115 (5.5) 296 (6.2) 171 (6.5) 4,103 (2.1)
  CKD 18,242 (10.7) 6,183 (30.5) 1,582 (33.2) 982 (37.3) 25,139 (13.0)
  Chronic Lung 
Disease

45,307 (26.6) 8,996 (44.4) 2,220 (46.6) 1,128 (42.8) 55,255 (28.6)

  Cardiovascular 
Disease

47,562 (27.9) 11,925 (58.8) 2,844 (59.6) 1,627 (61.7) 60,766 (31.5)

  Dementia 5,360 (3.1) 2,863 (14.1) 521 (10.9) 552 (20.9) 8,571 (4.4)
  Diabetes 47,385 (27.8) 9,494 (46.8) 2,292 (48.1) 1,247 (47.3) 57,896 (30.0)
Comorbidity Indices, 
mean (SD)
  CCI within 2 yrs 1.4 (1.9) 3.5 (2.9) 3.6 (3.0) 3.8 (2.9) 1.6 (2.2)
  CCI, ever 2.4 (2.7) 5.2 (3.5) 5.3 (3.6) 5.6 (3.5) 2.7 (3.0)
  Elixhauser within 2 
yrs

4.8 (8.2) 15.1 (14.5) 15.9 (15.0) 16.0 (15.1) 6.0 (9.7)

  Elixhauser, ever 10.2 (12.7) 24.7 (17.6) 25.2 (18.3) 26.1 (17.9) 11.8 (2.2)

190 Baseline characteristics of study cohort of U.S. Veterans who tested positive for SARS-CoV-2.

191
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192 Overall, 88.3% of Veterans had mild SARS-CoV-2 infection. Among Veterans who tested 

193 positive for SARS-CoV-2, 10.5% required hospitalization, 2.5% needed escalation of care, and 

194 1.4% died (Table 1 and Fig 1). In the subset of hospitalized infected patients, a higher percentage 

195 required escalation of care (15.3%) and died (6.0%) compared to the overall cohort (Fig 1).  

196 Patients who died or required hospitalization and/or escalation of care were older and more likely 

197 to be male. Conversely, patients who had mild infections had a higher body mass index (BMI) 

198 than those who did not (Table 1). A higher percentage of patients who died were white, compared 

199 to the overall cohort (77.8% vs 65.2%). In contrast, a lower percentage of patients who died were 

200 black, compared to those in the overall cohort (11.8% vs. 19.5%) (Table 1). 

201

202 Fig 1. Upset plot of non-exclusive 30-day outcomes of interest in US Veterans.  A dot in each 

203 row represents patients experiencing that outcome at any time within 30 days after testing positive. 

204 The vertical line connecting two (or more) dots represents patients who experienced two or more 

205 of the outcomes at any time within 30 days after testing positive. 

206

207 Patients with non-mild infections had significantly higher prevalence of diabetes, 

208 congestive heart failure, cerebrovascular disease, chronic kidney disease, and cirrhosis. Dementia 

209 was also more prevalent among patients who required hospitalization, required escalation of care, 

210 or died within 30 days after testing positive. While chronic lung disease also was more prevalent, 

211 diagnoses of asthma and bronchitis in the 2 years prior to infection was not significantly different 

212 among those with any of the three outcomes of interest. The database used for this study also 

213 included information on prior SARS-CoV-2 infection as well as vaccination status (Table 1). 
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214 Approximately 10.7% of the overall cohort had a history of SARS-CoV-2 infection. A higher 

215 percentage of patients with prior SARS-CoV-2 infection required hospitalization (21.5% vs 10.5% 

216 for overall cohort) or escalation of care (24.6% vs 2.5% for overall cohort). In contrast, a lower 

217 percentage (3.9%) of patients with a history of SARS-CoV-2 died within 30 days after the current 

218 SAR-CoV-2 infection. 

219 Our study also included detailed vaccination data (Table 1). Over 31.6% of the overall 

220 cohort were unvaccinated (neither partially or fully vaccinated). Moreover, unvaccinated Veterans 

221 accounted for a disproportionately greater percentage of deaths (41.7%) compared to fully 

222 vaccinated and recently boosted (< 5 months) Veterans, who accounted for only 13% of the overall 

223 cohort and 12% of deaths. The more advanced the patients’ vaccination status, the lower their 

224 contribution to deaths (Table 1). Similar trends were observed by vaccination status for the patient 

225 groups who required hospitalization or escalation of care (Table 1).

