
Special Communication en1

Computational Strategies in Nutrigenetics: Constructing a

Reference Dataset of Nutrition-Associated Genetic

Polymorphisms

Giovanni Maria De Filippis1,Maria Monticelli2, Alessandra Pollice3, Tiziana Angrisano3, Bruno Hay Mele3, Viola Calabrò3

1 Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, via Claudio 21, 80125

Napoli, Italy
2 Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy

3 Department of Biology, University of Napoli “Federico II”, Complesso Universitario Monte Sant’Angelo, Via Cinthia 26, 80126

Napoli, Italy

Abstract

Objective This study aims to create a comprehensive dataset of human genetic polymorphisms associated with nutrition
by integrating data from multiple sources, including the LitVar database, PubMed, and the GWAS catalog. This
consolidated resource is intended to facilitate research in nutrigenetics by providing a reliable foundation to explore
genetic polymorphisms linked to nutrition-related traits.
Methods We developed a data integration pipeline to assemble and analyze the dataset. The pipeline performs data
retrieval from LitVar and PubMed, data merging to build a unified dataset, definition of comprehensive MeSH queries
in order to retrieve relevant genetic associations, and cross-referencing the results with the GWAS data.
Results The resulting dataset aggregates extensive information on genetic polymorphisms and nutrition-related traits.
Through MeSH query, we identified key genes and SNPs associated with nutrition-related traits. Cross-referencing
with GWAS data provided insights on potential effects or risk alleles associated with this genetic polymorphisms. The
co-occurrence analysis revealed meaningful gene-diet interactions, advancing personalized nutrition and nutrigenomics
research.
Conclusion The dataset presented in this study consolidates and organizes information on genetic polymorphisms asso-
ciated with nutrition, facilitating detailed exploration of gene-diet interactions. This resource advances personalized nu-
trition interventions and nutrigenomics research. The dataset is publicly accessible at https://zenodo.org/records/
14052302, its adaptable structure ensures applicability in a broad range of genetic investigations.
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1 Introduction

Nutrition is critical to health and disease [1]. Emerg-
ing evidence suggests that genetic polymorphisms signifi-
cantly impact an individual’s response to different nutri-
ents and dietary patterns by affecting nutrient bioavail-
ability and metabolism [2]. Moreover, it has been demon-
strated that common gene variations are linked to com-

plex chronic health issues significantly affected by nutri-
tional factors [3].

Advancements in genomics technologies and the sub-
sequent availability of large-scale genetic data have fu-
eled interest in the identification and categorizing of ge-
netic polymorphisms associated with nutritional traits
[4]. Thus, the field of nutritional genetics (nutrigenetics)
was born to comprehend how genetic variations influence
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an individual’s nutritional requirements, metabolism, and
health outcomes [5]. By considering an individual’s ge-
netic profile, healthcare professionals and nutritionists can
provide tailored dietary advice and interventions that op-
timize nutrient bio-availability and promote better health
outcomes in that individual [6]. Nutrigenetic associations
imply that specific genetic polymorphisms can induce sus-
ceptibility to chronic diseases. The response to specific
nutrients or dietary patterns may be crucial in determin-
ing health outcomes [7]. Recent literature contains exten-
sive data on nutrition-associated genetic polymorphisms
[2, 7]. However, these data are often scattered, diverse in
format, and lack a standardized curation process. Such
complications hinder data integration, limit information
extraction and synthesis, and pose a barrier to data uti-
lization in decision support systems [8].

Integrating available data and overcoming the limits
of self-reported methods in research is crucial for accu-
rate *omics data integration, nutrigenetics, and nutrige-
nomics research, especially in clinical settings [8]. There-
fore, there is a need to develop comprehensive and struc-
tured resources that integrate nutrition-associated genetic
polymorphism data, along with *omics data, to advance
personalized nutrition interventions and clinical decision-
making. Today, technologies are available to overcome
these limitations: the use of ontologies for information
retrieval (IR) is a well-known technique in the literature
for semantic search [9], while Named Entity Recognition
(NER) techniques are increasingly important in biomed-
ical literature mining [10] to obtain key information on
genomic variants for personalised medicine.

Here, we built a structured dataset of human genetic
polymorphisms associated with nutrition by mining the
LitVar database [11], which contains curated informa-
tion on genetic variations and their functional effects;
the PubMed-Medline database, which provides struc-
tured MeSH ontology annotations; and the GWAS catalog
dataset, which reports human variant-traits associations.
Our dataset includes data from PubMed studies associ-
ated with nutrition-related genetic polymorphism. This
data where then queried employing MeSH ontology for
retrieval of nutrition-related genetic data. Specific sets
of MeSH terms related to nutrition physiology, nutrition-
related diseases, prevention through diet, and eating be-
havior were used to retrieve subsets of genes and their
single-nucleotide polymorphisms (SNPs) potentially as-
sociated with nutrition-related traits. Cross-referencing
with the GWAS catalog dataset [12] provided informa-
tion about effect/risk alleles associated with the collected
studies. The resulting dataset was validated to ensure
data quality, consistency, and relevance to nutrition and
nutrigenomics research, thus providing a valuable resource
to investigate the intricate interplay between genetics and
nutrition.

2 Methods

We developed an integrated dataset by cross-referencing
genomic data with scientific literature using shared
PubMed IDs to link the LitVar and PubMed databases.
This linkage allowed us to enrich LitVar’s association data
by incorporating Medical Subject Headings (MeSH).

