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Abstract

Objective This study aims to create a comprehensive and curated dataset of human genetic polymorphisms associated
with nutrition by integrating data from multiple sources, including the LitVar database, PubMed, and the GWAS catalog.
This consolidated resource is intended to facilitate research in nutrigenetics by providing a reliable foundation to explore
genetic polymorphisms linked to nutrition-related traits.
Methods We developed a data integration pipeline to assemble and analyze the dataset. The pipeline performs data
retrieval from LitVar and PubMed, data merging to build a unified dataset, definition of comprehensive MeSH lists,
querying this dataset by MeSH to retrieve relevant genetic associations, and cross-referencing the output with the
GWAS catalog.
Results The resulting dataset aggregates extensive information on genetic polymorphisms and nutrition-related traits.
Through MeSH query, we identified key genes and SNPs associated with nutrition-related traits. Cross-referencing with
the GWAS catalog provided insights on potential effects or risk alleles associated with this genetic polymorphisms. The
co-occurrence analysis revealed meaningful gene-diet interactions, advancing personalized nutrition and nutrigenomics
research.
Conclusion The dataset presented here consolidates and organizes information on genetic polymorphisms associated
with nutrition, enabling detailed exploration of gene-diet interactions. This resource advances personalized nutrition
interventions and nutrigenomics research by providing a standardized and comprehensive dataset. The flexible nature of
the dataset allows its application to other genetic polymorphism investigations.
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1 Introduction

Nutrition is critical to health and disease [1]. Emerg-
ing evidence suggests that genetic polymorphisms signifi-
cantly impact an individual’s response to different nutri-
ents and dietary patterns by affecting nutrient bioavail-
ability and metabolism [2]. Moreover, it has been demon-
strated that common gene variations are linked to com-
plex chronic health issues significantly affected by nutri-
tional factors [3].

Advancements in genomics technologies and the sub-
sequent availability of large-scale genetic data have fu-
eled interest in the identification and categorizing of ge-

netic polymorphisms associated with nutritional traits
[4]. Thus, the field of nutritional genetics (nutrigenetics)
was born to comprehend how genetic variations influence
an individual’s nutritional requirements, metabolism, and
health outcomes [5]. By considering an individual’s ge-
netic profile, healthcare professionals and nutritionists can
provide tailored dietary advice and interventions that op-
timize nutrient bio-availability and promote better health
outcomes in that individual [6]. Nutrigenetic associations
imply that specific genetic polymorphisms can induce sus-
ceptibility to chronic diseases. The response to specific
nutrients or dietary patterns may be crucial in determin-
ing health outcomes [7].
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2 METHODS

Recent literature contains extensive data on nutrition-
associated genetic polymorphisms [2, 7]. However, these
data are often scattered, diverse in format, and lack a
standardized curation process. Such complications hinder
data integration, limit information extraction and synthe-
sis, and pose a barrier to data utilization in decision sup-
port systems [8].

Integrating available data and overcoming the limits
of self-reported methods in research is crucial for accu-
rate *omics data integration, nutrigenetics, and nutrige-
nomics research, especially in clinical settings [8]. There-
fore, there is a need to develop curated and consoli-
dated resources that integrate nutrition-associated genetic
polymorphism data, along with *omics data, to advance
personalized nutrition interventions and clinical decision-
making. Today, technologies are available to overcome
these limitations: the use of ontologies for information
retrieval (IR) is a well-known technique in the literature
for semantic search [9], while Named Entity Recognition
(NER) techniques are increasingly important in biomed-
ical literature mining [10] to obtain key information on
genomic variants for personalised medicine.

Here, we built a structured dataset of human genetic
polymorphisms associated with nutrition by mining the
LitVar database [11], which contains curated informa-
tion on genetic variations and their functional effects;
the Pubmed-Medline database, which provides structured
MeSH ontology annotations; and the GWAS catalog
dataset, which reports human variant-traits associations.
Our dataset includes data from Medline studies associated
with nutrition-related genetic polymorphism.

This data where then queried employing MeSH ontol-
ogy for retrieval of nutrition-related genetic data.

Specific sets of MeSH terms related to nutrition physi-
ology, nutrition-related diseases, prevention through diet,
and eating behavior were used to retrieve subsets of genes
and their single-nucleotide polymorphisms (SNPs) po-
tentially associated with nutrition-related traits. Cross-
referencing with the GWAS catalog dataset [12] provided
information about effect/risk alleles associated with the
collected studies. The database was curated to ensure
data quality, consistency, and relevance to nutrition and
nutrigenomics research, thus providing a valuable resource
to investigate the intricate interplay between genetics and
nutrition.

