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Summary Statement 

The authors developed and externally validated an automated, scan-to-prediction deep learning 

pipeline that classifies BRAF Mutational status in pediatric low-grade gliomas from T2-Weighted 

MRI scans. 

 

Key Results  

▪ An innovative training approach combining self-supervision and transfer learning (“TransferX”) 

is developed to boost model performance in a low data setting; 

▪ TransferX enables the development of a scan-to-prediction pipeline for pediatric LGG 

mutational status (BRAF V600E, fusion, or wildtype) with 75% accuracy on internal and 

external validation; 

▪ An evaluation metric, “COMDist”, is introduced to increase interpretability and quantify the 

accuracy of the model’s attention around the tumor.  

 

List of Abbreviations  

pLGG = pediatric low-grade glioma; T2W = T2 Weighted; CNN = Convolutional neural network; 

SD = Standard Deviation; CI = Confidence Interval; AUC = Area under the curve; CBTN = Child 

brain tumor network.  
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ABSTRACT 

Purpose 

To develop and externally validate a scan-to-prediction deep-learning pipeline for noninvasive, 

MRI-based BRAF mutational status classification for pLGG. 

Materials and Methods  

We conducted a retrospective study of two pLGG datasets with linked genomic and diagnostic 

T2-weighted MRI of patients: BCH (development dataset, n=214 [60 (28%) BRAF fusion, 50 

(23%) BRAF V600E, 104 (49%) wild-type), and Child Brain Tumor Network (CBTN) (external 

validation, n=112 [60 (53%) BRAF-Fusion, 17 (15%) BRAF-V600E, 35 (32%) wild-type]). We 

developed a deep learning pipeline to classify BRAF mutational status (V600E vs. fusion vs. wild-

type) via a two-stage process: 1) 3D tumor segmentation and extraction of axial tumor images, 

and 2) slice-wise, deep learning-based classification of mutational status. We investigated 

knowledge-transfer and self-supervised approaches to prevent model overfitting with a primary 

endpoint of the area under the receiver operating characteristic curve (AUC). To enhance model 

interpretability, we developed a novel metric, COMDist, that quantifies the accuracy of model 

attention around the tumor. 

Results  

A combination of transfer learning from a pretrained medical imaging-specific network and self-

supervised label cross-training (TransferX) coupled with consensus logic yielded the highest 

macro-average AUC (0.82 [95% CI: 0.70-0.90]) and accuracy (77%) on internal validation, with 

an AUC improvement of +17.7% and a COMDist improvement of +6.4% versus training from 

scratch. On external validation, the TransferX model yielded AUC (0.73 [95% CI 0.68-0.88]) and 

accuracy (75%). 

Conclusion  

Transfer learning and self-supervised cross-training improved classification performance and 

generalizability for noninvasive pLGG mutational status prediction in a limited data scenario. 
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INTRODUCTION 

Pediatric low-grade gliomas (pLGG) are the most common pediatric brain tumors, comprising up 

to 40% of tumors in this population (1). These tumors exhibit diverse clinical outcomes and 

molecular characteristics, often driven by an activating BRAF mutation, either the BRAF-V600E 

point mutation or fusion events. Molecular classification and segregation of wildtype tumors from 

BRAF subtypes is vital for accurate treatment selection and risk stratification in pLGG, particularly 

given the emergence of novel BRAF-directed therapies (2). The presence of the BRAF-V600E 

mutation, found in 15-20% of cases, was historically associated with poor survival, particularly 

when combined with CDKN2A deletion (3), though with targeted BRAF pathway-directed 

therapies this may be changing. BRAF-V600E mutated pLGG also exhibit an increased risk of 

malignant transformation while patients with BRAF fusion and neurofibromatosis type 1 have a 

favorable outcome (4). Accurate distinction between BRAF-V600E, BRAF-fusion, and wildtype 

tumors, plays a crucial role in determining prognosis and optimal treatment strategy. 