The MeSH Ontology is a structured and controlled vo-
cabulary that supports the annotation and indexing of
biomedical literature and datasets. It provides standard-
ized descriptors that facilitate the organization and re-
trieval of scientific information within the domains of
biomedicine and healthcare informatics. The structured
nature of MeSH terms enhances their applicability and
robustness for comprehensive information retrieval and
analysis of scientific indicators. In a database context,
MeSH terms function as metadata references, enabling
precise literature categorization and search [13].

The LitVar database is an extensive and publicly ac-
cessible repository that aggregates information on genetic
variants and links them with corresponding scientific liter-
ature. Its purpose is to address the challenge of connecting
genomic data with the relevant literature by synthesizing
information on genetic variants from diverse sources, em-
ploying NER techniques [11]. PubMed operates as the pri-
mary digital library for biomedical literature, offering an
invaluable resource for scientific inquiry. Data extraction
from PubMed is essential for various research activities,
including systematic reviews, data mining, and knowledge
discovery [14].

To construct our dataset, we implemented a Python-
based data processing pipeline designed to integrate het-
erogeneous data sources by utilizing the MeSH ontology as
a central schema for data harmonization. This pipeline al-
lows extraction, integration, and querying of genetic poly-
morphism information pertinent to specific research do-
mains, such as nutrigenetics. The output dataset, referred
to as GRPM dataset, encapsulates primary identifiers, in-
cluding Genes, Reference SNP IDs (RsIDs), PubMed IDs
(PMIDs), and MeSH terms. Recognizing the pivotal role
of genetic influences in nutrition-related traits, the GRPM
dataset facilitates comprehensive exploration and analy-
sis, thereby supporting researchers and nutritionists in ad-
vancing personalized nutrition studies.

The data retrieval and integration pipeline is imple-
mented in a Jupyter Notebook environment [15] and com-
prises five distinct modules, each tailored to perform spe-
cific functions essential for the assembly and utilization
of a comprehensive genetic polymorphism dataset (as il-
lustrated in Figure 1). These modules are outlined as
follows:

1. GRPM Dataset Building : This module orchestrates
the extraction, integration, and consolidation of
data from source databases, including LitVar and
PubMed. It ensures the comprehensive collection of
genetic polymorphisms associated with topic-related
traits (GRPM dataset).
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Figure 1: Graphical overview of our workflow showcasing the input data and interactions between the five modules.

2. MeSH Term Selection: This module facilitates the
definition of MeSH ontology term sets. These are
employed to query the GRPM dataset.

3. GRPM Dataset Querying : This module allows users
to query the dateset using predefined MeSH terms.
Users can thus refine their searches to focus on spe-
cific areas of interest, ensuring targeted data retrieval
pertinent to their research needs within the GRPM
dataset.

4. Gene Prioritization: This module assigns a relative
importance score to each gene based on the frequency
and proportion of associated findings. This metric
enables the prioritization of genes pertinent to spe-
cific research topics, aiding further investigation.

5. GWAS Data Integration: The integration of the
GWAS catalog provides additional insights into ef-
fect and risk alleles associated with the identified ge-
netic polymorphisms. This process enriches our nu-
trigenetic resource with supplemental data for further
analysis.

All implementation details, along with usage instruc-
tions, are available in the open-access repository on
GitHub1.

2.1 GRPM Dataset Building

The first module uses the LitVar Application Program-
ming Interface (API)2 to retrieve all polymorphisms for
each human gene within the LitVar database alongside all
associated PMIDs. These PMIDs were subsequently em-
ployed as queries on PubMed to obtain the bibliographi-
cal data. We empoloyed an NBIB parser3, to extract and
structure this data in a machine readable format. The
collected data were ultimately consolidated into a single
CSV file (“GRPM dataset”), serving as the primary source

1https://github.com/johndef64/GRPM_system
2https://www.ncbi.nlm.nih.gov/research/litvar2/api
3https://pypi.org/project/nbib/

against which MeSH term queries can be employed to re-
trieve genes and polymorphisms associated with specific
contexts.

This work is based on the first version of LitVar, which
is no longer available online and has been entirely replaced
by LitVar 2.0 [10]. This version was chosen based on sev-
eral reasons. Firstly, the first version of LitVar possesses a
higher level of reliability, a product of extensive examina-
tion and rectification of any discrepancies over its period
of usage. Besides, the relatively simpler structure of the
data in this version eschews unnecessary complexity posed
by more recent data structures, thereby making data ex-
traction and manipulation operations more straightfor-
ward. The decision to use LitVar first version was the
result of a thorough cost-benefit analysis, weighing the
potential superior data precision provided by LitVar 2.0,
which also comes with substantially larger datasets that
could introduce additional noise, against the reliability
and simplicity of the first version. The dataset produced
here provides a faithful and historical archive of the first
version of LitVar by collating the bibliographic references
along with the genes and polymorphisms associated with
them.

2.2 Query definition

The retrieval system to get subsets of genes and poly-
morphisms from GRPM dataset employes a user-defined
list of MeSH terms as a hook. Careful selection of the
MeSHs is crucial at this stage: the list must represent
the chosen search field out of the total complex of terms
in GRPM dataset. The total set of MeSH describing the
GRPM dataset comprises 21,705 terms related to LitVar
publications retrieved from the complete MeSH ontology4

(348,733 terms). Therefore, this subset collects ontology
terms linked to papers exploring the associations between
genetic variants and biomedical traits.

