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Abstract 12 

Objective: This study aimed to build a comprehensive dataset of human genetic polymorphisms associated 13 

with nutrition by integrating data from multiple sources, including the LitVar database, PubMed, and the 14 

GWAS catalog. Such a resource could facilitate the exploration of genetic polymorphisms associated with 15 

nutrition-related traits. 16 

Methods: We developed a Python pipeline to streamline the integration and analysis of genetic 17 

polymorphism data associated with nutrition. We employed the MeSH ontology as a framework to aggregate 18 

relevant genetic data. The pipeline comprises five distinct modules that go through the following steps: data 19 

extraction from LitVar and PubMed articles, generation of a joint dataset by data merging, generation of 20 

comprehensive MeSH term lists, filtering of the joint dataset using the selected MeSH sets, lexical analysis 21 

and augmentation of the dataset with data from of the GWAS catalog dataset. 22 

Results: We successfully aggregated a wide range of papers and data on genetic polymorphism and nutrition-23 

related traits into a single dataset. Cross-referencing with the GWAS catalog dataset provided information 24 

about possible effects or risk alleles associated with the identified genetic polymorphisms. The nutrigenetic 25 

dataset we developed is a tool for nutritionists and researchers, serving as a preliminary benchmark for 26 

personalized nutrition interventions based on genetic testing. 27 

Conclusion: The pipeline presented here consolidates and organizes information on genetic polymorphisms 28 

associated with nutrition, enabling comprehensive analysis and exploration of gene-diet interactions. 29 
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Overall, the method contributes to advancing personalized nutrition interventions and nutrigenomics 30 

research. The flexible nature of the system allows its application to other investigations related to genetic 31 

polymorphisms. 32 

Keywords: Nutrigenetics, Genetic polymorphisms, Personalized nutrition, Gene-diet interactions, Data 33 

integration, MeSH ontology 34 
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1. Introduction 35 

Nutrition is critical to health and disease (1). Emerging evidence suggests that genetic polymorphisms 36 

significantly impact an individual's response to different nutrients and dietary patterns by affecting nutrient 37 

bioavailability and metabolism (2). Moreover, it has been demonstrated that common gene variations are 38 

linked to complex chronic health issues significantly affected by nutritional factors (3). Advancements in 39 

genomics technologies and the subsequent availability of large-scale genetic data have fueled interest in 40 

identifying and categorizing genetic polymorphisms associated with nutrition-related traits (4). The field of 41 

nutrigenetics was thus born to comprehend how genetic variations influence an individual's nutritional 42 

requirements, metabolism, and health outcomes (5). By considering an individual's genetic profile, 43 

healthcare professionals and nutritionists can provide tailored dietary advice and interventions that optimize 44 

nutrient bioavailability and promote better health outcomes in that individual (6). Nutrigenetic associations 45 

imply that specific genetic polymorphisms can induce susceptibility to chronic diseases. The response to 46 

specific nutrients or dietary patterns may be crucial in determining health outcomes (6). 47 

Recent literature contains extensive data on nutrition-associated genetic polymorphisms (2,7). However, 48 

these data are often scattered, diverse in format, and lack a standardized curation process. Such 49 

complications hinder data integration, limit information extraction and synthesis, and pose a barrier to data 50 

utilization in decision support systems (8). Integrating available data and overcoming the limits of self-51 

reported methods in research is crucial for accurate omics data integration, nutrigenetics, and nutrigenomics 52 

research, especially in clinical settings (8). Therefore, there is a need to develop curated and consolidated 53 

resources that integrate nutrition-associated genetic polymorphism data, along with omics data, to advance 54 

personalized nutrition interventions and clinical decision-making. 55 

Here, we built a structured dataset of human genetic polymorphisms associated with nutrition by integrating 56 

data from different established sources: the LitVar database (9), which contains curated information on 57 

genetic variations and their functional effects; the Pubmed-Medline database, which provides structured 58 

MeSH ontology annotations; and the GWAS catalog dataset, which reports human variant-traits associations. 59 

Our dataset includes data from Medline studies associated with nutrition-related genetic polymorphism. 60 

Specific sets of MeSH terms related to nutrition physiology, nutrition-related diseases, prevention through 61 

diet, and eating behavior were used to extract subsets of genes and their single-nucleotide polymorphisms 62 

(SNPs) potentially associated with nutrition-related traits. Cross-referencing with the GWAS catalog dataset 63 

(10) provided information about effect/risk alleles associated with the collected studies. The database was 64 

curated to ensure data quality, consistency, and relevance to nutrition and nutrigenomics research, thus 65 

providing a valuable resource to investigate the intricate interplay between genetics and nutrition. 66 

