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Abstract

Annually, urinary tract infections (UTIs) affect over a hundred million people worldwide. Early 

detection of high-risk individuals can help prevent hospitalization for UTIs, which imposes 

significant economic and social burden on patients and caregivers. We present two methods to 

generate risk score models for unplanned UTI hospitalization. We utilize a sample of patients from 

the insurance claims data provided by the Centers for Medicare and Medicaid Services to develop 

and validate the proposed methods. Our dataset encompasses a wide range of features, such as 

demographics, medical history, and healthcare utilization of the patients along with provider 

quality metrics and community-based metrics. The proposed methods scale and round the 

coefficients of an underlying logistic regression model to create scoring tables. We present 

computational experiments to evaluate the prediction performance of both models. We also 

discuss different features of these models with respect to their impact on interpretability. Our 
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findings emphasize the effectiveness of risk score models as practical tools for identifying high-

risk patients and provide a quantitative assessment of the significance of various risk factors in 

unplanned UTI hospitalizations such as admission to ICU in the last 3 months, cognitive disorders 

and low inpatient, outpatient and carrier costs in the last 6 months.

Keywords: Risk score model; Urinary tract infection; Centers for Medicare and Medicaid 

Services

Introduction 

Urinary tract infections (UTIs) affect around 150 million people worldwide each year, including 11 

million in the United States (US) [1,2].  A study in the US estimated that UTIs were associated 

with over 10.5 million physician visits and 2-3 million emergency department visits in 2007 [3]. 

Furthermore, UTIs account for a substantial number of antibiotic prescriptions [4,5]. Effective and 

timely outpatient care can help reduce the likelihood of hospitalization for UTI, as it is considered 

an ambulatory care sensitive condition [6]. Hospitalizations are significantly more expensive than 

outpatient or primary care, thus potentially preventable hospitalizations are closely monitored to 

evaluate the efficiency of health systems [7]. UTIs caused about 380,600 potentially preventable 

adult inpatient stays, costing 2.55 billion dollars in the US in 2017 [8].

Women are more likely to develop UTIs than men, with an estimated 50-60% of women 

experiencing at least one UTI in their lifetime [9]. Women are also more likely to experience 

recurrent UTIs, which can further increase the risk of hospitalization [10]. In addition to sex, other 

risk factors for UTIs include age, urinary catheterization, urinary tract abnormalities, pregnancy, 

and history of UTIs [3,11,12]. Adults with cognitive impairment [13] and individuals with conditions 
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such as chronic kidney disease, diabetes, and immunosuppression are also at increased risk for 

UTIs [3,14]. UTIs are also prevalent after a kidney transplant with two main triggers being 

vesicoureteral reflux and the use of immunosuppressive drugs [14]. These population groups may 

require intensive management of UTIs and closer monitoring to prevent hospitalization.

Predictive analysis of clinical and healthcare utilization data can effectively reduce healthcare 

costs and improve the quality of care for UTIs. Taylor et al. [15] developed machine learning 

models for predicting UTI among patients in the emergency department (ED) using demographic 

information, vitals, laboratory results, medications, past medical history, chief complaint, and 

structured historical and physical exam findings. Their best performing method achieves 0.904 

Area under the ROC Curve (AUC), and 87.5% accuracy, however, it is limited to the patients in 

the emergency department with urine culture results. Other UTI-related data-driven models 

include predicting the risk of acquiring UTI in hospitalized patients [16], and predicting drug 

effectiveness in treating UTI [17,18]. Mao et al. [19] proposed a hierarchical clustering approach 

for predicting unplanned hospitalizations for UTI using Medicare fee-for-service claims data.

The interpretability of data-driven healthcare decision aid tools is critical for troubleshooting and 

understanding the model results [20]. However, maintaining high prediction performance while 

improving interpretability is challenging. Several strategies are proposed to build machine learning 

models that are easily understandable and usable by healthcare providers and policymakers 

[21,22]. In this study, we develop two risk score models to predict unplanned hospitalizations for 

UTI using claims data from Centers for Medicare and Medicaid Services (CMS) on healthcare 

utilization, including hospitalizations and physician visits. We augment this administrative claims 

data by community-level variables and provider quality metrics obtained from publicly available 

data sources. Risk score models provide an easy-to-use and practical risk assessment tool where 

integer points assigned to model features are summed together [20], and the total score is used 
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to make predictions. Such models are widely used in healthcare [23–25], finance [26], and 

criminal justice [27]. We define unplanned hospitalizations based on the Prevention Quality 

Indicator (PQI) criteria of the Agency for Healthcare Research and Quality (AHRQ) [28]. We 

present computational experiments to evaluate the prediction performance of the proposed 

models. We also discuss different features of these models with respect to their impact on 

interpretability. Our findings emphasize the effectiveness of risk score models as practical tools 

for identifying high-risk patients and provide a quantitative assessment of the significance of 

various risk factors in unplanned UTI hospitalizations.