The second module is designed to select from the MeSH
ontology a set of terms that represent a specific biomed-

4The complete MeSH dataset can be downloaded at https://
www.nlm.nih.gov/mesh/meshhome.html
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ical fields. Initially, we constructed a collection of topic-
specific terms based on our domain knowledge in nu-
trigenetics. These topic-relevant terms were then pro-
cessed to identify corresponding MeSH terms using a
straightforward Natural Language Processing (NLP) ap-
proach.Subsequently, the extracted MeSH terms under-
went a filtering process based on their defined “seman-
tic types”. This step was followed by a manual screen-
ing to remove any ambiguous or potentially biased terms.
This rigorous filtration ensures that only the most rele-
vant terms are employed for dataset querying.

2.3 GRPM Dataset querying

In the third module, the predefined MeSH list is utilized
to execute targeted queries on the GRPM Dataset, aimed
at retrieving association data pertinent to genetic research
("Survey Dataset").

Upon execution of the queries, an extraction report is
compiled, aggregating the occurrence statistics from var-
ious data sources (NCBI, LitVar and PubMed) for each
retrieved gene. These reports are subsequently subjected
to both individual and comparative analyses in the fourth
module.

2.4 Nutrigenetic Dataset Building

In order to build a nutrigenetic dataset, we defined
ten major topic of interest covering nutrition physiol-
ogy, nutrition-related diseases, disease prevention through
diet, and eating behavior. For each of these topics, fol-
lowing the procedure described in the 2.2 section, we pre-
pared MeSH queries to submit to our dataset. The topics
delineated include:

1. General Nutrition: Encompasses a broad range of
issues concerning dietary patterns, nutritional status,
and overall health.

2. Obesity, Weight Control, and Compulsive Eating : Fo-
cuses on weight management and related disorders.

3. Cardiovascular Health and Lipid Metabolism: Re-
lated to the impact of diet on heart health and lipid
levels.

4. Diabetes Mellitus Type II and Metabolic Syndrome:
Covers dietary interventions and metabolic compli-
cations.

5. Vitamin and Micronutrients Metabolism and
Deficiency-Related Diseases: Involves the
metabolism and health impact of vitamins and
micronutrients.

6. Eating Behavior and Taste Sensation: Related to
food choices, taste preferences, and appetite regula-
tion.

7. Food Intolerances: Addresses adverse reactions to
specific foods and their genetic basis.

8. Food Allergies: Explores genetic aspects and dietary
management strategies for allergies.

9. Diet-induced Oxidative Stress: Investigates how diet
influences oxidative stress and health outcomes.

10. Xenobiotics Metabolism: Focuses on how the body
processes foreign substances like drugs and toxins.

For more detailed descriptions and the MeSH count
associated with each topic, please refer to Table S1 in the
Supplementary Materials.

The nutrigent dataset was then constructed by merg-
ing the results of the 10 queries and filtering them using a
metric based on the number and specificity of publications
associated with each gene. Then, we calculated for each
gene a score (Gene Interest Index (GI)), considering
potentially “interesting” a gene if its related SNPs are as-
sociated with a substantial number of PMIDs (PubMed
IDs) that include MeSH terms in the query and if the ra-
tio between these PMIDs count and the total number of
gene-associated PMIDs is sufficiently high.

To evaluate the pertinence of the retrieved gene set for
the specified topic, it is essential to treat the employed
MeSH set as a cohesive unit rather than analyzing the
terms in isolation. This approach acknowledges the vary-
ing significance of each term within the context of the
overall ontology. To determine if a gene is “interesting”
based on its linked MeSH terms in LitVar-annotated stud-
ies, we propose normalizing the count of identified PMIDs
by the total PMID count associated with that gene within
the LitVar database. This methodology aids in reducing
selection bias that may arise from genes that are exten-
sively researched and thus associated with a larger number
of MeSH terms, which might not be directly relevant to
the specific query at hand.

Given the set of genes L(i) retrieved with the query (j),
we introduce the following indices:

1. Pgi: The total number of PMIDs associated with gene
i;

2. Pmi,j : The number of i-related PMIDs containing at
least one MeSH from the query j;

3. Pmmax: The highest Pmi,j value across all the genes
in L;

4. Pmscorei,j : the Pmi,j value normalized Pmmax;

5. Pmratioi,j : the ratio of Pm to Pg. It measures the
proportion of matching PMIDs to the total PMIDs
associated with the gene.

Based on these indices, we introduce the “Gene Interest
Value” (GV), calculated as the product of "Pm score” and
"Pm ratio” and its normalized form, the “Gene Interest
Index” (GI), which is adjusted relative to the maximum
value obtained in the survey. The ratio serves as a modi-
fier in determining the level of interest for each gene.
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GVij = Pm index · Pm ratio =
Pmij

Pmmax
· Pmij

Pgi
(1)

GI =
GV

GVmax
(2)

By integrating the Pm score and Pm ratio, the GI
method acts as a coherent measure of gene relevance. Fig-
ure 2 visually represents an example of gene prioritization
obtained through the Index using the “Obesity and Weight
Control” MeSH list as a reference. Panel (a) shows the
Pm ratio (green) and Pm score (yellow). It highlights the
importance of considering both indexes, which produce
different orders. In Panel (b), the gene relevance-based
sorting achieved with the GI is presented, and it is pos-
sible to appreciate the highest prioritization performance
versus the other two. The integrated assessment provided
by the GI method allows for more accurate gene priori-
tization, leading to a deeper understanding of gene-gene
interactions and potential therapeutic targets in obesity
and weight control management. Another example of gene
prioritization through GI is presented in Supplementary
Materials (Figure S1).