 67 
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2. Methods 68 

2.1 General Presentation 69 

This study uses Medical Subject Headings (MeSH) to connect genetic polymorphism data from various 70 

resources. MeSH ontology (11) is a standardized and controlled vocabulary that offers descriptors utilized in 71 

biomedicine and informatics to classify and categorize biomedical literature and data. The standardized and 72 

controlled nature of MeSH terms makes them highly adaptable for broader utilization in analyzing scientific 73 

indicators. MeSH terms associated with a document can be thought of as references to a collection of 74 

knowledge stored as documents in a database (12).  75 

To build a structured dataset that aligns genomic data and scientific papers, we connected the LitVar and 76 

PubMed databases through shared MeSH terms. The LitVar database is a comprehensive and publicly 77 

accessible resource that collects information on genetic variations and their associated scientific literature. 78 

It aims to bridge the gap between genomic data and the relevant literature by aggregating and organizing 79 

information on genetic variants from a wide range of sources (9). PubMed serves as the principal repository 80 

of biomedical literature. Extracting data from PubMed is crucial for various research purposes, such as 81 

literature reviews, data mining, and knowledge discovery (13).  82 

We developed a Python pipeline that leverages the MeSH ontology as a crucial framework to aggregate 83 

genetic polymorphism data for a topic of interest effectively. We named the tool "GRPM system" (Gene-RsID-84 

PMID-MeSH) and specifically designed it to streamline the integration and analysis of genetic polymorphism 85 

data associated with a given biomedical field, such as nutrition. With the increasing importance of genetic 86 

factors in understanding nutrition-related traits, the GRPM system could help researchers and nutritionists 87 

explore and analyze such data efficiently. 88 

The system is written in Python, exploits the Jupyter Notebook format (14), and comprises five modules 89 

designed for specific purposes (Figure 1). These modules support the following operations: 90 

1. Data Retrieval and Merging: facilitates data extraction, integration, and consolidation from source 91 

databases, including LitVar and PubMed, ensuring a comprehensive collection of genetic 92 

polymorphisms associated with topic-related traits (GRPM dataset). 93 

2. MeSH Term List Creation: generates coherent MeSH term lists and links them to the collection, 94 

enabling efficient exploration of the GRPM dataset. This enrichment empowers users to access 95 

specific genetic information relevant to the chosen topic easily. 96 

3. Dataset Filtering with Selected MeSH Terms: enables the user to screen collected data using selected 97 

MeSH terms. This way, users can refine their search and focus on specific areas of interest within the 98 

GRPM dataset. 99 
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4. Statistical Analysis: assigns each gene a relative measure of interest based on the number and 100 

proportion of associated findings gathered in the GRPM dataset. This calculation enables the 101 

prioritization of genes related to a chosen topic, aiding further investigation or personalized nutrition 102 

interventions. 103 

5. GWAS Dataset Incorporation: integrates the GWAS catalog dataset into the collection, providing 104 

insights into effect/risk alleles associated with identified genetic polymorphisms. This process 105 

enriches our nutrigenetic resource with supplemental data for further analysis. 106 

More detailed information about the GRPM system, including implementation details and usage instructions, 107 

is available on GitHub1. 108 

Figure 1: A graphical overview of the GRPM system workflow showcasing the input data and interactions between the 109 
five modules. A brief quantitative description of the GRPM Dataset is also shown. 110 

 111 

2.2 GRPM Dataset Building 112 

The first module uses the LitVar Application Programming Interface (API)2 to retrieve all polymorphisms for 113 

each human gene3 within the LitVar database alongside all associated PubMed Identifiers (PMIDs). These 114 

PMIDs were subsequently employed as queries on PubMed to obtain MEDLINE data. We utilized the NBIB 115 

parser4, a Python package designed explicitly for parsing MEDLINE-PubMed data, to streamline the data 116 

collection. The collected data were ultimately consolidated into a single CSV file (from now on called “GRPM 117 

ds”), serving as the primary source against which MeSH term queries can be launched to retrieve genes and 118 

polymorphisms associated with specific contexts. 119 

 
1 GRPM_system (github.com): https://github.com/johndef64/GRPM_system 
2 LitVar API Docs: https://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/LitVar/api.html 
3 The HGCN names lists of human protein-coding genes, RNA genes, and pseudogenes were retrieved from the 

Ensembl database through the BioMart application. 
4 nbib · PyPI: https://pypi.org/project/nbib/ 
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2.3 Dataset filtering and screening 120 

The GRPM system is designed to retrieve subsets of genes and polymorphisms from GRPM ds, employing a 121 

user-defined list of MeSH terms as a hook. Careful selection of the MeSHs is crucial at this stage: the list must 122 

represent the chosen search field out of the total complex of terms in GRPM ds. For this purpose, we referred 123 

to the subset of 21.705 MeSH terms related to LitVar publications retrieved instead of the complete MeSH 124 

ontology (348.733 terms)5. This subset collects MeSH terms linked to papers exploring the associations 125 

between genetic variants and biomedical traits. 126 

The second module is built to subset this extensive MeSH collection with representatives of a particular 127 

biomedical field. We utilized the natural language processing capabilities of Generative Pre-trained 128 