Problem Unplanned hospitalizations for urinary tract infections impose significant economic 

and social burden on patients and caregivers.

What is Already Known Although predictive analysis of clinical data has been proposed to 

improve the quality of care for UTIs in prior studies, a prominent limitation of these explorations 

is that they only consider emergency department or hospitalized patients. Furthermore, they 

don’t emphasize interpretability, which is critical for troubleshooting and understanding the 

model results of data-driven healthcare decision aid tools.

What This Paper Adds In this study, we develop two risk score models to predict unplanned 

hospitalizations for UTI using claims data from Centers for Medicare and Medicaid Services on 

healthcare utilization, including hospitalizations and physician visits. We augment this 

administrative claims data by community-level variables and provider quality metrics obtained 

from publicly available data sources. Risk score models provide an easy-to-use and practical 

risk assessment tool where integer points assigned to model features are summed together, 

and the total score is used to make predictions.
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Materials and Methods

Data 

This is a retrospective study using Medicare Limited Data Sets (LDS) from 2008 to 2012. CMS 

made this fully anonymized data available to our group on 1/16/2020 for an Artificial Intelligence 

Health Outcomes Challenge to predict unplanned hospital and skilled nursing facility admissions 

and adverse events based on Medicare Fee-for-Service (FFS) Parts A and B administrative 

claims [29]. The data set contains records from 2008–2012 for a random 5% sample of Medicare 

beneficiaries. We don’t have access to information that could identify individual participants during 

or after data collection. The overall project with human subjects research was reviewed by the 

Institutional Research Board at North Carolina State University (IRB Protocol 20528). Data 

storage, maintenance, and protection are governed by the Data Use Agreement between the 

university and the CMS. 

We exclude beneficiaries without any inpatient or Skilled Nursing Facility (SNF) claim or who live 

in a nursing home. We also exclude beneficiaries who live in areas other than the 53 US states 

and territories. Finally, we exclude beneficiaries with urinary cancer, end-stage renal disease 

(ESRD) related claims, less than 2,000 USD total annual cost in carrier, inpatient, outpatient, and 

SNF claims or cost abnormalities including those with carrier claims but zero cost in carrier file, 

and outpatient claims but zero cost in carrier or outpatient files.

We do not consider the first 3 months and the last month of 2011 and 2012 in our analysis to 

ensure consistent computation of rolling horizon variables, e.g., inpatient cost in the last 3 months. 

We also filter records of patients who are dead, in hospital or hospice at the beginning of the 
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current (observation) month, or who are enrolled in managed care at the beginning of the current 

month. We use data from April to November of 2011 for training, and data from 2012 during the 

same period for testing and performance evaluation. 

In addition to the medical claims, our data set contains relevant variables from publicly available 

datasets such as Population Census Elderly Living [30]; Immunization [31]; County Health 

Rankings [32]; Hospital and Nursing Home Compare Dataset [33,34]; Weekly U.S. Influenza 

Surveillance Reports [35]. We also computed 285 Clinical Classification System (CCS) variables 

based on the ICD-9 diagnosis codes identified by AHRQ and added to our data. An extended 

description of our data can be found in [19]. The final data used for the analysis contains 821 

variables including demographic characteristics and medical history of beneficiaries, their 

healthcare utilization in the past 1-6 months, as well as provider quality metrics, census 

information, and community-based regional public health metrics (e.g., flu vaccine coverage in an 

area); (see Table 1).

Observation generation. Each observation (row) corresponds to a patient-month. The number 

of observations for a patient varies between 1 and 8 in 2011 and 2012. To ensure that the model 

only employs historical data to predict future events, the response for each patient-month is the 

unplanned UTI hospitalization in the next month. We identify unplanned UTI hospitalizations 

based on the PQI 12 criteria (urinary tract infection admission rate) defined by AHRQ [28]. 