In Section 3, we present the results obtained by ap-
plying the Gene Interest Index (GI) to ten nutritional
MeSH queries results for genetic association retrieval on
the GRPM dataset. We established a GI cut-off of 0.0125,
which corresponds to the mean value of the 95th percentile
across all ten query results. This threshold encompasses
the top 5% of the retrieval results on average, thereby ac-
commodating the long-tail distribution characteristic of
the data.

Most protein-coding genes had citations with at least
one of the MeSH in the query, but not all are relevant.
By setting a GI threshold, we prioritized genes that fit
our tailored MeSH terms, focusing on those with higher
relevance in nutrigenetic dietary advice. This helped elim-
inate noise and focus on genes likely to offer valuable in-
sights into gene-diet interactions and personalized nutri-
tion.

2.5 GWAS data integration

The exploration of each study to discern the associated
effect allele for every SNP ID presents a challenge due
to its time-intensive nature. An initial assessment of the
potential effect allele is instrumental for conducting pre-
liminary investigations. To streamline this process, we
integrated the Ensembl GWAS Catalog data5 [12] into
our nutrigenetics dataset, in the fifth module in our data
pipeline.

To incorporate GWAS data, we leveraged the BioBERT
language model, a state-of-the-art tool specifically tai-
lored for biomedical text mining [16]. BioBERT, an adap-
tation of BERT, is designed to capture and represent com-
plex biomedical concepts within a high-dimensional vec-

5https://www.ebi.ac.uk/gwas/docs/file-downloads

tor space. This enhanced representation is instrumen-
tal in discerning semantic relationships within biomedical
terminology. This approach for semantic annotation and
entity linkage draws on methodologies similar to those
evaluated in Tutubalina et al.’s work on information ex-
traction using BERT models for biomedical search engines
[17]. We employed BioBERT-generated embeddings for
both MeSH terms and GWAS trait descriptions to assess
semantic similarity. This was achieved by calculating the
cosine similarity between these numerical vectors, allow-
ing for the identification of closely related entities. Only
associations that scored above a 90% similarity threshold
were retained, following a thorough manual verification
of their correctness. This step provided us with a reli-
able correlation map between MeSH concepts and GWAS
traits or diseases. Subsequently, we merged the enriched
GWAS Catalog data with our nutrigenetic dataset, align-
ing them based on SNP identifiers. The integration was
further processed using the correlation map, ensuring that
only highly relevant associations were included. As result,
the enhanced dataset includes information on the most
significant SNP-risk alleles linked to each Reference SNP
ID (rsID).

Additionally, the alignment of GWAS associations acts
as a quality validation mechanism for the proposed
methodology based on MeSH terms, counteracting poten-
tial biases often introduced by text mining. The inclusion
of a MeSH term does not inherently verify that the cited
SNP is biologically associated with the queried phenotype;
rather, it ensures citation within the same study, secur-
ing more accurate phenotype-genotype connections. By
incorporating GWAS data, we can mitigate these biases,
ensuring that the associations identified through MeSH-
driven queries align with validated genetic correlations
within the domain of personalized nutrition research.

3 Results

As result, using the outlined workflow, we have con-
structed a primary dataset, termed GRPM, from which
we have extracted a nutrigenetics-specific subset using
custom-designed MeSH-based queries. This dataset was
filtered using the GI metric to select the most relevant re-
sults. Subsequently, it was augmented with GWAS data
through semantic integration techniques. Consequently,
the outcomes are three datasets of progressively smaller
size:

1. Primary GRPM Dataset : Dimensions (16,610,132
rows, 6 columns)

2. Nutrigenetic Subset : Dimensions (1,171,249 rows, 6
columns)

3. Nutrigenetic Dataset Augmented with GWAS : Di-
mensions (179,664 rows, 15 columns)

In Tables 1 through 2 and 3, examples of entries for
the three datasets along with their respective data dictio-
naries are provided. These datasets are stored on Zen-
odo (https://zenodo.org/records/14052302) and can
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Figure 2: Visual representation of Gene Interest Index (GI) calculation though Pm score and Pm ratio, using as reference the
results from "Obesity and Weight Control" MeSH query (see results section). Panel (a) shows the matching PMID ratio and
overall matching PMID score. Panel (b) displays the gene relevance sort achieved with the GI.

be easily accessed using the provided Jupyter Notebooks
or by installing the Python package (https://github.
com/johndef64/GRPM_system). Query examples can be
found in the ’test’ directory of the package.
pip install git+https :// github.com/johndef64/

GRPM_system.git

Listing 1: Python package installation

LitVar is a significant resource developed through ex-
tensive NER of genetic literature. However, the Lit-
Var API (https://www.ncbi.nlm.nih.gov/research/
litvar2/api) currently supports queries using gene sym-
bols or variants (rsID), but does not facilitate retrieval
based on phenotypic effects. Our research addresses this
limitation by enhancing the LitVar dataset with MeSH
ontology and GWAS phenotypes. This integration facili-
tates targeted retrieval of variants from indexed literature,
enabling the construction of a specialized nutrigenetics
dataset.