Transformer (GPT) provided by OpenAI6 through its API. The procedure involved generating simple lists of 129 

words through one or more biologically relevant prompts (see Supplementary Materials). These lists are used 130 

to extract the real MeSH terms related to the subject from our dataset (70-400 MeSHs extracted for each 131 

query). Subsequently, the extracted MeSH terms were manually screened to eliminate ambiguous and bias-132 

generating terms. This filtering process ensures that only appropriate and meaningful terms are utilized for 133 

the subsequent full dataset screening. 134 

The screening of the entire dataset using the selected MeSH set (our query) is obtained by running our third 135 

Jupyter module. It takes approximately three to four hours on an average workstation using MeSH lists 136 

ranging in size from 100 to 400 terms. When the procedure ends, the system generates a comprehensive 137 

report and a curated "Survey Dataset" that captures the essential association data. The reports generated 138 

from various surveys are subjected to individual analysis and comparative examination in the fourth module. 139 

2.4 Gene Interest Index (GI) 140 

We consider a gene "interesting" if its related SNPs are associated with a substantial number of PMIDs (i.e., 141 

scientific papers) that include relevant MeSH terms and if the ratio between these relevant papers and the 142 

total number of papers associated with the gene is sufficiently high. 143 

To assess the relevance of the gene set retrieved for the chosen topic, it is crucial to consider the MeSH set 144 

employed as a single entity rather than independently, given the difference in the relative importance of 145 

terms. To define a gene as “interesting” based on its associated MeSH terms from related LitVar studies, we 146 

propose scaling the number of detected PMIDs (PubMed IDs) by all the PMIDs associated with that gene in 147 

 
5 The complete Medical Subject Headings dataset can be downloaded at 

https://www.nlm.nih.gov/mesh/meshhome.html 
6 OpenAI. (2023). ChatGPT (Mar 14 version) [Large language model]. https://chat.openai.com/chat 
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LitVar. This approach helps minimize selection bias caused by extensively studied genes associated with more 148 

MeSH terms than others — these terms could not be directly correlated with the query topic. 149 

Given the set of genes L(i) retrieved with the query (j), we introduce the following indices: 150 

1. P𝑔i: The total number of PMIDs associated with gene i; 151 

2. P𝑚i,j: The number of i-related PMIDs containing at least one MeSH from the query j; 152 

3. P𝑚max: The highest P𝑚i,j value across all the genes in L; 153 

4. P𝑚 scorei,j: the P𝑚i,j value normalized P𝑚max; 154 

5. P𝑚 ratioi,j: the ratio of P𝑚 to P𝑔. It measures the proportion of matching PMIDs to the total PMIDs 155 

associated with the gene. 156 

Based on these indices, we introduce the “Gene Interest Value” (GV), calculated as the product of "P𝑚 score” 157 

and "P𝑚 ratio” and its normalized form, the “Gene Interest Index” (GI), which is adjusted relative to the 158 

maximum value obtained in the survey. The ratio serves as a modifier in determining the level of interest for 159 

each gene. 160 

     (1.1) 161 

       (1.2) 162 

By integrating the P𝑚 score and P𝑚 ratio, the GI method acts as a coherent measure of gene relevance. 163 

Figure 2 visually represents an example of gene prioritization obtained through the Index using the “Obesity 164 

and Weight Control” MeSH list as a reference. Panel (a) shows the P𝑚 ratio (green) and P𝑚 score (yellow). It 165 

highlights the importance of considering both indexes, which produce different orders. In Panel (b), the gene 166 

relevance-based sorting achieved with the GI is presented, and it is possible to appreciate the highest 167 

prioritization performance versus the other two. The integrated assessment provided by the GI method 168 

allows for more accurate gene prioritization, leading to a deeper understanding of gene-gene interactions 169 

and potential therapeutic targets in obesity and weight control management. Another example of gene 170 

prioritization through GI is presented in Supplementary Materials (Figure S1). 171 
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 172 

Figure 2: Visual representation of Gene Interest Index (GI) calculation though P𝑚 score and P𝑚 ratio, using as reference 173 
the results from "Obesity and Weight Control" MeSH query (see results section). Panel (a) shows the matching PMID 174 
ratio and overall matching PMID score. Panel (b) displays the gene relevance sort achieved with the GI. 175 

2.5 GWAS Catalog data integration 176 

While examining every paper to unravel the associated effect allele for each SNP ID (rsID) can be time-177 

consuming, an initial indication of the potential effect allele is valuable for conducting preliminary studies. 178 

To address this issue, we leveraged Ensembl GWAS Catalog7 data (10).  179 

To integrate the GWAS data with the GRPM dataset, we followed a specific workflow (fifth module). First, we 180 

retrieved the GRPM Survey data. Then, we applied a Gene Interest (GI) cut-off of 0.0125 to the GRPM Survey 181 

data to prioritize the relevant genes. Most protein-coding genes have cited works with at least one of the 182 