 

Surgical resection for pLGG allows for assessment of mutational status. However, in over one-

third of cases, resection, or even biopsy, may not be feasible nor recommended (5). In these 

situations, children may require alternative therapies to control a symptomatic tumor or undergo 

periodic MRI surveillance. Therefore, non-invasive imaging-based tumor molecular subtyping, if 

accurate and reliable, could enable proper selection of patients for BRAF-targeted therapies and 

clinical trials. In recent years, deep learning (DL) has emerged as the forefront technology for 

analyzing medical images (6,7), and has demonstrated numerous successful applications, 

encompassing tumor segmentation (8–10), outcome prediction (11,12), tumor and molecular 

classification (13,14). However, DL performance degrades dramatically in limited data scenarios, 

due to instability, overfitting, and shortcut learning (15), and a key barrier to applying DL to pLGG 

imaging, is the lack of training data available for these rare tumor cases. For these reasons, there 

has been limited success in using DL for pLGG mutational classification. Another barrier to clinical 

usability is that most algorithms require manual tumor segmentation as input, which is resource-

intensive and requires specialized expertise. Few studies have been published investigating 

pLGG BRAF mutation classification using deep learning (16) and a combination of deep-learning 

and radiomics (17) but all of them present a single institution study and lack external validation. 

 

Here, we address these gaps by developing and externally validating the first imaging based 

automated, scan-to-prediction DL pipeline capable of non-invasive BRAF mutational status 

prediction for pLGG. The pipeline comprises built-in pLGG segmentation, BRAF mutation 
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classifiers, and a consensus decision block to predict BRAF mutation status. We leverage the 

pLGG dataset as our developmental dataset and a novel combination of in-domain transfer 

learning and self-supervision approach, called "TransferX" to maximize performance and 

generalizability in a limited data scenario. Additionally, to improve interpretability of our pipeline, 

we introduce a way to quantify the model attention via spatial maps, called Center of Mass 

Distance (COMDist) analysis. COMDist estimates the distance between the center of mass of the 

GradCAM heatmap and the tumor's center of mass. Together, these methods enable practical, 

accurate, noninvasive mutational classification for pLGG. 

 

Table 1. Patient cohort characteristics. 

  
Development 
(BCH, n = 214) 

External Validation  
(CBTN, n = 112) 

p-values 

Age (years)     0.19* 

median (range) 5 (1 – 20) 6 (1 - 21)  

Sex n (%)    0.82+ 

Female 95 (44.4%) 51 (45.5%) 

 Male 113 (52.8%) 55 (49.1%) 

Unknown 6 (2.8%) 4 (3.6%) 

Race/Ethnicity n (%)   1.076e-06+ 

Non-Hispanic Caucasian/white 145 (67.8%) 71 (64.5%) 

 

African American/Black 6 (2.8%) 14 (12.7%) 

Hispanic/Latinx 3 (1.4%) 10 (9.1%) 

Asian American/Asian 9 (4.2%) 3 (2.7%) 

American Indian/Alaska Native 0 1 (0.9%) 

More than once race 0 1 (0.9%) 

Other/Unknown 51 (23.8%) 10 (9.1%) 

Histologic diagnosis n (%)   0.0005+ 

Pilocytic Astrocytoma 52 (24.2%) 68 (61.8%) 

 

Fibrillary Astrocytoma 0 8 (7.3%) 

Pilomyxoid Astrocytoma 8 (3.7%) 17 (15.5%) 

Ganglioglioma 13 (6.1%) 0 

Dysembryoplastic neuroepithelial 
tumor 

7 (3.3%) 0 

Diffuse Astrocytoma 1 (0.5%) 7 (6.4%) 

Angiocentric Glioma 1 (0.5%) 1 (0.9%) 

Other Low-Grade 
Glioma/Astrocytoma 

132 (61.7%) 9 (8.2%) 

BRAF Mutation Status n (%)   0.0005+ 

V600E 50 (23.4%) 17 (15.2%) 
 

Fusion 60 (28.0%) 60 (53.6%) 
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Wildtype 104 (48.6%) 35 (31.3%) 

Tumor Locations n (%)   0.0005+ 

Cerebellum/Posterior fossa 40 (18.7%) 33 (29.4%) 

 

Temporal lobe 43 (20.1%) 12 (10.7%) 

Frontal Lobe 22 (10.3%) 4 (3.6%) 

Suprasellar 6 (2.8%) 32 (28.6%) 

Optic Pathway 8 (3.7%) 17 (14.9%) 

Brainstem 7 (3.3%) 9 (7.9%) 

Thalamus 15 (7.0%) 2 (1.8%) 

Ventricles 14 (6.5%) 2 (11.4%) 

Others 59 (27.6%) 1 (0.9%) 

 
CBTN: Children Brain Tumor Network. The Kruskal-Wallis rank sum test (*) was performed for 

numerical data age to test the statistical significance between age medians. The Fisher’s Exact 

test (+) was performed for categorical data to test the statistical significance differences between 

CBTN and BCH datasets. A p-value less than 0.05 is statistically significant. 