GRPM Dataset Figure 3 presents a compositional
and comparative overview of the primary GRPM dataset.
This dataset comprises approximately 77% of the PMIDs
retrieved from the LitVar database (as of June 2023).

These PMIDs have been associated with MeSH terms
sourced from PubMed, facilitating enhanced semantic an-
notation and interoperability.

Employing this dataset, it is crucial to consider the
PMID count associated with each gene. Genes with higher
research prominence are linked to a greater number of
PMIDs, resulting in an increased number of MeSH anno-
tations. Therefore, to ensure proper data normalization
and analysis, it is vital to comprehensively identify and
understand the most frequently represented genes within
the dataset (Figure 3b).

Nutrigenetic dataset Our study aimed to create a nu-
trigenetic dataset using a collection of MeSH terms related
to different aspects of nutrition.

Table 2 provides a statistical overview of the data
sourced from nutritional MeSH-based queries executed on
the GRPM dataset. Given the extensive scope of our
dataset, which includes a wide range of genes and asso-
ciated MeSH terms, identifying genes that are most per-
tinent to specific research objectives presents a notable
challenge. To address this complexity, this primary re-
sults are refined using a Gene Interest (GI) metric thresh-
old of 0.0125. This filtering criterion is crucial for isolating
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Table 1: GRPM Dataset description

Data Dictionary

Field Description Type Example
gene Gene symbol string GLIS3
type Gene type* string PCG
rsid Reference SNP ID string rs779079998
pmid PubMed ID for associated literature string 17076841
mesh Medical Subject Headings string "Diabetes Mellitus, Type 2"
qualifier Qualifier for MeSH term string genetics
major Indicates if the MeSH term is a major topic boolean True

Dataset Sample entry

gene type rsid pmid mesh qualifier major
DNMT3A PCG rs377577594 25315154 DNA Methylation drug effects True
GLIS3 PCG rs7020673 24060607 Diabetes Mellitus, Type 2 genetics True
CFB PCG rs779079998 25222132 NIH 3T3 Cells False
EYA1 PCG rs3779747 23840632 Protein Tyrosine Phosphatases metabolism False
ABCB1 PCG rs2032582 33326171 Ovariectomy False

* PCG: protein coding genes; RNA: RNA genes; PSD: pseudogenes

Figure 3: Overview of the Primary GRPM Dataset. Panel (a) shows the distribution patterns of genes, rsID, PMID, and MeSH
terms for each entry type. Panel (b) identifies the 50 most frequent genes within the dataset, alongside their referenced PMID
counts and correlated MeSH terms.

the most significant genetic associations, thereby enhanc-
ing their utility in nutrigenetics research. By leveraging
this data-driven approach, we have effectively prioritized
the extraction of the most pertinent and impactful data,
facilitating the development of our final, refined dataset.

Nutrigenetic GWAS dataset Cross-referencing data
between our refined nutrigentic dataset and GWAS cat-
alog provides indicative information about possible risk
alleles associated with the collected studies. Table 3
shows the data dictionary and sample entries of this cross-
dataset, displaying data from the genetic literature along-

side the GWAS data associated to the same rsID, such as
Mapped Trait and Strongest Risk Allele. The resulting
dataset comprises 385 unique genes with mapped data.
Additionally, it includes 126 distinct MeSH terms, 316
mapped GWAS traits, and identifies 1,211 strongest SNP-
risk alleles. This structured dataset aligns with our ob-
jective to facilitate precise and targeted retrieval in the
nutrigenetics domain.
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Table 2: Nutrigenetic Datasest structure and statistics

Data Dictionary
Attribute Description Type Example

gene Gene symbol string TCF7L2
rsid Reference SNP ID string rs7901695
pmid PubMed ID string 17311858
mesh Medical Subject Headings string Body Height
topic Nutrigenetic topic of interest string Obesity, Weight Control and Compulsive Eating
interest_index Gene Interest Index, normalized score float 0.69794

Nutrigenetic Dataset Entry Sample
gene rsid pmid mesh topic interest_index
PCSK9 rs970575319 24115837 Receptors, LDL Cardiovascular Health and Lipid Metabolism 0.41714
NOS3 rs1799983 30738311 Nitric Oxide Diet-induced Oxidative Stress 0.6236
IL18 rs1946518 31835423 Insulin Resistance General Nutrition 0.03126
THADA rs7578597 25667308 Diabetes Mellitus, Type 2 Cardiovascular Health and Lipid Metabolism 0.08387
MIA3 rs17465637 28686695 Inflammation Diabetes Mellitus Type II and Metabolic Syndrome 0.06364

Statistics
MeSH query results Filtered values (GI > 0.0125)

topic gene rsID PMID MeSH gene rsID PMID MeSH
General Nutrition 11,560 83,288 62,473 413 686 26,456 44,859 397
Obesity & Weight Control 9,713 53,879 35,563 243 317 10,842 22,123 230
Diabetes Type II & MS 10,717 68,844 49,896 319 603 22,270 36,198 297
Cardiovascular Health 12,368 105,598 85,065 528 975 41,931 66,113 521
Vitamins & Minerals 4,045 16,857 11,941 175 89 3,525 6,882 147
Eating Behavior 5,525 20,607 13,734 292 211 4,252 7,241 256
Food Intolerances 4,040 14,117 7,416 145 392 5,008 4,726 125
Food Allergies 4,681 16,777 11,032 65 451 6,289 7,762 64
Oxidative Stress 5,156 20,919 19,295 77 75 2,559 10,058 60
Xenobiotics Metab 7,115 35,686 27,237 170 173 7,159 14,171 151
Unique values 13,955 160,578 135,737 1,593 1,773 63,531 99,759 1,486