MeSHs of the lists used, but this does not imply that it is relevant to consider them all. By setting a GI 183 

threshold value, we aimed to prioritize the genes that most fit with our tailored MeSH terms, allowing us to 184 

focus on genes and their SNPs that demonstrated a higher degree of interest and relevance in the field of 185 

nutrigenetic dietary advice. This approach helped remove noise or irrelevant results from the search process, 186 

 
7 GWAS Catalog (ebi.ac.uk): https://www.ebi.ac.uk/gwas/docs/file-downloads 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 8, 2023. ; https://doi.org/10.1101/2023.08.04.23293659doi: medRxiv preprint 

https://www.ebi.ac.uk/gwas/docs/file-downloads
https://doi.org/10.1101/2023.08.04.23293659
http://creativecommons.org/licenses/by-nc/4.0/


 

 

allowing us to focus on genes more likely to provide valuable insights into gene-diet interactions and 187 

personalized nutrition interventions. At this point, the filtered GRPM Survey and GWAS dataset were merged 188 

based on the rsIDs. The merge was efficiently aligned with the GRPM MeSH terms through a correspondence 189 

dictionary. We subsequently utilized the Natural Language Toolkit (NLTK)8 to tokenize the MeSH terms (and 190 

all their possible synonyms) and GWAS-mapped traits to perform the alignment. Finally, we retrieved the 191 

strongest SNP-risk allele for each rsID using the correspondence dictionary. This information serves as an 192 

initial indication and can be beneficial for conducting further studies, whether in a clinical or in-silico setting, 193 

based on the identified associations. 194 

3. Results 195 

3.1 GRPM Dataset Statistics 196 

When utilizing the dataset, it is essential to account for each gene's relative richness in PMID. The genes that 197 

garnered the most attention in research are associated with a higher number of PMIDs, resulting in more 198 

MeSH annotations. Hence, to ensure data normalization, it is imperative to obtain a comprehensive 199 

understanding of the most represented genes within the dataset. 200 

We divided the GRPM dataset9 into three distinct partitions based on the gene type included: Protein Coding 201 

Genes, RNA Genes, and Pseudogenes. Since some genes are absent in LitVar, the dataset covers 80% of 202 

human protein-coding genes. Figure 3 (a) shows the statistics for each partition, including the number of 203 

genes, rsID (reference SNP ID number) entries, PMID entries, and MeSH terms associated with each gene 204 

type. These genes were considered for further analysis and integration with other data sources. It is possible 205 

to appreciate how pseudogenes are associated with a negligible relative fraction of variants and publications 206 

(0.003% and 0.005%, respectively), although they account for ⅓ of Ensembl Genes entries. Figure 3 (b) shows 207 

the analysis of the fifty most extensively studied and represented genes within the GRPM dataset. Among 208 

them, TP53 and MTHFR concentrate the highest number of PMIDs, with and without MeSHs. This deviation 209 

is expected since both encode proteins extremely relevant to human metabolism and health — TP53 210 

(ENSG00000141510) encodes the Cellular tumor antigen p53 (P53_HUMAN), a tumor suppressor that 211 

monitors DNA integrity and initiates cellular responses to prevent tumor formation; MTHFR 212 

(ENSG00000177000) encodes the methylenetetrahydrofolate reductase (MTHR_HUMAN), that takes part in 213 

homocysteine metabolism and is essential for methylation reactions. 214 

 
8 NLTK - Natural Language Toolkit: https://www.nltk.org/ 
9 Available on Zenodo at https://zenodo.org/record/8205724 DOI: 10.5281/zenodo.8205724 
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A conspicuous portion of LitVar PMIDs (~77%) PMIDs extracted from LitVar is associated with MeSH terms, 215 

ensuring consistency and reliability for further investigations. 216 

Figure 3 Statistics concerning the primary GRPM dataset. In (a), the diagram showcases the distribution of genes, rsID, 217 
PMID, and MeSH terms across the three dataset partitions. (b) depicts the top fifty most represented genes in the 218 
dataset, along with their occurrence in PMID counts and PMID associated with MeSH terms. 219 
 220 

3.2 Nutrigenetic Dataset 221 

Our study aimed to create a nutrigenetic dataset using a collection of MeSH terms related to different aspects 222 

of nutrition. We utilized specific MeSH terms that covered nutrition physiology, nutrition-related diseases, 223 

disease prevention through diet, and eating behavior. This approach allowed us to process LitVar-PubMed 224 

data in a way relevant to personalized nutritional approaches. In Table 1, we describe each selected field of 225 

interest in the context of a personalized nutritional approach.   226 
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Table 1: Categories of nutrition-related MeSH terms used to build the nutrigenetic database. 227 

Category Description 
MeSH 
count 

General Nutrition 
A broad range of topics related to nutrition, including dietary 
patterns, nutrient requirements, nutritional status, and the 
impact of nutrition on overall health and well-being. 