2 Methods

To build an integrated dataset that aligns genomic
data and scientific papers, we connected the LitVar and
PubMed databases through shared PubMed IDs to enrich
LitVar association data with Medical Subject Headings
(MeSH).

MeSH ontology [13] is a standardized and controlled
vocabulary that offers descriptors utilized in biomedicine
and informatics to classify and categorize biomedical lit-
erature and data. The standardized and controlled nature

of MeSH terms makes them highly adaptable for broader
utilization in analyzing scientific indicators. MeSH terms
associated with a document can be thought of as refer-
ences to a collection of knowledge stored as documents in
a database [14].

The LitVar database is a comprehensive and publicly
accessible resource that collects information on genetic
variations and their associated scientific literature. It aims
to bridge the gap between genomic data and the relevant
literature by aggregating and organizing information on
genetic variants from a wide range of sources [11].

PubMed serves as the principal repository of biomedical
literature. Extracting data from PubMed is crucial for
various research purposes, such as literature reviews, data
mining, and knowledge discovery [15].

In order to build our curated dataset, we developed
a Python pipeline that leverages the MeSH ontology as
a pivotal framework to aggregate genetic polymorphism
data for a topic of interest effectively. This pipeline is
designed to streamline the information retrieval (IR), in-
tegration and analysis of genetic polymorphism data as-
sociated with a given biomedical field, such as nutrition.
We named the resulting dataset GRPM, out of its main
descriptors (Genes, RsIDs, PMIDs, MeSH). With the in-
creasing importance of genetic factors in understanding
nutrition-related traits, the GRPM dataset could help re-
searchers and nutritionists explore and analyze these data
efficiently.

The retrieval-integration pipeline is written in Python
inside a Jupyter Notebook interactive environment [16],
and comprises five modules designed for specific purposes
(Figure 1). These modules support the following opera-
tions:

1. GRPM Dataset Building: operates data extraction,
integration, and consolidation from source databases,
including LitVar and PubMed, ensuring a compre-
hensive collection of genetic polymorphisms associ-
ated with topic-related traits (GRPM dataset).

2. MeSH Selection for Retrieval: defines coherent MeSH
ontology term sets for information retrieval over the
whole GRPM Dataset.

3. GRPM Dataset MeSH Query: allows user to query
the dateset using MeSH terms. This way, users can
refine their search and focus on specific areas of in-
terest within the GRPM dataset.

4. Statistical Analysis: assigns each gene a relative mea-
sure of interest based on the number and proportion
of associated findings gathered in the GRPM dataset.
This metric enables the prioritization of genes related
to a chosen topic, aiding further investigation or per-
sonalized nutrition interventions.

5. GWAS Data Integration: integrates the GWAS cat-
alog dataset into the collection, providing insights
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2 METHODS 2.1 GRPM Dataset Building

Figure 1: A graphical overview of the GRPM workflow showcasing the input data and interactions between the five modules.

into effect/risk alleles associated with identified ge-
netic polymorphisms. This process enriches our nu-
trigenetic resource with supplemental data for further
analysis.

The entire pipeline, including implementation de-
tails and usage instructions, can be openly accessed on
GitHub1.

2.1 GRPM Dataset Building

The first module uses the LitVar Application Program-
ming Interface (API)2 to retrieve all polymorphisms for
each human gene within the LitVar database alongside all
associated PubMed Identifiers (PMIDs). These PMIDs
were subsequently employed as queries on PubMed to ob-
tain the bibliographical data. We empoloyed an NBIB
parser3, to extract and structure this data in a machine
readable format. The collected data were ultimately con-
solidated into a single CSV file (“GRPM dataset”), serving
as the primary source against which MeSH term queries
can be employed to retrieve genes and polymorphisms as-
sociated with specific contexts.

This work is based on the first version of LitVar, which
is no longer available online and has been entirely replaced
by LitVar2 [10]. This version was chosen based on several
reasons. Firstly, the first version of LitVar possesses a
higher level of reliability, a product of extensive examina-
tion and rectification of any discrepancies over its period
of usage. Besides, the relatively simpler structure of the
data in this version eschews unnecessary complexity posed
by more recent data structures, thereby making data ex-
traction and manipulation operations more straightfor-
ward. The decision to use LitVar1 was the result of a thor-
ough cost-benefit analysis, weighing the potential superior
data precision provided by LitVar2, which also comes with

1GRPM_system (github.com): https://github.com/johndef64
/GRPM_system

2LitVar API Docs: https://www.ncbi.nlm.nih.gov/CBBresearch
/Lu/Demo/LitVar/api.html

3nbib · PyPI: https://pypi.org/project/nbib/

substantially larger datasets that could introduce addi-
tional noise, against the reliability and simplicity of the
first version. The dataset produced here provides a faith-
ful and historical archive of the first version of LitVar by
collating the bibliographic references along with the genes
and polymorphisms associated with them.