3.1 Data Analyisis

To elucidate the relationships within our dataset, we
analyzed the prevalence of key genes and their associated
MeSH terms and PMIDs across the ten nutrigenetic top-
ics investigated in our research. This analysis, detailed
in more detail in the Supplementary Material (see Figure
S2), provides a comparative framework to assess the rele-
vance of genes for various nutrition-related traits. In Fig-
ure S2, the richness of associated MeSH terms and PMIDs
for the top 50 genes is highlighted, enabling an enhanced
understanding of gene relevance within each topic.

To evaluate the extent of data overlap from the ten
nutritional topics, we constructed co-occurrence matri-
ces. Figure 4 illustrates the co-occurrence patterns among
genes, rsID, PMID, and MeSH terms from the result-
ing nutrigenetic dataset. In this correlation analysis, we
computed relative values for each topic by evaluating
the ratio of shared entities to the total number of enti-
ties. This methodology allows for a detailed examination
of co-occurrence within specific categories, facilitating a
nuanced understanding of relationships and interactions.
Remarkably, the correlation matrix in Figure 4 reveals
substantial overlap between various MeSH term lists, such
as the topic of ’obesity’, which shares approximately 80%
of its items with the topic of ’diabetes’ and ’cardiovascu-
lar health’, demonstrating a significant 40-60% overlap in
this cluster of three categories.

3.2 Method Validation

Figure 5a shows the 50 most interesting genes for the
topic "Vitamin and Micronutrient Metabolism" compared
to the values of interest on results obtained from 5 other
nutrigentic topics. The genes extracted using our method
show specificity for the topic used as a reference. This
behavior suggests that our method can identify genes re-
lated to that particular nutritional aspect. It can be seen
in Figure 5a that some of the genes have higher GI in
other topics than the one taken as a reference in the plot,
meaning they are more closely associated with other nu-
tritional features or specific biological processes. This ob-
servation suggests the complexity of gene regulation in
nutrient metabolism and underscores the importance of
considering a broader range of nutritional MeSH terms
to gain a comprehensive understanding of the biologi-
cal system under consideration. Supplementary Materials
provide additional GI comparison results, showcasing the
comparison among another MeSH list utilized in our study
(Figures S3, S4). To ensure the accuracy and reliability of
the data collected, we compared the results obtained with
biologically consistent MeSH queries with those obtained
with 20 random MeSH queries6 of the same size. Figure
5b provides an example of the comparison results in the
"General Nutrition" topics. Another example is shown in
Supplementary Materials (S4).

6Containing 450 random terms each, based on 21,705 MeSH in
the GRPM dataset.
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Table 3: Nutrigenetic-GWAS Cross-Dataset description and statistics

Data Dictionary

Field Description Type Example
GRPM_GENE Gene symbol string PCSK9
GRPM_RSID Reference SNP ID string rs11591147
GRPM_PMID PubMed ID string 29083407
GRPM_MESH Medical Subject Headings (MeSH) term string Coronary Artery Disease
GRPM_TOPIC Research topic or category string General Nutrition
GRPM_GI Gene Interest Index (GI) float 0.2677
SEMANTIC_SIMILARITY Semantic similarity score float 0.9777
GWAS_DISEASE/TRAIT GWAS reported disease or trait string Coronary artery disease
GWAS_CONTEXT GWAS context such as variant type string missense_variant
GWAS_STRONGEST_SNP-RISK_ALLELE Strongest SNP-risk allele identified in GWAS string rs11591147-T
GWAS_OR-BETA Odds ratio or beta value from GWAS float 0.2406
GWAS_STUDY_ID Identifier for the GWAS study string GCST005195