413 

Obesity, Weight Control, and 
Compulsive Eating 

Terms related to weight management, including obesity, weight 
loss strategies, and disorders such as binge eating or compulsive 
overeating. 

243 

Cardiovascular Health and Lipid 
Metabolism 

Terms related to nutrition and cardiovascular health, including 
the impact of dietary factors on lipid metabolism, cholesterol 
levels, and the prevention of cardiovascular diseases. 

319 

Diabetes Mellitus Type II and 
Metabolic Syndrome 

Terms related to type II diabetes and metabolic syndrome. 
Including dietary interventions, glucose metabolism, insulin 
resistance, and related complications. 

528 

Vitamin and Micronutrients 
Metabolism and Deficiency-Related 
Diseases 

Terms related to the metabolism of essential vitamins and 
micronutrients, the impact of deficiencies on health, and the 
development of associated diseases. 

175 

Eating Behavior and Taste Sensation 
Terms related to individual eating behaviors, including factors 
influencing food choices, taste preferences, satiety, and appetite 
regulation. 

292 

Food Intolerances 

Terms related to adverse reactions to specific foods, such as 
lactose intolerance or gluten sensitivity. Explores the genetic and 
physiological factors underlying food intolerances and their 
impact on dietary choices. 

145 

Food Allergies 
Examines the genetic basis of food allergies, identification of 
allergenic components, and strategies for managing allergic 
reactions through diet. 

65 

Diet-induced Oxidative Stress 
Explores the relationship between dietary factors and oxidative 
stress and investigates the impact of diet on oxidative stress 
levels and its health implications. 

77 

Xenobiotics Metabolism 
Focuses on the metabolism of foreign substances (xenobiotics) in 
the body, including drugs, environmental toxins, and dietary 
components. 

170 

 228 

Figure S2 presents an overview of the most interesting genes with their relative MeSH and PMID values on 229 

the ten nutrient lists used in our study. This figure offers a representative example of the analysis conducted 230 

and allows for a quick comparison of gene relevance across different nutrient-related traits. The Figure allows 231 
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for a quick comparison of gene relevance across different nutrient-related traits, showing the relative 232 

richness of the associated MeSH terms and the papers associated with each gene. 233 

Table 2 provides statistical data on the ten nutritional MeSH term lists employed. The table left section 234 

provides information on data retrieved with every nutritional MeSH term list scanning the GRPM dataset. In 235 

a large dataset like this, there can be a wide range of genes and associated MeSH terms, making it challenging 236 

to identify the genes of highest interest and relevance to the specific research focus. For this reason, the right 237 

section presents the same data filtered Gene Interest (GI) < 0.0125, representing the most significant 238 

matches available for further investigation and nutrigenetic applications. Applying a GI cut-off was necessary 239 

to select the most relevant and meaningful search results. 240 

Table 2: Statistical data associated with the ten nutritional MeSH lists applied to the build dataset. 241 

 All MeSH matching in DB 
Interesting entries based on GI threshold 

(0.0125) 

label #gene #rsID #PMID #MeSH #gene #rsID #PMID #MeSH 

General 
Nutrition 

11,560 83,288 62,473 413 686 26,456 44,859 397 

Obesity & 
Weight Control 

9,713 53,879 35,563 243 317 10,842 22,123 230 

Diabetes Type II 
& MS 

10,717 68,844 49,896 319 603 22,270 36,198 297 

Cardiovascular 
Health 

12,368 105,598 85,065 528 975 41,931 66,113 521 

Vitamins & 
Minerals 

4,045 16,857 11,941 175 89 3,525 6,882 147 

Eating Behavior 5,525 20,607 13,734 292 211 4,252 7,241 256 

Food 
Intolerances 

4,040 14,117 7,416 145 392 5,008 4,726 125 

Food Allergies 4,681 16,777 11,032 65 451 6,289 7,762 64 

Oxidative Stress 5,156 20,919 19,295 77 75 2,559 10,058 60 

Xenobiotics 
Metab 

7,115 35,686 27,237 170 173 7,159 14,171 151 

 242 

 243 

 244 
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We constructed co-occurrence matrices to explore the extent of overlap within the data obtained from the 245 

ten nutritional MeSH lists. Figure 4 shows the co-occurrence patterns between genes, rsID, PMID, and MeSH 246 

terms among filtered results by GI > 0.0125. The heatmaps10 in Figure 4 show interesting overlap patterns 247 

among the different MeSH lists. For example, the results obtained from the "obesity" lists show a high overlap 248 

with the "diabetes" and "cardiovascular health" lists, sharing approximately 80% of the items. The latter 249 

shows a 40-60% overlap in this first group of three. 250 

Figure 4: Co-occurrence patterns among genes, rsID, PMID, and MeSH terms observed in the filtered results 251 
(GI > 0.0125) from the ten nutritional MeSH lists used for screening. The color key represents the amount of 252 
overlap between datasets scaled over the total size of each dataset. 253 

 
10 In the heatmap, we calculated row-wise (i.e., dataset) relative values as the ratio between number of shared entities 

and total number of entities of the row. This approach allows for a focused examination of co-occurrence within specific 
categories, providing a granular understanding of the relationships and interactions at the row level.  