 

METHODS  

Study Design and Datasets 

This study was conducted in accordance with the Declaration of Helsinki guidelines and following 

the approval of local Review Board (IRB). Waiver of consent was obtained from IRB prior to 

research initiation due to public datasets or retrospective study. This study involved two patient 

datasets: a developmental dataset from one high-volume academic institution (BCH; n=214), for 

training, internal validation, and hypothesis testing. This dataset included all children aged 1 – 25 

with a tissue-confirmed diagnosis of WHO grade I-II glioma with BRAF mutational status 

information and available pretreatment T2-weighted (T2W) brain MRI seen at the institution from 

1994 to 2022. A second data from the Children’s Brain Tumor Network (CBTN; n=112) was used 

for external validation. This dataset included all patients from the publicly available CBTN pLGG 

cohort who had T2W brain MRI and confirmed WHO grade I-II glioma tissue diagnosis and 

mutational status as above. BRAF status was determined by OncoPanel, which performs targeted 

exome-sequencing of 227 to 477 cancer-causing genes. BRAF mutational status may also have 

been captured by genomic sequencing via in-house PCR on tissue specimens. In cases where 

neither could not be performed, immunohistochemistry (IHC) was used to determine V600E status. 

BRAF-fusion status was determined by a gene fusion sequencing panel. DNA copy-number 

profiling via whole-genome microarray analysis was also performed in some cases. We report our 

results in accordance with the Checklist for Artificial Intelligence in Medical Imaging (CLAIM) 

guidelines (18). A portion of patients from the CBTN dataset (n=140) and an additional subset 
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from the BCH dataset (n=100) had been utilized in two previous studies (10,19). It's worth 

highlighting that these prior investigations were centered around tumor segmentation, whereas 

the present study was primarily dedicated to identifying BRAF mutational subtypes. 

 

Figure 1. (A) Schematic of the scan-to-prediction pipeline for molecular subtype classification. 

The pipeline inputs the raw T2W MRI scan and outputs the mutation class prediction. (B) Input 

and output depiction of the segmentation model from stage 1 of the pipeline. The segmentation 

block also involves registration and preprocessing of the input scan. The output consists of the 

preprocessed input MRI scan along with the co-registered segmentation mask. (C) Flow diagram 

of the TransferX training block and approach. The TransferX algorithm is employed to train three 

individual subtype classifiers (BRAF-V600E, BRAF-Fusion, Wild-type). (D) The model 

architecture of individual binary molecular subtype classifier. (E) Schematic of consensus decision 

block. The block inputs the classification outputs and corresponding scores from the three 

individual subtype classifiers and fits them into a consensus logic, and outputs the final 

predictions. The mutational class predictions are output sequentially where the input is first 

checked for wild-type or non-BRAF class first. If the input doesn’t belong to wildtype or non-BRAF 

class, then the logic progresses to check the BRAF mutation class with BRAF-Fusion checked 

first then followed by BRAF-V600E. T2W: T2-weighted.  
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Deep Learning Pipeline  

The proposed pipeline for mutation class prediction operates in two stages (Fig. 1A). The initial 

stage involves T2W-MRI preprocessing (Supplemental Methods: SM 3, SM 2) and input to a 

nnUNet- based 3D tumor auto-segmentation model previously developed, externally validated, 

and clinically benchmarked by our group (pipeline available at: https://github.com/AIM-

KannLab/pLGG_Segmentation) (10).  This first stage outputs a preprocessed, skull-stripped 

image along with a corresponding segmentation tumor mask (Fig. 1B) (Supplemental Methods: 

SM 4).  

 

The second stage of the pipeline encompasses three binary subtype classifiers (BRAF-Fusion vs. 

rest; BRAF-V600E vs. rest; Wild-type vs. rest), each specifically trained to identify one of the 

following classes: BRAF-V600E, BRAF-Fusion, and Wild-type (Supplemental Methods: SM 5-6). 