2.2 Dataset querying and retrieval

The retrieval system to get subsets of genes and poly-
morphisms from GRPM dataset employes a user-defined
list of MeSH terms as a hook. Careful selection of the
MeSHs is crucial at this stage: the list must represent the
chosen search field out of the total complex of terms in
GRPM dataset.

The total set of MeSH describing the GRPM dataset
comprises 21.705 terms related to LitVar publications
retrieved out of the complete MeSH ontology (348.733
terms)4. Therefore, this subset collects ontology terms
linked to papers exploring the associations between ge-
netic variants and biomedical traits.

The second module is designed to extract from this col-
lection of MeSH the tems that represent specific biomedi-
cal fields. Leveraging natural language processing (NLP)
techniques, we generated topical words based on our do-
main knowledge in nutrigenetics. These topic words were
then utilized to retrieve related MeSH ontology terms us-
ing the Natural Language Toolkit (NLTK Python pack-
age). Following retrieval, we filtered the remaining MeSH
terms by their semantic types and performed a manual
screening eliminating those that were ambiguous or po-
tentially introduced bias. This filtering process ensures
that only appropriate and meaningful terms are utilized
for the subsequent full dataset screening.

This MeSH list are then used as query for retrieval in
the third module, a procedure that employs about ten
minutes to generates a comprehensive report and a cu-
rated "Survey Dataset" that captures the essential asso-

4The complete Medical Subject Headings dataset can be down-
loaded at https://www.nlm.nih.gov/mesh/meshhome.html
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2.3 Gene Interest Index (GI) 2 METHODS

ciation data. The reports generated from various surveys
are subjected to individual and comparative analysis in
the fourth module.

2.3 Gene Interest Index (GI)

We consider a gene “interesting” if its related SNPs are
associated with a substantial number of PMIDs (i.e., sci-
entific papers) that include MeSH terms in query and if
the ratio between these matching papers and the total
number of papers associated with the gene is sufficiently
high.

To assess the relevance of the gene set retrieved for
the chosen topic, it is crucial to consider the MeSH set
employed as a single entity rather than independently,
given the difference in the relative importance of terms.
To define a gene as “interesting” based on its associated
MeSH terms from related LitVar studies, we propose scal-
ing the number of detected PMIDs (PubMed IDs) by all
the PMIDs associated with that gene in LitVar. This ap-
proach helps minimize selection bias caused by extensively
studied genes associated with more MeSH terms than oth-
ers — these terms could not be directly correlated with
the query topic.

Given the set of genes L(i) retrieved with the query (j),
we introduce the following indices:

1. Pgi: The total number of PMIDs associated with gene
i;

2. Pmi,j : The number of i-related PMIDs containing at
least one MeSH from the query j;

3. Pmmax: The highest Pmi,j value across all the genes
in L;

4. Pmscorei,j : the Pmi,j value normalized Pmmax;

5. Pmratioi,j : the ratio of Pm to Pg. It measures the
proportion of matching PMIDs to the total PMIDs
associated with the gene.

Based on these indices, we introduce the “Gene Interest
Value” (GV), calculated as the product of "Pm score” and
"Pm ratio” and its normalized form, the “Gene Interest
Index” (GI), which is adjusted relative to the maximum
value obtained in the survey. The ratio serves as a modi-
fier in determining the level of interest for each gene.

GVij = Pm index · Pm ratio =
Pmij

Pmmax
· Pmij

Pgi
(1)

GI =
GV

GVmax
(2)

By integrating the Pm score and Pm ratio, the GI
method acts as a coherent measure of gene relevance. Fig-
ure 2 visually represents an example of gene prioritization
obtained through the Index using the “Obesity and Weight
Control” MeSH list as a reference. Panel (a) shows the

Pm ratio (green) and Pm score (yellow). It highlights the
importance of considering both indexes, which produce
different orders. In Panel (b), the gene relevance-based
sorting achieved with the GI is presented, and it is pos-
sible to appreciate the highest prioritization performance
versus the other two. The integrated assessment provided
by the GI method allows for more accurate gene priori-
tization, leading to a deeper understanding of gene-gene
interactions and potential therapeutic targets in obesity
and weight control management. Another example of gene
prioritization through GI is presented in Supplementary
Materials (Figure S1).