 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 8, 2023. ; https://doi.org/10.1101/2023.08.04.23293659doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.04.23293659
http://creativecommons.org/licenses/by-nc/4.0/


 

 

3.3 Method Validation 254 

Figure 5 (a) shows the fifty most interesting genes in the "Vitamin and Micronutrient Metabolism" list 255 

compared to the values of interest on results obtained from 5 other nutritional MeSH term lists. The genes 256 

extracted using the GRPM system show specificity for the list of MeSH terms used as a reference model. This 257 

behavior suggests the GRPM system can identify genes related to that particular nutritional aspect. However, 258 

some of them are more interesting in other MeSH term lists than the one taken as a reference, meaning they 259 

are more closely associated with other nutritional features or specific biological processes. This observation 260 

suggests the complexity of gene regulation in nutrient metabolism and underscores the importance of 261 

considering a broader range of nutritional MeSH terms to gain a comprehensive understanding of the 262 

biological system under consideration. Supplementary Materials provide additional GI comparison results, 263 

showcasing the comparison among another MeSH list utilized in our study (Figure S3).  264 

To ensure the accuracy and reliability of the data collected, we compared the results obtained with 265 

biologically consistent MeSH lists with those obtained with twenty random MeSH lists11 of the same size. 266 

Figure 5 (b) provides an example of the comparison results on the "General Nutrition" list. Another reference 267 

is shown in Supplementary Materials (S4). 268 

 
11 Containing 450 random terms each, based on 21,705 LitVar MeSH in the GRPM dataset. 
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Figure 5: (a) Comparison of Gene Interest Index (GI) for the top fifty genes on the “Vitamin and Micronutrient 269 
Metabolism” MeSH list with GI obtained from five different lists of nutrition MeSH terms. (b) Comparison between GI 270 
obtained from the "General Nutrition" list and GI obtained using twenty randomly generated MeSH lists of the same 271 
size represented as boxplots. In both graphs the y-axis is logarithmic; genes are ordered by decreasing interest relative 272 
to the reference list. 273 
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3.4 GWAS data integration 274 

Cross-referencing data between the GRPM dataset and the GWAS catalog dataset provides indicative 275 

information about possible risk alleles associated with the collected studies. Table 3 shows a sample of this 276 

integration on the GRPM "General Nutrition" dataset, along with the corresponding GWAS catalog 277 

information, such as Mapped Trait and Strongest Risk Allele. The preliminary results obtained through NLTK 278 

show congruence between the MeSH associated with the PMID and the mapped GWAS trait. 279 

The merging process on the "General Nutrition" dataset, with a GI cut-off of 0.0125, resulted in the following 280 

statistics: The number of genes from the LitVar database was 365, while the number of genes with mapping 281 

information was 359. There were 186 MeSH terms, 467 mapped traits, 1155 disease/traits, and 1678 282 

identified strongest SNP-risk alleles. 283 

Table 3: Sample of fifteen GRPM associations from the "General Nutrition" list merged on rsID with the GWAS Catalog 284 
dataset. 285 

GRPM Data GWAS Data 

LITVAR GENE LIVAR RSID LITVAR PMID PUBMED MeSH MAPPED TRAIT DISEASE/TRAIT STRONGEST 
SNP-RISK 
ALLELE 

SEM1 rs7781370 22698912 Body Mass 
Index 

body height Height rs7781370-T 

MTHFR rs9651118 33213085 Hypertension red blood cell 
distribution 
width 

Red cell 
distribution 
width 

rs9651118-T 

CADM2 rs13078807 25893265 Pediatric 
Obesity 

obesity Obesity rs13078807-G 

C1QTNF6 rs229533 25751624 Diabetes 
Mellitus, Type 1 

type 2 diabetes 
mellitus 

Type 1 
diabetes 

rs229533-C 

GHR rs6184 34074802 Body Mass 
Index 

body height Height rs6184-A 

TMEM258 rs102275 31636271 Lipoproteins, 
LDL 

high density 
lipoprotein 
cholesterol 
measurement 

Fasting total 
cholesterol in 
large HDL 

rs102275-C 

SHROOM3 rs56281442 34502231 Diabetes 
Mellitus, Type 2 

type 2 diabetes 
mellitus 

Type 2 
diabetes 

rs56281442-G 
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LDLR rs6511720 27973560 Coronary Artery 
Disease 