Demographics Age, gender, race/ethnicity, socioeconomic status

Clinical History Acute and chronic CCS conditions, ESRD, immunocompromised state, 

post-transplant [36], and number of CCS conditions
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Healthcare 

Utilization

Inpatient, outpatient, SNF, carrier, Durable Medical Equipment (DME), 

home health claims in the last one and six months; past and current 

nursing home stay; Elixhauser comorbidity index [37];  number of 

specialty visits in the last month (allergy, neurology, endocrinology, 

cardiology); number of emergency room visits, physician visits, hospital 

admissions, intensive care unit (ICU), cardiac care unit (CCU), and 

oncology stays in the last one and three months; length of stay in 

hospital and SNF in the last one and three months [38]

Healthcare 

Spending

Medicare and non-Medicare paid costs of inpatient, outpatient, SNF, 

carrier, DME, home health, hospice claims in the last one and six 

months [38], [39]

Most Recent 

Provider’s 

Quality Metrics

Hospital overall rating of the beneficiary’s most recent inpatient 

provider; hospital bed ratio in the beneficiary’s county of residence; 

count of outpatient procedures; emergency room volume [40]; 

complication rates for hip/knee replacement patients; postoperative 

complication rates; rate of blood stream infection after surgery; and 

readmission rates due to heart attack, pneumonia, etc. [30,32]

Community-

Based Metrics

Rural indicator for above 99% of beneficiary’s county population living 

in rural areas, county median household income [41]; state-level flu 

activity and vaccine coverage, safety score for the most recent county 

of residence; population statistics about race, education, etc. [30,32]

Table 1. Summary of the variables considered in the model. Socioeconomic status indicates 

whether a beneficiary has supplemental insurance.
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We consider beneficiaries who had at least one claim with UTI diagnosis based on the CCS 

variables since 2008. This group of patients has a 46.45% coverage of all events (unplanned UTI 

hospitalizations) in the data with 0.71% prevalence rate. Population statistics of these patients 

are presented in Table 2.

2011 2012

Total beneficiaries 64,673 60,574

Gender (%)

Male 23.1% 23.2%

Female 76.9% 76.8%

Age categories (%)

< 65 0.8% 0.1%

65 - 69 11.3% 11.6%

70 - 74 14.6% 14.9%

75 - 79 17.3% 17.6%

80 - 84 21.2% 20.5%

>84 34.8% 35.3%

Race and Ethnicity (%)

Unknown 0.2% 0.2%

White 85.5% 85.4%

Black 9.4% 9.4%

Other 1% 1%

Asian 1.2% 1.3%
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Hispanic 2.1% 2.2%

North American 
Native

0.6% 0.5%

Comorbid Conditions (%)

Diabetes Mellitus 42.3% 44.8%

Delirium and 
Cognitive Disorders

56.2% 59.7%

Heart disease 93.6% 94.5%

Table 2. Descriptive statistics of the beneficiaries with a history of UTI considered in this study.

Methods

Different approaches can be used for assigning points to model features when developing a risk 

score. In this study, we apply two methods. The first method, referred to as integerized logistic 

regression (LR), aims to develop a risk score with a given total score range. The second method, 

referred to as the credit scorecard model, regulates the increment in the total score associated 

with a specific level of increase in the odds of the outcome. 

In the integerized LR method, variables are transformed into binary variables (e.g., six binary 

variables for each category of age), an LR model is built, and its coefficients are scaled and 

rounded. Treating each category within a variable as a dummy binary variable results in high 

collinearity between variables. We address this issue by limiting the number of features to 10 

using a LASSO penalty in training [42]. In the credit scorecard model, each categorical value of a 

variable is replaced by its weight of evidence (WOE) [43]. We then select 15 variables with the 

highest information value (IV). The IV of a variable shows its strength as a predictor and is 

calculated as the weighted sum of the WOE values for all categories of that variable. The weight 

of each category is determined based on the difference between its frequency among events and 
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non-events [44]. We use the logistic regression LASSO method to select a maximum of 10 

variables from 15 variables with the highest IV. The coefficients of this model are then scaled and 

rounded to enable risk score calculation with integer values. Unlike the integerized LR method, 

the credit scorecard model assigns a score to each category of a variable included in the model 

allowing users to evaluate how being in each category affects the overall score. Each method is 

explained in further detail below after describing the variable categorization. 