Dataset Entry Sample

Gene RSID PMID MESH Topic GI Semantic
Simi-
larity

GWAS Disease
/Trait

GWAS
Context

GWAS SNP-
Risk Allele

GWAS
OR/-
Beta

GWAS
Study ID

PCSK9 rs11591147 29083407 Coronary
Artery
Disease

General Nutri-
tion

0.2677 0.9777 Coronary artery
disease

missense
variant

rs11591147-T 0.2406 GCST005195

TM6SF2 rs58542926 26409295 Non-
alcoholic
Fatty Liver
Disease

Cardiovascular
Health

0.3265 0.9218 Nonalcoholic
fatty liver disease

stop gained rs58542926-T 0.3900 GCST90104598

CNNM2 rs11191548 27251080 Hypertension General Nutri-
tion

0.0569 1.0000 Hypertension 3 prime
UTR vari-
ant

rs11191548-C 0.8600 GCST011141

PCSK9 rs11591147 23226021 Cholesterol,
LDL

Cardiovascular
Health

0.4171 0.9110 Total cholesterol
to lipids ratio in
IDL

missense
variant

rs11591147-T 0.2576 GCST90301976

LPA rs3798220 23881580 Triglycerides Cardiovascular
Health

0.1575 0.9508 Triglyceride lev-
els

missense
variant

rs3798220-C 0.0921 GCST90019523

ALDH2 rs671 20518787 Alcohol
Drinking

Eating Behavior
and Taste Sen-
sation

0.3146 0.9136 Alcohol con-
sumption

missense
variant

rs671-A 1.3877 GCST90104202

F2 rs1799963 26554832 Venous
Thrombo-
sis

Cardiovascular
Health

0.4423 0.9343 Venous throm-
boembolism

3 prime
UTR vari-
ant

rs1799963-A 0.7972 GCST90399745

Statistics

Topic GRPM_GENE GRPM_RSID GRPM_PMID GRPM_MESH GWAS_DISEASE/TRAIT GWAS_STUDY_ID

General Nutrition 214 551 3978 40 139 402
Obesity & Weight Control 97 257 1672 26 38 169
Diabetes Type II & MS 197 526 3477 46 333 683
Cardiovascular Health 242 610 4585 63 497 899
Vitamins & Minerals 16 31 1259 9 14 19
Eating Behavior 35 51 518 7 11 41
Food Intolerances 43 65 99 7 8 24
Food Allergies 44 55 90 11 17 30
Oxidative Stress 8 11 655 5 9 12
Xenobiotics Metab 10 14 1399 10 13 28
Unique Values 385 944 7278 126 588 1140

4 Discussion

Understanding how genetic variations influence individ-
ual nutritional requirements, metabolism, and health out-
comes is crucial for developing personalized nutrition in-
terventions [18]. By considering an individual’s genetic
profile, healthcare operators and nutritionists can provide
tailored dietary advice, optimizing nutrient bioavailabil-
ity, and promoting better health outcomes, thus prevent-
ing chronic diseases such as obesity [19], diabetes [20], or
cardiovascular diseases [21].

Personalized healthcare and prevention strategies are
central to advancements in translational bioinformat-
ics [22]. The creation of sophisticated computational
methodologies and tools for aggregating and analyzing
data from diverse sources significantly enhances data in-
tegration, enabling the transformation of biomedical find-
ings into tailored nutritional guidance and precision nu-
trition strategies for disease prevention [23, 24].

As remarked by Floris et al., the current approach

adopted by many companies in nutrigenetic counseling
still relies on a limited set of genes and polymorphisms for
genetic testing and counseling [25]. However, as sequenc-
ing costs continue to decrease and sequencing technolo-
gies become more accessible than before, it is no longer
justifiable to base nutrigenetic panels on a small num-
ber of genetic markers [25]. Using a limited set of genes
and polymorphisms may overlook significant genetic vari-
ations that affect an individual’s response to nutrients and
dietary patterns. Our study addresses the limitations of
current approaches in nutrigenetics by consolidating and
standardizing information on genetic polymorphisms as-
sociated with nutrition. Our nutrigenetic dataset offers a
broader scope and coverage, improving the global under-
standing of the interplay between genetics and nutrition-
related traits.

The resulting dataset is an integrated resource for di-
verse data sources related to genetic polymorphisms asso-
ciated with nutrition. This resource enables efficient re-
trieval and analysis, facilitating comprehensive research
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Figure 4: Co-occurrence patterns observed among genes, rsIDs, PMIDs, and MeSH terms in the refined dataset (GI > 0.0125)
across ten nutritional topics. The color coding indicates the degree of overlap between datasets, normalized by the total size
of each dataset.

in nutrigenomics. It is essential to highlight that this
method’s potential applications extend beyond the scope
of our study. Our approach can be employed to gather
specific genetic polymorphisms associated with various
health or biological dysfunctions, empowering healthcare
practitioners to tailor interventions based on an individ-
ual’s genetic profile [26].

In our nutrigenetic dataset, the heterogeneity of MeSH
term representation across nutrigenetic topics suggests
that some topic encompass a wider array of aspects within
nutrition, while others are more specialized with a fo-
cused scope. Notably, the genes highlighted in our study,
as derived from MeSH queries (as detailed in Table 2),
are prominent in nutrigenetics research. These genes, fre-
quently cited in the literature, consistently appear across
multiple MeSH queries, underscoring their significance re-
garding nutrition-related traits.

From a broader standpoint, the analysis revealed a high

degree of overlap between genes associated with specific
nutritional topics (Figure 4). For example, ’obesity’ ex-
hibit high overlap with the ’diabetes’ and ’cardiovascu-
lar health’, indicating shared genetic polymorphisms and
pathways. This finding is not surprising given the close
relationship between obesity, diabetes, and cardiovascular
health, as these conditions often coexist and share com-
mon genetic and physiological factors. The high overlap
suggests that shared genetic polymorphisms and path-
ways may be involved in these conditions. Conversely,
the lower degree of overlap between specific topics could
be attributed to their specificity, focusing on more specific
biological processes or conditions with distinct genetic un-
derpinnings. This behavior can be attributed to several
factors. Firstly, these topics may be described by fewer
MeSH terms, leading to a narrower focus and less overlap
with others. Secondly, these topics may pertain to more
specific biological processes or conditions with distinct
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Figure 5: (a) Comparison of GI for the top 50 genes on the “Vitamin and Micronutrient Metabolism” topic with GI obtained
from 5 different nutritional topics. (b) Comparison between GI obtained from the "General Nutrition" list and GI obtained
using 20 randomly generated MeSH queries of the same size represented as boxplots. In both graphs the y-axis is logarithmic;
genes are ordered by decreasing interest relative to the reference list.

genetic underpinnings than the broader conditions cap-
tured by the others. The integration of the nutrigenetic
dataset with the GWAS data corroborated our findings by
identifying potential risk alleles linked to specific genetic
polymorphisms. Utilizing semantic similarity techniques,
powered by the BioBERT language model, revealed a con-

sistent alignment between MeSH terms associated with
each PMID and the corresponding GWAS traits (Table 3).
This congruence affirms that genetic associations identi-
fied through literature-based MeSH queries are reinforced
by empirical evidence from GWAS studies.