226 Model performance

227 After recursive feature selection evaluated the importance of 159 covariates, 

228 hospitalization had 20 relevant covariates, escalation of care had 25 relevant covariates, and 

229 mortality had 15 relevant covariates. The binary ML models predicted all 3 outcomes with good 

230 discrimination; all models had thresholds that maximized balance in performance, with sensitivity, 

231 specificity, and precision greater than 73% (Table 2). Consistent with its deterministic nature, 

232 death was predicted with better discrimination than the other outcomes, based on AUCs for both 

233 the receiver operator characteristic (ROC) (AUC = 0.895 95% CI [0.885, 0.906]) and normalized 

234 precision recall curves (AUC = 0.876 95% CI [0.867, 0.886]) (Fig 2). The model predicting 

235 hospitalization had better discrimination than the model for the need for escalation of care 
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236 (hospitalization: AUC = 0.829 95% CI [0.825, 0.834]; escalated hospital care: AUC = 0.805 95% 

237 CI [0.795, 0.814]) (Fig 2).  

238

239 Table 2:  Performance of machine learning models for predicting hospitalization, escalation 
240 of care, and death within 30 days after SARS-CoV-2 infection. 

Outcome Specificity [95% CI] Sensitivity [95% CI] Precision [95% CI]
Hospitalization   0.73 [0.73,0.74] 0.77 [0.76,0.80] 0.74 [0.74,0.75]
Escalation of care  0.74 [0.73,0.74] 0.74 [0.72,0.76] 0.74 [0.73,0.74]
Mortality    0.78 [0.77,0.78] 0.87 [0.84,0.89] 0.79 [0.79,0.80]

241

242

243 Fig 2. Classification performance curves with respective area under curve (AUC) and 95% 

244 confidence intervals. (A) Receiver Operating Characteristic (ROC) curve for each model with 

245 respective false positive and true positive rates at the classification thresholds indicated by black 

246 dots. (B) Normalized precision recall curve for each 30-day outcome. 

247

248 Model interpretation

249 We evaluated the covariates that most predicted risks of hospitalization, escalation of care, 

250 and mortality within 30 days of a SARS-CoV-2 positive test during the observation period. Feature 

251 importance was measured as the fraction of total error reduction for a given covariate (Fig 3).  We 

252 generated SHAP summary plots to show the impact of covariate values on predictive output (S1 

253 Fig). Advanced age was the second most predictive covariate for hospitalization (Fig 3A and S1 

254 Fig A).  It was also the most predictive covariate for escalation of care (Fig 3B and S1 Fig B) and 

255 mortality, accounting for more than 50% of relative importance (Fig 3C and S1 Fig C). 
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256

257 Fig 3. Clinical feature importance plot. (A) hospitalization, (B) escalation of care, and (C) 

258 mortality.  Feature importance values for each of the three outcomes of interest are presented as a 

259 percentage, which is indicative of the fraction of error reduction that a given feature contributed 

260 to the model.

261

262 Weighted indices of comorbid illnesses, the Charlson Comorbidity index (CCI) [14] and 

263 Elixhauser index [15], were more robust predictors of the adverse outcomes than individual 

264 cardiometabolic, renal, and respiratory conditions (Fig 3). BMI was highly predictive of the 

265 outcomes; BMI was inversely proportional to predicted risk, based upon SHAP analysis (Fig 3 and 

266 S1 Fig). Veterans taking an oral anticoagulant at any time in the two years prior to testing positive 

267 for SARS-CoV-2 had higher risks of hospitalization and need for escalation of care (Fig 3A,B and 

268 S1 Fig A,B). Patients who had been prescribed vasopressors at any time in the prior two years had 

269 a higher predicted risk for escalation of care, while patients on the diuretic, furosemide, had higher 

270 predicted risk for mortality (Fig 3B,C and S1 Fig B,C).  

271 Fully vaccinated and boosted patients had lower predicted risks of hospitalization, 

272 escalation of care, and death at 30 days. Prior SARS-CoV-2 infection predicted a lower risk of 

273 mortality but a higher risk of needing hospitalization or escalation of care (Fig 3 and S1 Fig). 