Variable Categorization 

Our data consists of binary, continuous, and categorical variables. We discretize continuous 

variables because the credit scorecard model requires categorical inputs. Furthermore, 

categorization improves the interpretation of the cost and the number of claim variables whose 

values are concentrated around zero with only a few large values. We use a binning algorithm 

[45] to create categories with monotone WOE. For each category of a variable, WOE is calculated 

as the log of the ratio of its frequency among events to that among non-events. In our case, the 

event refers to an unplanned UTI hospitalization. Thus, a higher WOE for a category implies a 

higher risk for unplanned UTI hospitalization. 

Integerized LR Method

Let 𝑋1, 𝑋2, ..., 𝑋𝑑 denote vectors of the considered variables for each beneficiary, and 𝑌 be the 

binary response variable indicating the unplanned UTI hospitalization. We assume 𝑌 follows a 

Binomial distribution, which takes the value of one with probability 𝑝 = 𝑃𝑟(𝑌 = 1|𝑋1, 𝑋2, ..., 𝑋𝑑), and 

define the general logistic regression model as 

𝑙𝑛 
𝑝

1 ― 𝑝 = 𝛽0 + 𝛽1𝑋1 +  ... + 𝛽𝑑𝑋𝑑 ,     (1)
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where 𝛽0 is the intercept and 𝛽1,..., 𝛽𝑑 are parameters corresponding to each independent variable. 

These parameters can have fractional values. In the proposed approach, we scale and round 

them to integers as below. 

Define 𝑐 = |𝛽0|྾𝑎 as a scaling factor, where 𝑎 is a positive constant. Scaling the right-hand side 

of (1) by 𝑐 yields,

𝑙𝑛 
𝑝

1 ― 𝑝 = 𝑐(𝛽0/𝑐 + 𝛽1/𝑐𝑋1 +  ... + 𝛽𝑑/𝑐𝑋𝑑).    (2)

We round the scaled parameters in the parentheses to the closest integer value. Hence, the 

score of each feature is 𝛽′𝑘 = [𝛽𝑘/𝑐] for 𝑘 = 0,1, ..., 𝑑, and the approximated log of odds is given 

by    

𝑙𝑛 
𝑝

1 ― 𝑝 ≈ 𝑐(𝛽′0 + 𝛽′1𝑋1 + 𝛽′2𝑋2 + ... + 𝛽′𝑑𝑋𝑑).   (3)

We refer to (3) as integerized LR model. The risk score for patient 𝑖 is given by

𝑠𝑐𝑜𝑟𝑒(𝑥𝑖,1, 𝑥𝑖,2, ..., 𝑥𝑖,𝑑) = 𝛽′1𝑥𝑖,1 + 𝛽′2𝑥𝑖,2 + ... + 𝛽′𝑑𝑥𝑖,𝑑 ,   (4)
where features are generated by categorizing the original covariates as discussed before. Thus, 

𝑥𝑖,1, 𝑥𝑖,2, ..., 𝑥𝑖,𝑑 are binary variables. Subsequently, the conversion of a risk score to probability is 

through the logit function, i.e.,

𝑝(𝑥𝑖,1, 𝑥𝑖,2, ..., 𝑥𝑖,𝑑) =
1

(1 + 𝑒𝑥𝑝( ― 𝑐(𝑠𝑐𝑜𝑟𝑒(𝑥𝑖,1, 𝑥𝑖,2, ..., 𝑥𝑖,𝑑) + 𝛽′0))).     (5)

Using the proposed method, it is possible to achieve a specific range of total scores. Denote the 

min and max total score by 𝑆𝑚𝑖𝑛and 𝑆𝑚𝑎𝑥, respectively. We choose parameter 𝑎 such that the total 

score range  𝑅 = 𝑆𝑚𝑎𝑥 ― 𝑆𝑚𝑖𝑛 is larger than a given value 𝑅∗. Specifically, we use the following 

steps:

i. Initialize 𝑎 such that 

𝑙𝑜𝑔10 𝑎 = ⌊𝑙𝑜𝑔10(𝑚𝑎𝑥𝑖=1,...,𝑑(|𝛽𝑖/𝛽0|)⌋ ⇒ 𝑎 =  10⌊𝑙𝑜𝑔10(𝑚𝑎𝑥𝑖=1,...,𝑑(|𝛽𝑖/𝛽0|)⌋.  (6)   
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Here 𝑎 is defined with base 10 logarithms to capture the order of magnitude difference 

between the maximum estimated coefficient and the intercept. The floor operator ensures 

that 𝑎 is a power of 10 for simplicity of rounding.

ii. While 𝑅 is smaller than 𝑅∗ set 𝑎 = 𝑎/2.