To evaluate the validity and reliability of our results, we
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conducted a comparative analysis of the top-scoring genes
across different nutritional queries, as depicted in Figure
5a. This validation step effectively demonstrated the ca-
pability of our method to accurately pinpoint genes per-
tinent to distinct nutritional topics. Additionally, we ob-
served some genes exhibiting high relevance scores across
multiple nutritional contexts, underscoring the intricate
nature of gene regulation in nutrient metabolism and the
necessity of considering various nutritional dimensions.

To validate the accuracy and reliability of our dataset,
we assessed the outcomes generated from biologically co-
herent MeSH queries against those derived from random,
non-cohesive queries (Figure 5b). Our analysis under-
scored that biologically consistent MeSH queries yielded
significant and contextually relevant results for the nutri-
tional aspects under investigation. In contrast, random
MeSH queries produced non-significant outcomes with no
meaningful associations. This comparison underscores
the necessity of employing biologically pertinent MeSH
queries for extracting and prioritizing data that is gen-
uinely relevant to the specified biomedical domain.

However, it is essential to acknowledge the limitations
of this approach. One limitation of our approach is the
reliance on available literature and databases. The accu-
racy and reliability of the build resource depend on the
quality and completeness of the data retrieved from vari-
ous sources, as well as the accuracy of the data structur-
ing and integration process. Our method relies on data
from Medline studies, which may be subject to publication
bias [27]. The data quality and consistency of retrieved
data heavily depend on the quality of the original studies
and the curation process. Despite efforts to ensure data
quality, inconsistencies, errors, and biases in the original
studies may still be present in the constructed dataset.

Moreover, our dataset is limited to the data available
in the LitVar database, GWAS-Catalog, and the other
sources used in our study [28]. As a result, it may not en-
compass all potential genetic polymorphisms associated
with nutrition-related traits. Relying on available liter-
ature and data collection databases has limitations [29].
Despite our efforts to minimize MeSH attribution bias,
the dataset could not contain all the relevant literature.
Inconsistencies, errors, and biases in the original studies
may be transferred to the constructed dataset. Finally,
the dataset may cover only some populations and ethnic-
ities, which could limit its applicability to diverse popu-
lations with different genetic backgrounds [30].

Furthermore, it is essential to acknowledge the com-
plex and multifactorial nature of gene-environment inter-
actions, including dietary factors [31]. While our dataset
captures a subset of the possible interactions, it may not
encompass their full complexity. In interpreting the as-
sociations between genetic polymorphisms and nutrition-
related traits, it is crucial to consider other factors, such
as environmental influences, epigenetic modifications, and
gene-gene interactions [32]. Therefore, the complexity
of gene-environment interactions, including interactions
with dietary factors, requires further investigation beyond

the scope of this research. Moreover, to improve the va-
lidity of the study results, it is essential to assess the qual-
ity and scientific validity of the literature sources through
established criteria. Future research could follow the sci-
entific validity assessment criteria described by Grimaldi
et al.[33] to ensure the reliability of individual sources.

In considering the dataset’s future evolution, the frame-
work is designed to accommodate ongoing advancements
in nutrigenetics. The pipeline’s modular architecture al-
lows for systematic updates with new data sources and
literature, ensuring the dataset remains at the cutting
edge of scientific discovery. However, future updates must
be meticulously curated and validated to preserve the
dataset’s integrity, acknowledging that emerging research
may revise previously accepted insights. Implementing
robust data governance structures is essential to mitigate
inconsistencies and safeguard the dataset’s overall relia-
bility.

In future work, this dataset can be harnessed for the
application of advanced NLP techniques, such as more
recent semantic analysis methodologies. Currently, this
dataset has already been emloyed for data-driven topic
modeling and graph-based semantic analysis, which helps
to uncover underlying themes within the nutrigenetics lit-
erature [34]. By employing text mining techniques, par-
ticularly those utilizing pretrained language models, the
analysis of these datasets can be significantly enhanced.
This will facilitate the identification of complex interac-
tions between genes and dietary factors, allowing for the
detection of patterns and correlations as well as the de-
velopment of predictive models [35].

5 Conclusion

Our study presents a comprehensive nutrigenetic
dataset, constructed by integrating data from multiple
sources using the MeSH ontology. This dataset is a valu-
able resource for exploring genetic polymorphisms associ-
ated with nutrition-related traits. By consolidating and
standardizing genetic polymorphism data, our work aims
to advance personalized nutrition interventions and con-
tribute to the field of nutrigenomics.

The dataset, openly available, fills a significant gap in
the existing resources in the field, providing a reliable and
unified resource for investigating gene-diet interactions.
It underscores the importance of standardized curation
processes and highlights the role of translational bioinfor-
matics in merging and analyzing information from diverse
sources. By doing so, it facilitates comprehensive research
in nutrition and genetics, offering a practical tool for re-
searchers and nutritionists alike. We hope this dataset
will serve as a foundational resource for future nutrige-
netic studies and help in the development of personalized
nutrition strategies based on genetic insights.
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