For each subtype classifier a ResNet-50 model (20) was chosen as the fundamental encoder for 

extracting feature embeddings from 2D images, given its high performance on medical imaging 

classification problems (21,22) and the availability of pretrained network weights (23). The fully 

connected layers succeeding the average pooling layer of the ResNet-50 were replaced by a 

layer of 1024 neurons, and a final layer of single neurons for binary classification (Fig. 1D, 

Supplemental Methods: SM 6). Following binary classification from each binary subtype classifier, 

a consensus decision block collates the predictions from the classifiers, yielding the overall 

mutational status (Supplemental Methods: SM 7) (Fig. 1E). The final output of the consensus 

decision block and the pipeline consequently is a classification decision and its corresponding 

probability. 

 

Three different strategies were investigated for training individual binary classifiers. The initial 

approach, training from scratch, involved initializing the binary classifier model with random 

weights. For the second approach, called RadImageNet Finetune, the classifier model was 

initiated with pretrained weights from the RadImageNet (23) for the ResNet-50 model. This prior 

initialization was intended to yield superior feature embeddings compared to random weight 

initialization and training from scratch or out-of-domain transfer learning (24).  

 

TransferX 

The third approach, called TransferX, starts with pretrained weights from RadImageNet, but then 

adds two sequential stages of finetuning on separate, but related, classification tasks which act 

as pretext tasks for self-supervision, followed by a final finetuning on the target class (Fig. 1C). 
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As an illustrative example, the training of a BRAF-fusion classifier began with initialization via 

pretrained RadImageNet weights and sequential finetuning for BRAF-V600E prediction, followed 

by Wild-type prediction, and finally finetuning for BRAF-Fusion prediction. We hypothesized that 

combining transfer learning and self-supervised cross-training would enable the model to learn 

stronger, more generalizable features for mutational status prediction by exposure to different, 

though similar, classification problems. The Models were trained to minimize loss at the axial 

slice-level on the development dataset and internally tested on an internal validation set (25% of 

data randomly selected; Supplemental Methods: SM 4, Fig. S3) and tested on the external 

validation dataset.  

 

Performance Evaluation and Statistical Analysis 

Since each of the MRI scan of each patient was factored into multiple tumor slice images to 

generate aggregated patient-level prediction, the output probability scores of the individual 2D 

axial images were averaged to calculate the patient level probability score. The patient-level 

classification was then done by applying a threshold on the patient level probability score [Eq 1].  

 

Patient probability score =  
å image probability scores

number of image slices for a given patient
     [Eq 1] 

 

The primary performance endpoint was the area under the curve (AUC) of receiver operating 

characteristic (ROC) at the patient-level. We calculated composite AUC and accuracy based on 

a weighted average of the output of the three mutational subtype classifiers. The three DL 

approaches were initially evaluated on the internal test set, and the highest performing model was 

locked for external validation. Secondary endpoints included sensitivity and specificity, precision, 

and accuracy, and were calculated using the model output, thresholded to optimize the Youden 

Index (25) on the internal test set. Post-hoc calibration was applied on the internal validation set 

and model calibration was assessed graphically pre- and post-calibration (Supplemental 

Methods: SM 8; Fig. S7). We compared AUC’s for different models and calculated 95% 

Confidence Intervals (CIs) using the DeLong method (26). The standard error of the AUC was 

calculated considering the numbers of positive and negative cases in the sample, and the derived 

variance of AUC. A two-sided p-value of <0.05 was considered statistically significant. Statistical 

metrics and curves were calculated using Scikit-learn packages (27) in Python v3.8.  

 

Center of Mass Distance Analysis (COMDist) to evaluate model attention 
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To enable the use of Gradient-weighted Class Activation Maps (GradCAM) (28) as a quantitative 

performance evaluation tool, we developed “Center of Mass Distance” (COMDist), a quantifiable 

metric for comparing GradCAM images across different methodologies (Fig. 4C). COMDist 

calculates and averages the distance (in mm) between the tumor's center of mass (from the 

segmentation mask) and the center of mass of the GradCAM heatmap over the entire dataset, 

with smaller values indicating that the model is more accurately focusing on the tumor region (Fig. 

4B).  

 

Table 2. The pipeline’s performance on classification on BRAF status for internal validation set 

and external validation set.  