Step (i) sets the value of 𝑎 as the order of magnitude that the largest coefficient is larger than the 

intercept of the logistic regression model. For example, if the intercept is 100 times smaller than 

the largest coefficient, then 𝑎 = 100, but if they are in the same order of magnitude, then 𝑎 = 1. 

The reason behind this choice is that we want to force the variables selected for the risk score 

model to have a significant contribution in changing the risk of hospitalization. The coefficients of 

those features that only marginally change the risk, will hence be zeroed out. Step (ii) decreases 

the value of 𝑎, hence the scaling factor c, to allow smaller coefficients in the model in order to 

achieve the target minimum total score range. In the computational analysis, the scaling factor c 

is set to 0.83 based on the results of the LR model.

Credit Scorecard Model

The credit scorecard model was first developed to assess the risk of defaulting on a debt in the 

finance literature [43]. We begin by applying a data transformation that replaces each categorical 

value with its WOE. We then select a subset of the variables with the highest IV. After these two 

steps, a LASSO logistic regression model is trained allowing for a maximum of 𝑑 variables. The 

total score in the scorecard model is a linear function of the log of odds, that is 

𝑆 = 𝐴 +  𝐵 × 𝑙𝑜𝑔(𝑜𝑑𝑑𝑠). Using the LR model with WOEs as variable values, we can expand this 

formula as:

𝑆 = 𝐴 + 𝐵 × (𝛽0 + 𝛽1𝛿11𝑊𝑂𝐸11 + 𝛽1𝛿12𝑊𝑂𝐸12 + ... +  𝛽𝑑𝛿𝑑𝑗𝑊𝑂𝐸𝑑𝑗),         (7)
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where 𝛽𝑘 is the coefficient of feature 𝑘, and 𝛿𝑘𝑗 indicates whether the observation is within 

category 𝑗 of variable 𝑘. We round the score of each category to the nearest integer, that is:

𝑠𝑘𝑗 =  [ 𝐵 × 𝛽𝑘 ×  𝑊𝑂𝐸𝑘𝑗].   (8) 

Then, the risk score for a patient with variable vector (𝑥1, 𝑥2, ..., 𝑥𝑑) is given by:

𝑠𝑐𝑜𝑟𝑒(𝑥1, 𝑥2, ..., 𝑥𝑑) =  ∑𝑗𝑠1𝑗𝛿1𝑗 +  ∑𝑗𝑠2𝑗𝛿2𝑗 +... +  ∑𝑗𝑠𝑑𝑗𝛿𝑑𝑗  (9)     

To calculate 𝑠𝑐𝑜𝑟𝑒(𝑥1, 𝑥2, ..., 𝑥𝑑), we first determine the category of each model variable 𝑥𝑘 , and 

then use the score of that category. Subsequently, the conversion of the risk score to 

hospitalization probability is through the following logit function:

𝑝(𝑥1, 𝑥2, ..., 𝑥𝑑) =
1

(1 + 𝑒𝑥𝑝( ― (𝑠𝑐𝑜𝑟𝑒(𝑥𝑖,1, 𝑥𝑖,2, ..., 𝑥𝑖,𝑑)/𝐵 + 𝛽0))).     (10)

The values of parameters A and B are determined based on two inputs: (i) the target score 𝑆0 

corresponding to a certain odds ratio 𝜃0  for the outcome (i.e., unplanned UTI hospitalization), (ii) 

points to double the odds 𝛥𝑆 such that 𝑆0 +𝛥𝑆 corresponds to an odds ratio of 2𝜃0 . From these 

two inputs, we have that 𝑆0 = 𝐴 +  𝐵 × 𝑙𝑜𝑔(𝜃0) and 𝑆0 +𝛥𝑆 = 𝐴 +  𝐵 × 𝑙𝑜𝑔(2𝜃0). We can solve 

these equations together to obtain 𝐵 =  𝛥𝑆/𝑙𝑜𝑔(2) and 𝐴 = 𝑆0 ―  𝑙𝑜𝑔(𝜃0) × 𝛥𝑆/𝑙𝑜𝑔(2). Note that 

𝐴 can be set to 0 for multiple choices of 𝑆0  and 𝜃0 such that 𝑆0 =  𝑙𝑜𝑔(𝜃0) × 𝐵.