coronary artery 
disease 

Coronary 
artery disease 

rs6511720-T 

TP53INP1 rs10097617 30054458 Diabetes 
Mellitus, Type 2 

type 2 diabetes 
mellitus 

Type 2 
diabetes 

rs10097617-T 

PROX1 rs2075423 32390949 Diabetes, 
Gestational 

type 2 diabetes 
mellitus 

Type 2 
diabetes 

rs2075423-G 

HFE rs1799945 11473047 Blood Glucose systolic blood 
pressure 

Systolic blood 
pressure 

rs1799945-G 

ESR1 rs6902771 31213659 Body Mass 
Index 

body weight Weight rs6902771-T 

LEP rs17151919 33631239 Leptin leptin 
measurement 

circulating 
leptin levels 

rs17151919-A 

CYP2R1 rs7129781 23456391 Vitamin D3 24-
Hydroxylase 

vitamin D 
measurement 

Vitamin D 
levels 

rs7129781-C 

CYP2C19 rs4494250 27618448 Hypertension diastolic blood 
pressure 

Diastolic 
blood 
pressure 

rs4494250-A 

 286 

4. Discussion 287 

Understanding how genetic variations influence individual nutritional requirements, metabolism, and health 288 

outcomes is crucial for developing personalized nutrition interventions (15). By considering an individual's 289 

genetic profile, healthcare operators and nutritionists can provide tailored dietary advice, optimizing nutrient 290 

bioavailability, and promoting better health outcomes, thus preventing chronic diseases such as obesity (16), 291 

diabetes (17), or cardiovascular diseases (18). 292 

Personalized approaches in healthcare and prevention are at the forefront of translational bioinformatics 293 

(19). The development of computational methods and tools for consolidating and analyzing information from 294 

multiple sources enhances data integration, enabling the translation of findings into personalized nutrition 295 

interventions and disease prevention strategies (20,21).  296 

The GRPM resource is an integrated platform for diverse data sources related to genetic polymorphisms 297 

associated with nutrition. This resource enables efficient retrieval, merging, and analysis, facilitating 298 

comprehensive research in nutrigenomics. Our approach leverages data mining and merging techniques to 299 
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identify relevant studies on nutrition-associated genetic polymorphisms based on specific MeSH term sets. 300 

The pipeline allowed us to extract subsets of genes and associated SNPs linked to nutrition-related traits. 301 

Machine learning algorithms could further enhance the analysis of these data to uncover intricate gene-diet 302 

interactions by enabling the discovery of patterns and correlations and by producing predictive models (22). 303 

Indeed, although focused primarily on genetic polymorphism and associated literature, integrating our study 304 

with multi-omics data could provide further insight into the interplay between genetics and nutrition, thus 305 

providing a more holistic understanding of such a complex biological field (22).  306 

It is essential to highlight that this method's potential applications extend beyond the scope of our study. 307 

Our approach can be employed to gather specific genetic polymorphisms associated with various health or 308 

biological dysfunctions, empowering healthcare practitioners to tailor interventions based on an individual's 309 

genetic profile (23).  310 

As remarked by Floris and co-workers, the current approach adopted by many companies in nutrigenetic 311 

counseling still relies on a limited set of genes and polymorphisms for genetic testing and counseling (24). 312 

However, as sequencing costs continue to decrease and sequencing technologies become more accessible 313 

than before, it is no longer justifiable to base nutrigenetic panels on a small number of genetic markers (24). 314 

Using a limited set of genes and polymorphisms may overlook significant genetic variations that affect an 315 

individual's response to nutrients and dietary patterns. Our study addresses the limitations of current 316 

approaches in nutrigenetics by consolidating and standardizing information on genetic polymorphisms 317 

associated with nutrition. Our nutrigenetic dataset offers a broader scope and coverage, improving the global 318 

understanding of the interplay between genetics and nutrition-related traits. 319 

Within GRPM ds, MeSH term richness across nutrigenetic categories is quite heterogeneous, confirming that 320 

some categories may have a broader range of MeSH terms, covering various aspects of nutrition, while others 321 

may have a narrower focus, addressing specific subtopics within nutrition. 322 

Regarding our nutrigenetic dataset, particularly concerning the genes found on the MeSH lists described in 323 

Table 2, it is worth mentioning that the most interesting genes identified in our study are well-known in the 324 

field of nutrigenetics. These genes have been extensively studied and represented in literature. The fact that 325 

these genes consistently appear in multiple MeSH lists further supports their relevance concerning nutrition-326 

related traits. 327 

From a broader standpoint, the analysis revealed a high degree of overlap between genes associated with 328 

specific nutritional aspects (Figure 4). For example, the "obesity" lists exhibit high overlap with the "diabetes" 329 

and "cardiovascular health" lists, indicating shared genetic polymorphisms and pathways. This finding is not 330 

surprising given the close relationship between obesity, diabetes, and cardiovascular health, as these 331 
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conditions often coexist and share common genetic and physiological factors. The high overlap suggests that 332 

shared genetic polymorphisms and pathways may be involved in these conditions. 333 