 
BRAF 
Status 

AUC 
(95%CI) 

Sensitivity Specificity Accuracy Precision Recall 
F1-
Score 

Internal 
Validation                      
(n=59)                                                                         

Wild-type 
0.82 

(0.75 - 0.91) 
0.73 0.80 0.77 0.76 0.77 0.77 

BRAF 
Fusion 

0.87 
(0.61 - 0.97) 

0.87 0.70 0.81 0.81 0.80 0.80 

BRAF 
V600E 

0.85 
(0.66 - 0.95) 

0.75 0.80 0.76 0.82 0.77 0.77 

Composite 
0.84 

(70 - 90) 
0.77 0.76 0.77 0.78 0.77 0.77 

External 
Validation 
(n=112) 

Wild-type 
0.72 

(0.64 - 0.86) 
0.72 0.71 0.72 0.75 0.72 0.73 

BRAF 
Fusion 

0.78 
(0.61 - 0.89) 

0.60 0.90 0.75 0.77 0.74 0.74 

BRAF 
V600E 

0.72 
(0.64 - 0.88) 

0.78 0.60 0.75 0.82 0.74 0.77 

Composite  
0.73 

(0.68 –0.88) 
0.66 0.79 0.75 0.77 0.73 0.74 

 

RESULTS  

Patient Characteristics 

The total pLGG patient cohort consisted of 326 pLGG patients from two cohorts, with 214 patients 

in the development set from BCH cohort and 112 patients in the external test set from CBTN 

(Table 1). Median age was 6 (range: 1-21) in the CBTN cohort and 5 (range: 1-20) in the BCH 

cohort. All patients had pathologically or clinically diagnosed grade I/II low-grade glioma, with a 

mixture of histologic subtypes and intracranial locations. The developmental dataset contained 

50 (23%), 60 (28%), and 104 (49%) patients with BRAF-V600E, BRAF-Fusion, and Wild-type, 
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respectively, and the external validation dataset contained 17 (15%), 60 (53%), and 35 (32%) 

patients with BRAF-V600E, BRAF-Fusion, Wild-type, respectively (Table 1). Age and sex were 

not associated with BRAF mutational status (Table S4, Fig. S5). Categorical variables of tumor 

locations were one hot encoded, and a logistic regression model was trained for each molecular 

subtype with an accuracy of 59%, 52%, 63% for BRAF V600E, BRAF Fusion, and Wild-type 

respectively, proving that tumor location can not be employe as the only variable to perform 

molecular subtype classification. 

 

 

Figure 2. Receiver operating characteristics (ROC) curves of the scan-to-prediction pipeline’s 

predictions for all the three molecular subtype classes for internal validation (n=59) and external 

validation (n=112). The models, trained with TransferX, form the individual subtype classifiers. 

The outputs of the subtype classifiers are pooled using consensus logic, to result the pipeline 

predictions for each mutation class.   

 

TransferX improves deep learning model performance and generalizability 

Pipeline with TransferX outperformed the pipeline with classifiers trained by RadImageNet 

FineTune and training from scratch for BRAF mutational status subtype prediction with composite 

classification AUC: 0.83 (95% CI 0.71-0.88) and 77% accuracy on internal validation, compared 

to AUC: 0.74 (95% CI 0.62-0.80) and 73% for training from scratch (Fig. 3B&C) (Table S3). All 
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training approaches, including TransferX, were most accurate at identifying BRAF fusion, followed 

by wild-type and V600E. However, TransferX was the only approach to maintain AUC >0.80 for 

all individual subtype classifications (Fig. 3A). With TransferX, the pipeline also exhibits robust 

performance, with an external AUC of 0.74 (n=28), in the classification of BRAF mutation status, 

particularly with tumor cases originating from traditionally challenging regions for biopsy such as 

the optic pathway, thalamus, and brainstem.  

 

On external validation, there was a mild degradation in performance across all approaches, with 

TransferX still demonstrating the highest performance with macro-average AUC 0.73 (95% CI: 

0.68-0.88) and 75% accuracy (Fig. 3C). TransferX also demonstrated best performance for 

classification of wildtype vs any BRAF mutational class with AUC 0.82 (95% CI: 0.75-0.91) and 

77% accuracy (Table 2 & Fig. 3A). TransferX showed adequate calibration on the external 

validation set, which was further improved after calibrating the model on the internal validation set 

(Fig. S7). TransferX also resulted in superior performance compared to other training approaches 

when subtype classifiers (without consensus logic) were tested on the internal and external 

validation set for each subtype class (Fig. S6). 

 

Figure 3. (A) AUC is plotted and compared for the pipeline results with individual subtype 

classifiers trained using different training approaches (Scratch, RadImageNet FineTune, 

TransferX) for respective mutation class (BRAF-V600E, BRAF-Fusion, Wild-type). P-values are 

generated from model comparisons with respect to TransferX. (B) Accuracy and (C) AUC 

comparison of the pipeline with individual subtype classifiers trained with three different training 

approaches. The composite Accuracy and AUC for the entire dataset is calculated by the 
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weighted average of the AUCs and Accuracy across the three mutational classes. AUC: area 

under the curve.  