As can be seen in Eq. (7), the offset parameter A can be used to shift the value of the scores in 

the positive or negative direction. On the other hand, the scaling parameter 𝐵 controls the range 

of the scores assigned to each category. A positive 𝐵 ensures that higher scores correspond to 

higher risk for the outcome. In our analysis for the unplanned UTI hospitalization, we set the points 

to double the odds 𝛥𝑆 as 10, and 𝐴 as 0. 
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Results

We select a prediction score threshold that maximizes F10 score because unplanned UTI 

hospitalizations are rare in our data. The weight assigned to false negatives (i.e., misclassifying 

patients with an actual unplanned UTI hospitalization) in F10 score is 100 times the weight of 

false positives (i.e., misclassifying patients without an unplanned UTI hospitalization). This reflects 

the fact that reviewing the case of a patient predicted as high-risk for unplanned UTI 

hospitalization is much more cost-effective than overlooking it and having to deal with a potential 

hospitalization in the future.

Fig 1 shows the F10 score for each method obtained by using different prediction thresholds over 

the training set. If the threshold is too low, the model predicts almost all the patients as high risk 

for hospitalization. In contrast, a large threshold would result in predicting no hospitalization for 

most of the patients. 

Fig 1. The F10 score for different prediction score thresholds. Dashed line shows the total score 

where the maximum F10 over the training set is obtained.

As seen in Fig 1, if a lower threshold is chosen, the overall F10 score is fairly robust. Using the 

thresholds obtained from the F10 analysis, the overall performance of the integerized LR and 

credit scorecard methods on the test data are summarized in Table 3. 
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AUC Recall Precision F1 Score F10 Score

LR 0.663 0.918 0.009 0.018 0.457

Integerized LR 0.67 0.903 0.009 0.019 0.467

Scorecard Model 0.688 0.855 0.01 0.02 0.467

Table 3. Prediction performance of the risk score models and the logistic regression (LR) model.

Table 4 presents the scores of the variables selected by the Integerized LR model. A higher score 

is associated with a higher risk of hospitalization.

Table 4. Risk scores of the variables in the Integerized LR method.

Table 5 presents the scores of the variables selected by the credit scorecard model. Note that 

there is a score assigned to each category within a variable because this model treats different 

categories as related rather than separate variables. Furthermore, categories are created in such 

a way that their scores are monotonic. 

age score Elixhauser 
inpatient 
score 

score Elixhauser 
SNF score

score Carrier cost 
within last 6 
months

score Total inpatient and 
outpatient cost within 
last 6 months

score

< 65 -5 0 -29 0 -2 <30 6 <30 7

65 - 69 -4 1-2 -2 1 1 [30-600) 3 [30-1800) 4

70 -74 -3 3 -1 2 2 [600, 1200) 2 [1800-3600) -1

75 - 79 -1 4-6 2 3-4 3 [1200-1300) 0 [3600-82500) -3
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80 - 84 0 >6 3 5-7 4  >=1300 -2 [82500 – 187900) -10

 > 84 2 >7 7 >=187900 -18

Delirium, 
dementia, 
amnestic and 
other 
cognitive 
disorders

score UTI infection 
diagnosis 
more than 6 
months

score Bacterial 
infection 
diagnosis 
more than 6 
months

score Recent 
provider’s rate of 
readmission 
within 30 days 
after discharge 
from hospital 

score ICU within last 3 
months

score

No -3 No -2 No -1 <12.9 -3 No -1

Yes 4 Yes 1 Yes 4 [12.9 - 14.7) 0 Yes 21

[14.7-17.5) 1

>=17.5 6

Table 5. Risk scores of the variables in the credit scorecard model (the cost values are rounded 

for brevity)

Based on the selected modeling parameters, the range of the total score for the integerized LR 

model is [-4,6] while the range for the credit scorecard is [-65, 40]. These models can be used to 

calculate a total risk score for a patient and make a classification for unplanned UTI hospitalization 

(0 or 1) based on a threshold value. We illustrate their usage in Appendix Tables A1 and A2. 

To assess how well the proposed scoring methods differentiate between the patients with and 

without unplanned UTI hospitalization, we examine Fig 2, which illustrates the score distribution 

within each group for both methods. The cyan and red bars represent patients with and without 

UTI hospitalization, respectively. The figure illustrates some aspects that relate to AUC and recall. 