Conversely, the lower degree of overlap between specific lists could be attributed to the specificity of these 334 

lists, focusing on more specific biological processes or conditions with distinct genetic underpinnings. This 335 

behavior can be attributed to several factors. Firstly, these lists may be described by fewer MeSH terms, 336 

leading to a narrower focus and less overlap with other lists. Secondly, these lists may pertain to more specific 337 

biological processes or conditions with distinct genetic underpinnings than the broader conditions captured 338 

by the other lists. 339 

The results obtained from cross-referencing the GRPM dataset with the GWAS catalog dataset further 340 

validated the findings, providing information about potential risk alleles associated with the identified genetic 341 

polymorphisms. The preliminary results obtained through NLTK show congruence between the MeSH 342 

associated with the PMID and the mapped GWAS trait (Table 3). 343 

We thoroughly validated our method to ensure the validity and reliability of our results. Firstly, we compared 344 

the most interesting genes associated with each MeSH list to the results obtained from other nutritional 345 

MeSH term lists (Figure 5, A). This validation step demonstrated the effectiveness of the GRPM system in 346 

identifying genes specifically related to the chosen nutritional aspect. However, we also observed that 347 

specific genes showed higher interest in other MeSH term lists, highlighting the complexity of gene regulation 348 

in nutrient metabolism and the need to consider multiple aspects of nutrition. 349 

Furthermore, to ensure our data's accuracy and reliability, we compared the results obtained with 350 

biologically consistent MeSH term lists and randomly aggregated MeSH terms (Figure 5, B). This comparison 351 

was crucial in assessing the significance of our findings. Our results demonstrated that using biologically 352 

consistent MeSH lists led to meaningful results. The genes and variants identified using these lists were 353 

relevant to the specific nutritional context studied. On the other hand, when we adopted randomly 354 

aggregated MeSH terms lacking biological cohesion, the results were non-significant and lacked meaningful 355 

associations. This comparison highlights the importance of utilizing biologically relevant MeSH lists to retrieve 356 

and prioritize genuinely relevant to the chosen biomedical context. 357 

However, it is essential to acknowledge the limitations of this approach. One limitation of our approach is 358 

the reliance on available literature and databases. The accuracy and reliability of the build resource depend 359 

on the quality and completeness of the data retrieved from various sources, as well as the accuracy of the 360 

data structuring and integration process. Our method relies on data from Medline studies, which may be 361 

subject to publication bias (25). The data quality and consistency of retrieved data heavily depend on the 362 

quality of the original studies and the curation process. Despite efforts to ensure data quality, the original 363 

studies' inconsistencies, errors, and biases may still be present in the constructed dataset. 364 
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Moreover, our dataset is limited to the data available in the LitVar database, GWAS-Catalog, and other 365 

sources used in our study (26). As a result, it may not encompass all potential genetic polymorphisms 366 

associated with nutrition-related traits. Relying on available literature and data collection databases has 367 

limitations (27). Despite our efforts to minimize MeSH attribution bias, the dataset could not contain all the 368 

relevant literature. Inconsistencies, errors, and biases in the original studies may be transferred to the 369 

constructed dataset. Finally, the dataset may cover only some populations and ethnicities, which could limit 370 

its applicability to diverse populations with different genetic backgrounds (28).  371 

Furthermore, it is essential to acknowledge gene-environment interactions' complex and multifactorial 372 

nature, including interactions with dietary factors (29). While our dataset captures a subset of the possible 373 

interactions, it may not encompass their full complexity. In interpreting the associations between genetic 374 

polymorphisms and nutrition-related traits, it is crucial to consider other factors, such as environmental 375 

influences, epigenetic modifications, and gene-gene interactions (30). Therefore, the complexity of gene-376 

environment interactions, including interactions with dietary factors, requires further investigation beyond 377 

the scope of this research. 378 

Finally, to improve the validity of the study's results, it is essential to assess the quality and scientific validity 379 

of the literature sources through established criteria. Future research could follow the scientific validity 380 

assessment criteria described by Grimaldi and co-workers (31) to ensure the reliability of individual sources. 381 

 382 

5. Conclusion 383 

Our study presents a comprehensive approach for building a nutrigenetic dataset by integrating data from 384 

multiple sources through the MeSH ontology. In conclusion, the study presents a methodological framework 385 

and a valuable resource for exploring genetic polymorphisms associated with nutrition-related traits. The 386 

integration and analysis of genetic polymorphism data in the field of nutrition holds great promise for 387 

advancing personalized nutrition interventions. This study highlights the importance of utilizing standardized 388 

curation processes and comprehensive datasets in nutrigenomics research. The curated dataset presented 389 

here fills a gap in the existing literature by providing a consolidated and standardized resource for 390 

investigating genetic polymorphisms associated with nutrition-related traits. 391 

This study exemplifies the importance of translational bioinformatics in nutrition and nutrigenomics, 392 

underscoring the significance of computational approaches in consolidating and analyzing information from 393 

multiple sources, thereby facilitating comprehensive research in the field of nutrigenomics.  394 
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