274 Additionally, unknown blood type and alternative insurance were among the most significant 

275 predictors of a lower risk for hospitalization, while a prior diagnosis of pneumonia and no acute 

276 kidney injury within two years were among the most important predictors of mortality risk (Fig 

277 3A,C and S1 Fig A,C). 
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278 Projected impact of risk-prioritized vaccination strategies

279 To project the impact of targeted vaccination on adverse outcomes using the prediction 

280 models, we examined the unvaccinated subset (n=27,903) from the test cohort (n=102,859). We 

281 projected the number of adverse outcomes for three in silica scenarios: (1) vaccination of all 

282 Veterans within the unvaccinated subset, (2) random vaccination of 20% of the unvaccinated 

283 Veterans, and (3) vaccination of only the Veterans in the top quintile of predicted risk for adverse 

284 outcomes (Table 3). Using sensitivity tradeoff curves (data not shown), we observed a step-up of 

285 predicted risk at the top quintile. Therefore, we selected the cut-off to be the top quintile of the 

286 population. In turn, our modeling projected the optimum impact of risk-prioritized vaccination 

287 strategy. Full vaccination of the entire unvaccinated population in our test set was predicted to 

288 reduce hospitalizations by 79% (from 2,343 to 486), escalations of care by 81% (from 470 to 87), 

289 and deaths by 82% (from 167 to 30). When a random 20% of the unvaccinated population was 

290 vaccinated in the projection modeling, hospitalizations were reduced from 2343 to 2056 (12% 

291 reduction), escalations of care from 470 to 418 (11%), and deaths from 167 to 148 (11%). When 

292 vaccinating the patients in the top quintile (20%) of the highest risk for adverse outcomes, 

293 hospitalizations were reduced from 2343 to 1353 (42%), escalations of care from 470 to 309 

294 (34%), and deaths from 167 to 91 (45%).

295

296 Table 3: Observations and projections for occurrences for hospitalization, escalation of 

297 care, and mortality, for three vaccination scenarios.

Observed Projections (bootstrap=100)
Outcome 
(30-day Risk)

Unvaccinated 
(n=27,903)

Vaccination of All 
Unvaccinated

[95% CI]

Vaccination of Random 
20% [95% CI]

Vaccination in top 
Quintile (20th %ile) 

Risk [95% CI]
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Hospitalization 2,343 486.17
[476.6, 495.75]

2056.06
[2052.91, 2059.21]

1353.41
 [1347.3, 1359.52]

Escalation of 
Care

470 87.39
[84.92, 89.86]

418.37
[417.11, 419.63]

308.99
 [307.40, 310.58]

Mortality 167 29.71
 [28.55, 30.87]

148.23
[147.44, 149.02]

91.25
[90.37, 92.13]

298

299 Discussion

300 In a national cohort of 192,984 US Veterans who tested positive for SARS-CoV-2 during 

301 the Omicron surge, we demonstrated the most robust prediction discrimination to date for 30-day 

302 risk for hospitalization, escalation of care, and mortality after COVID-19 infection, using ML 

303 methods. Our ML models leveraged data including detailed vaccination status and prior COVID-

304 19 infections during the Omicron surge. We identified predictors for, and projected subgroups of, 

305 high-risk individuals who stand to benefit the most from advancing vaccination status. Prioritizing 

306 vaccination of individuals in the highest quintile of predicted risk for hospitalization or death was 

307 projected to produce greater than 3.5-fold projected reductions in hospitalization and death, 

308 compared to randomly vaccinating 20% of the population. 

309 Previous prediction models, including those developed in the VHA, utilized data collected 

310 prior to the emergence of the Omicron SARS-CoV-2 variant [9–12]. A large retrospective analysis 

311 of over 1.5 million vaccinated patients in the VHA showed relatively low rates of breakthrough 

312 infections and related complications such as pneumonia and death [21]. This statistically powerful 

313 investigation excluded unvaccinated individuals and anyone with a prior history of COVID-19 

314 infection, and risk prediction modeling was not a primary focus of that report. Although a prior 

315 smaller study incorporated vaccination into ML risk prediction modeling for COVID-19 [22], our 

316 study incorporated stratified vaccination status, which reflects degree of protection through 
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317 number and timing of primary and booster vaccines, as well as prior infection, in an ML-driven 

318 risk prediction model. 

319 Compared to recent studies, ML models in the present study demonstrated more robust 

320 discrimination by AUC in predicting 30-day risk for hospitalization (AUC 0.829), escalation of 

321 care (AUC 0.805), and mortality (AUC 0.895) with COVID-19 infection. Two prior studies 

322 derived from cohorts of ~4,500 patients each demonstrated lower AUCs (0.804 and 0.813) for 

323 predicting hospitalization [23,24]. A previous model developed from a large VHA cohort of 

324 7,635,064 (both infected and non-infected) with an observation window from May 21 to November 

325 2, 2020 predicted 30-day mortality with a validation AUC of 0.836 (95% CI, 82.0%-85.3%) [9]. 