Since integerized LR has higher recall in Table 3, it has more true hospitalizations above the 

threshold. On the other hand, the scorecard model has better AUC. In Fig 2, this is related to the 

overlap between the cyan and red bars. The scoring method that exhibits less overlap between 

these bars performs better in distinguishing the risk of patients with and without unplanned UTI 
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hospitalization. We quantify the overlap between the density plots of scores for patients with and 

without hospitalization based on the ratio of the overlap area to the total area under each plot.

Fig 2. Distribution of the scores for each method. The cyan and red bars represent patients with 

and without UTI hospitalization, respectively.

Policymakers can leverage risk score models for individualized interventions, such as phone calls  

[46], and preventive care programs [47], to reduce the burden of unplanned UTI hospitalizations. 

Population average prescriptive effect (PAPE) and area under the prescriptive effect curve 

(AUPEC) are two metrics that evaluate the efficiency of individualized treatment rules (ITRs) in 

comparison to random allocation of treatments [48]. Inspired by these metrics, we randomly select 

a proportion of patients (e.g., 0 to 100%) from the overall data set to allocate an intervention. We 

repeat this sampling process 100 times and calculate the recall in each replication.  For the 

allocation of intervention based on the risk score, we select the individuals with the highest score 

to receive the intervention and calculate the recall. That is, the intervention is either allocated to 
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a randomly selected subpopulation or allocated to the same number of individuals with the highest 

risk scores to show the benefit of using the risk score. Fig 3 illustrates the results of this 

experiment. The area between the random selection and the credit scorecard model is 0.187, and 

it is 0.179 for integerized LR.

Fig 3. Improvement in recall from using each risk score model to allocate an intervention 

compared to random allocation.

Discussion

We proposed two practical risk score models for evaluating the risk of unplanned UTI 

hospitalization. Both models utilize logistic regression, but they pre-process variables and allocate 

scores in different ways. We also compared the approach of prioritizing interventions based on 

predicted risk scores to that of not prioritizing (i.e., random allocation). 
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Both risk score models demonstrate relatively strong prediction performance given the use of 

administrative claims data on a population where unplanned UTI hospitalizations are rare (i.e., 

0.71%). The precision in Table 3 is low due to the imbalanced nature of our dataset. Overall, our 

prediction performance results are similar to the ones reported in the literature using claims data 

from CMS. Specifically, Mao et al. [19] reported 0.63 AUC for the same outcome using a similar 

CMS dataset which contains beneficiaries both with and without past UTI diagnosis. They 

improved this result to 0.72 by clustering beneficiaries and training a model for each cluster. The 

prediction performance results are also comparable to the performance results for the prediction 

of unplanned pneumonia hospitalization using a similar data set from CMS [49]. The integerized 

LR model performs better on recall while the credit scorecard performs better on AUC. It is 

possible that the specific choice of prediction thresholds relates to this trade-off. In Fig 2, the 

performance of the credit scorecard model with respect to overlap is slightly better than the 

integerized LR. This may be due to the differences in the range of score values. As seen in Fig 3, 

both scoring models offer a significant improvement in the percentage of true cases covered when 

allocating an intervention based on predicted risk, as compared to random allocation. 

The proposed risk score models select several common variables, including diagnosis of delirium, 

dementia, and other cognitive disorders, admission to ICU in the past 3 months, and SNF and 

inpatient elixhauser scores. Studies in the literature show that variables such as age, history of 

the UTI [3], and CCU admissions are associated with higher UTI risk [50]. In the credit scorecard 

model, the elixhauser inpatient score has the widest range of points assigned. Patients without 

any comorbidity receive a low score of -29, while patients with more than six comorbidities receive 

the highest score of 3. This difference indicates that the odds of unplanned UTI hospitalization is 

estimated to be three times higher for the last category of this variable compared to its first 

category. For the credit scorecard model, it is worthwhile to note that the variable with the largest 
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positive score (indicating an increased risk of unplanned hospitalization), is ICU admission within 

the past 3 months with a score of 21. For the integerized LR method, the features with the lowest 

and highest scores are no inpatient comorbidities in the past month with a low score of -3 and 

ICU/CCU admission within the past 3 months with a score of 2. 