 

TransferX yields more accurate model attention 

GradCAMs were generated for the three approaches on all cases (Fig. 4A), and corresponding 

COMDist scores were calculated. TransferX consistently yielded the best average COMDist 

scores across all classification tasks, indicating improved model focus on intra- and peritumoral 

regions (Table 3 & Fig. 4C).  

 

Figure 4. (A) GradCAM image overlay for each mutational class for internal and external 

validation sets. (B) COMDist representation for three training approaches. (C) COMDist value 

comparison of the scan-to-prediction pipeline for each molecular subtype class, with 

corresponding individual subtype classifiers trained with three different training approaches. 

GradCam: Gradient-weighted Class Activation Maps; COMDist: Center of Mass Distance.  

 

DISCUSSION 

pLGG can arise in locations that make resection, and even biopsy, morbid and infeasible. In these 

situations, the ability to noninvasively detect BRAF mutational status via diagnostic imaging would 

be helpful to determine which patients may benefit from targeted therapies that act on the BRAF 

pathway and enrollment in clinical trials of novel targeted therapies. In this study, we developed 

and externally validated a scan-to-prediction algorithm to noninvasively predict BRAF mutational 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.08.04.23293673doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.04.23293673
http://creativecommons.org/licenses/by-nc/4.0/


status that could be used in settings where tissue diagnosis is infeasible. The limited quantity of 

data available for analysis has limited the translational potential of artificial intelligence (AI) in 

pediatric brain tumor analysis compared to other malignancies. Our study overcomes this 

obstacle by combining elements of transfer learning and self-supervision to develop a high 

performing model that maintains good performance on external testing despite heterogeneous 

tumor and scanner characteristics. Additionally, we introduced COMDist, an interpretable metric 

to evaluate model attention with anatomic correlation that will help make medical imaging 

algorithms more trustworthy to clinical users. Our study findings contribute to bridging the gap 

between AI development and clinical translation in a limited data scenario. To this end, we have 

published the code and pretrained models to provide usable tools for the scientific community and 

to encourage clinical testing.   

 

Table 3. Median COMDist value (mm) comparison for three training approaches, of each subtype 

classifier on its corresponding mutation class data.  

 

With the emergence of novel BRAF pathway-directed therapies, the segregation of wild-type 

tumor cases from BRAF subtypes in pLGG has become critical. With an accuracy of 77% 

(Internal) and 72% (External) for classifying wild-type tumor cases vs BRAF cases, the pipeline 

can be used as an assistive tool by clinicians to provide key information in settings where tissue 

biopsy is infeasible or low-resource settings that preclude genomic analysis. Beyond BRAF 

classification, the pipeline’s ability to identify BRAF-V600E, specifically, enables it to select 

patients for specific V600E inhibitors such as of dabrafenib and trametinib which have shown 

 BRAF Status TransferX  Scratch RadImageNet  

Internal 
Validation 
(n=59) 

Wild-Type  38.02 
41.54  
(p=0.09) 

39.48  
(p=0.46) 

BRAF Fusion   25.8 
27.14  
(p=0.49) 

26.13  
(p=0.86) 

BRAF V600E  33.02 
36.86  
(p=0.09) 

34.40  
(p=0.52) 

External 
Validation 
(n=112) 

Wild-Type  27.8 
28.11 
(p=0.90) 

34.2  
(p=0.009) 

BRAF Fusion  28.0 
 29.7  
(p=0.47) 

28.7 
(p=0.76) 

BRAF V600E  23.03 
 25.24  
(p=0.40) 

 25.21  
(p=0.40) 
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better progression free survival than chemotherapy (29–31). The mild performance degradation 

observed on external validation may have been driven by notable differences in MRI parameters 

between across institutions (Fig. S1-2). The model may perform better in scenarios in which MRI 

parameters are similar to training data. Importantly, the scan-to-prediction pipeline is practical and 

not reliant on manual segmentation, which is resource-intensive and requires specialized 

expertise, nor hand-crafted radiomic features, which are notoriously difficult to generalize 

externally (32–34). Notably, the pipeline also exhibits robust performance in classifying tumors 

originating from challenging regions for biopsy (optic pathway, thalamus, and brainstem). This 

may enable more confidence for empiric treatment with targeted therapies if tissue diagnosis is 

infeasible.  