326 In addition, a recent study of 1,201 patients who contracted SARS-CoV-2 in Spain in 2020 

327 predicted 30-day mortality with an AUC of 0.872 [25].  Commonly identified covariates in prior 

328 studies, advanced age and higher medical co-morbidity indices, were associated with higher risks 

329 for the adverse outcomes of interest in our models [9–11]. Our models identified a general inverse 

330 association between BMI and predicted risk for adverse outcomes. This contrasts a prior meta-

331 analysis that demonstrated that higher BMI (and visceral adiposity) correlates with a higher risk 

332 of hospitalization, mortality, and other adverse outcomes such as admission to ICU and need for 

333 mechanical ventilation [26]. 

334 Consistent with prior vaccine trials [27], our study indicated that vaccination reduces 

335 hospitalizations, escalation of care, and deaths. Individuals who were fully vaccinated and boosted 

336 within 5 months from testing SARS-CoV-2 positive had the greatest projected protection. 

337 Importantly, our model also incorporated prior COVID-19 infection as a covariate in the risk 

338 modeling. Although patients with prior SARS-CoV-2 infection had a lower predicted 30-day 

339 mortality, they also had higher predicted risks of 30-day hospitalization and escalated hospital 
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340 care. This observation is consistent with recent reports that reinfection may increase risk of any-

341 cause mortality, hospitalization, and adverse pulmonary and extra-pulmonary health outcomes 

342 [28]. This enhanced risk of hospitalization and escalation of care is unclear but may be secondary 

343 to attendant medical comorbidities. Use of oral anticoagulants in the two years prior to current 

344 infection strongly predicted 30-day hospitalization and escalation of care. The biological basis of 

345 this observation may be related to the underlying medical conditions that warranted 

346 anticoagulation or to specific effects of the anticoagulants themselves. Notably, baseline 

347 furosemide use was also associated a higher risk of hospitalization, escalation of care and death, 

348 suggesting that underlying heart failure or volume-expanded states are important determinants of 

349 infection severity in Omicron infections.

350 Limitations

351  The present findings in this national study of US Veterans may not be broadly applicable 

352 to the general population. Consistent with the US Veteran population, our study cohort was 

353 predominantly male and white with greater medical comorbidity and lower socioeconomic status 

354 than the general US population. The relevance of the models remains limited for racial/ethnic 

355 minority communities who have borne a disproportionate burden during the pandemic. However, 

356 the methodology used here can be applied and adapted to other populations or health care systems. 

357 For vaccine projections, all outcomes of interest were assumed to be the result of SARS-CoV-2 

358 infection. While the VHA COVID-19 Shared Data Resource database captures all deaths, it does 

359 not capture hospitalizations and care received outside the VA. This may explain why having other 

360 non-VHA insurance was associated with lower rates of 30-day hospitalization given that patients 

361 with non-VHA insurance may have sought care outside the VA. The VHA COVID-19 Shared Data 

362 Resource database also does not establish whether SARS-CoV-2/COVID-19 is the reason for 
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363 hospitalization, escalation of care, or death. Determining this is challenging. Our modeling also 

364 does not include laboratory or imaging data; these data have been shown to have robust predictive 

365 value post index date [29–32]. Finally, the model results were most relevant to Omicron variants 

366 and sub-variants and may not be relevant to other pathogenetic SARS-CoV-2 variants.

367 Conclusions

368 Our ML risk prediction modeling approach provides robust discrimination in predicting 

369 hospitalization, escalated hospital care and death within 30 days of testing positive for SARS-

370 CoV-2 infection during a recent observation period in which Omicron variants are the major cause 

371 of COVID-19. It can inform health care system vaccination and resource allocation decisions by 

372 characterizing individuals and subpopulations at low-to-high risk for 30-day hospitalization, 

373 escalated hospital care or death, and identifying those who might benefit least-to-most from 

374 preventive intervention. While this modeling was developed specifically for the Omicron variant 

375 surge, analogous modeling can be developed and implementable rapidly in real-time to guide 

376 vaccination strategies and resource allocation during future COVID-19 surges.  
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486 Supporting Information

487 S1 Table. Covariates used in predictive modeling. A table of all potential covariates that were 

488 investigated with a brief definition.

489 S1 Fig. SHAP summary plots for 30-day outcomes of interest. (A) hospitalization, (B) 

490 escalation of care, and (C) mortality. Covariates are listed in order of highest to lowest impact 

491 (based on absolute mean SHAP value) along the y-axis. Each blue or red point represents a 

492 patient’s specified covariate value; that value is color coded in a heat map fashion per the legend. 

493 The x-axis is the SHAP value for the specific covariate, with SHAP values greater than 0 indicating 

494 higher predicted risk contribution and values less than 0 indicating lower predicted risk 

495 contribution for the given outcome.
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