Interestingly, the points assigned in both models show that beneficiaries with lower costs exhibit 

a higher risk for unplanned UTI hospitalization. One possible explanation for this result is that 

patients with higher costs are more closely (and recently) monitored, and their medical conditions 

are managed more effectively. Lu et al. [51] also found that high-cost patients (total outpatient 

and inpatient costs) with more outpatient visits are at lower risk of potentially preventable 

hospitalizations and stated that the utilization of outpatient care may reduce hospitalizations 

through preventive care or more effective disease management. The integerized LR model only 

considers low costs in the inpatient care to be an important variable, whereas the credit scorecard 

model also considers the effect of high-cost values when evaluating the risk of unplanned UTI 

hospitalization.

Overall, the variables selected in the proposed risk score models and the points assigned to them 

provide valuable insights into the risk of unplanned UTI hospitalization. The interpretability of the 

variables and the transparency of the score generation ensures that the approach is 

implementable by design. The specific risk score building method to choose may depend on the 

preferences of the decision-maker about how variables are treated or scored, and about the 

approach to determining the range and variability of total scores. For example, the integerized LR 

method can be used to achieve a minimum total score range (e.g., minimum range of 20). In the 

credit scorecard method, the focus is on the increase in total score with respect to the increase in 

the risk of hospitalization. Both are reasonable approaches in practice. There are some limitations 

of this study. We use a 5% sample of Medicare administrative claims data which doesn’t include 
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laboratory results or vitals. We predict hospitalization risk at a monthly level, and only conduct 

analysis for individuals with sufficient Medicare data available. 

Conclusion

We introduce two methods to build risk score models for unplanned UTI hospitalization utilizing 

claims data from Medicare limited data sets containing demographics, clinical history, and health 

care utilization information. We augment this administrative claims data by community-level 

variables and provider quality metrics obtained from publicly available data sources. We focus on 

patients with a history of UTI diagnosis. By implementing the integerized LR and credit scorecard 

models, we assign a risk score to up to 10 important variables associated with unplanned UTI 

hospitalization. Our findings emphasize the effectiveness of risk score models as practical tools 

for identifying high-risk patients and provide a quantitative assessment of the significance of 

various risk factors in unplanned UTI hospitalizations such as admission to ICU in the last 3 

months, cognitive disorders and low inpatient, outpatient and carrier costs in the last 6 months.

In future studies, accounting for temporal changes in patients' conditions and risk factors may 

lead to improved prediction results. Additionally, addressing the imbalance in the dataset requires 

exploring advanced techniques like ensemble learning or neural networks [52,53] as traditional 

approaches such as over sampling and under sampling did not show improved performance in 

our experiments. Moreover, we presented the results only for a subset of the patients who had a 

past diagnosis of UTI. The proposed methods can be implemented for other patient groups. Then, 

the base-level risk of different patient groups can be compared by including the intercept in the 

total risk score calculation.
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Appendix

Criteria Score
Pos. 
Patient

Neg. 
Patient

Was the patient diagnosed with cognitive disorders, such as 
dementia, delirium? 1 0 0
Was the patient admitted to CCU in the past three months? 2 0 0
Was the patient admitted to ICU in the past three months? 2 0 0
Did the patient have low inpatient comorbidities in the past month? -3 0 0
Did the patient have low SNF comorbidities in the past month? -1 -1 -1
Was the total inpatient and SNF costs of the patient in the past six 1 1 0
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months low?
Total Score (threshold = -1, where score that is greater predicts 
event) 0 -1
Prediction 1 0
Table A 1.Integerized LR scoring table shows the method obtains the correct prediction 
outcome for these two patients.

Table A2: 

Criteria

Pos. 
Patient 
category

Pos. 
Patient 
Score

Neg. 
Patient 
category

Neg. 
Patient 
score

Age 4 -1 5 0
Elixhauser inpatient score 2 -2 2 -2
Elixhauser SNF score 1 -2 1 -2
Delirium, dementia, amnestic and other cognitive disorders 0 -3 0 -3
UTI infection diagnosis more than 6 months 1 1 1 1
Bacterial infection diagnosis more than 6 months 0 -1 0 -1
ICU within last 3 months 0 -1 0 -1
Rate of readmission within 30 days after discharge from 
hospital 3 1 3 1
Carrier cost within 6 months 3 2 5 -2
Total inpatient and outpatient cost during last 6 months 1 7 4 -3
Total Score (threshold = -6, where score that is greater 
predicts event) 1 -12
Prediction 1 0
Table A 2. Credit Scorecard scoring table shows the method obtains the correct prediction 
outcome for these two patients)
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