 

Figure 5. Representative prediction cases of the scan-to-prediction pipeline on the external 

dataset. The final scan-to-prediction pipeline consists of three subtype classifiers, trained using 

TransferX, further pooled together in consensus logic by the consensus decision block. Tumor 

lesions in the T2-weighted images were highlighted with arrows. TP: true positive; FP: false 

positive; TN: true negative; FN: false negative.    
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pLGG mutational classification has been previously attempted in a few studies, most with manual 

segmentation-derived and/or pre-engineered radiomics (35–38), which are known to fail when 

applied to the external dataset. Radiomic features have been extracted from MRI images and 

fitted to classifiers models like XGboost and SVM (17,35,36). One study published in preprint, 

used neural networks to classify BRAF-mutational status in a single institution, though the 

algorithm required manual segmentation (16). The sensitivity of the dataset size on BRAF 

mutation classification performance was studied by Wagner et al. in a radiomics based study (39). 

They showed that Neural networks outperform XGBoost for classification AUC and that the 

performance was affected by the size of the data used in training. In contrast, our study 

demonstrates that an end-to-end deep learning pipeline is feasible, even in a low data setting, by 

using inter-class cross training combined with transfer learning. This idea has been explored more 

generally by Muhamedrahimov et al. by relaxing the assumption of independence between 

multiple categories (40). TransferX expands on this work by dropping the assumptions of 

independence between different categories of a multiclass dataset with stepwise inter-class 

training as a pretext task to learn robust feature representations. Furthermore, incorporating 

consensus decision logic to combine multiple binary classifiers also helped mitigate overfitting 

from the limited dataset. 

 

Interpretability is a well-recognized important factor for deep learning models for clinical 

translation. A variety of metrics like GradCAM, saliency maps, guided backpropagation have been 

developed to depict the pixels that are contributing for the maximum activation in the network and 

hence being more significant for classification (41,42). The GradCAM approach, although adding 

a degree of qualitative interpretability, has only allowed for case-by-case visualizations for the 

end-user, which are not very useful when trying to establish trust in a model overall. We expand 

the utility of GradCAM in this work with COMDist. By incorporating spatial knowledge of the tumor 

from auto-segmentation, COMDist can quantify, in terms of distance, the model’s attention with 

respect to the correct, biologically rational region of interest in the image. This provides the clinical 

user with a metric to gauge whether the model is basing its prediction on intra-tumoral information 

(as one would expect) or extemporaneous information far from the tumor (indicating an 

implausible model “shortcut” that should not be trusted). The metric can be reported case-by-case 

or in aggregate over a dataset to compare attention of different models. We expect this 

methodology will be valuable for the AI research community as well as clinical end-users 

evaluating and implementing medical imaging AI applications in clinic.  
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Limitations 

There are several limitations to this work. Firstly, this work is retrospective in nature and subject 

to the biases of our patient samples. We attempted to mitigate this effect of bias by using a 

blinded, external validation set. Thus, we would encourage further independent validation of our 

results, including prospective testing. Additionally, the pipeline is exclusively based on T2W-MRI 

scans. While T2W images are the most common and available diagnostic sequence for pLGG, 

contrast-enhanced T1W, T1W, T2-FLAIR, and diffusion-weighted MRI may contain 

complementary information that enhances performance. Along with this, the properties of different 

imaging sequences and their correlation with different molecular subgroups warrants further 

investigation, which we aim to explore in future work. In this work, we decided to leverage a 2D 

approach with slice-averaging to minimize overfitting on our limited data set. It is possible that 

with further data collection a 3D approach may work better, however this would significantly 

increase the model parameter size and thus make the model even more prone to overfitting.  

 

Conclusions 

In summary, we developed and externally validated an imaging-based scan-to-prediction pipeline 

to analyze T2W-MRI as input and output BRAF-mutational subtype for pediatric low-grade glioma. 

We leveraged a novel combination of transfer learning and self-supervision to mitigate overfitting 

and develop a high-performing and generalizable model. We also proposed a novel evaluation 

metric, COMDist, that can be used to further assess performance and interpretability of AI imaging 

models. Our resulting pipeline warrants prospective validation to determine if it could be clinically 

used in settings where tissue and/or genomic testing is unavailable.  
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