In Section 3.2, we present the results obtained by ap-
plying the Gene Interest Index (GI) to ten nutritional
MeSH queries results for genetic association retrieval on
the GRPM dataset. We established a GI threshold of
0.0125, which corresponds to the mean value of the 95th
percentile across all ten query results. This threshold en-
compasses the top 5% of the retrieval results on average,
thereby accommodating the long-tail distribution charac-
teristic of the data.

Most protein-coding genes had citations with at least
one of the MeSH in the query, but not all are relevant.
By setting a GI threshold, we prioritized genes that fit
our tailored MeSH terms, focusing on those with higher
relevance in nutrigenetic dietary advice. This helped elim-
inate noise and focus on genes likely to offer valuable in-
sights into gene-diet interactions and personalized nutri-
tion.

2.4 GWAS Catalog data integration

While examining every study retrieved to unravel the
associated effect allele for each SNP ID (rsID) can be time-
consuming, an initial indication of the potential effect al-
lele is valuable for conducting preliminary studies. To
address this issue, we leveraged Ensembl GWAS Catalog5

data [12].
To integrate the GWAS data within the GRPM dataset,

we followed a specific workflow (fifth module). After re-
trieving GRPM association data by MeSH query, we ap-
plied a GI cut-off of 0.0125 to the results to prioritize the
relevant genes. At this point, the filtered GRPM Sur-
vey and GWAS dataset were merged based on the rsIDs.
The merge was efficiently aligned with the GRPM MeSH
terms through a correspondence dictionary. We subse-
quently utilized the Natural Language Toolkit (NLTK)6
to tokenize the MeSH terms (and all their possible syn-
onyms) and GWAS-mapped traits to perform the align-
ment. Finally, we retrieved the strongest SNP-risk allele
for each rsID using the correspondence dictionary. This
information serves as an initial indication and can be ben-
eficial for conducting further studies, whether in a clinical
or in-silico setting, based on the identified associations.

5GWAS Catalog (ebi.ac.uk): https://www.ebi.ac.uk/gwas/docs/file-
downloads

6NLTK - Natural Language Toolkit: https://www.nltk.org/
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3 RESULTS

Figure 2: Visual representation of Gene Interest Index (GI) calculation though Pm score and Pm ratio, using as reference the
results from "Obesity and Weight Control" MeSH query (see results section). Panel (a) shows the matching PMID ratio and
overall matching PMID score. Panel (b) displays the gene relevance sort achieved with the GI.

3 Results

3.1 GRPM Dataset Statistics

When utilizing this dataset, it is essential to account for
each gene’s relative richness in PMID. The genes that gar-
nered the most attention in research are associated with a
higher number of PMIDs, resulting in more MeSH annota-
tions. Hence, to ensure data normalization, it is necessary
to obtain a comprehensive understanding of the most rep-
resented genes within the dataset. A conspicuous portion
of LitVar PMIDs extracted from LitVar is associated with
MeSH terms ( 77%) , ensuring consistency and reliability
for further investigations (Figure 3).

3.2 The Nutrigenetic Dataset

Our study aimed to create a nutrigenetic dataset using
a collection of MeSH terms related to different aspects
of nutrition. We utilized specific MeSH terms that cov-
ered nutrition physiology, nutrition-related diseases, dis-
ease prevention through diet, and eating behavior. This
approach allowed us to process LitVar-PubMed data in a

way relevant to personalized nutritional approaches. In
Table 1, we describe each selected field of interest in the
context of a personalized nutritional approach.

Figure S2 presents an overview of the most interesting
genes with their relative MeSH and PMID values on the
ten nutrient lists used in our study. This figure offers
a representative example of the analysis conducted and
allows for a quick comparison of gene relevance across dif-
ferent nutrient-related traits. Figure S2 allows for a quick
comparison of gene relevance across different nutrient-
related traits, showing the relative richness of the asso-
ciated MeSH terms and the papers associated with each
gene.

Table 2 collects the feature metrics from the nutritional
datasets extracted in our study. The table left section pro-
vides information on data retrieved with every nutritional
MeSH query over the GRPM dataset. Given the extensive
size of our dataset, the wide range of genes and associated
MeSH terms makes challenging to identify the genes most
pertinent to the specific research objectives. To address
this, the right section of the table presents results filtered
by GI < 0.0125, representing the most significant matches
available for further investigation and nutrigenetic appli-
cations. Applying a GI cut-off was necessary to select the
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3.3 Method Validation 3 RESULTS

Figure 3: Statistics concerning the primary GRPM dataset. In (a), the diagram showcases the distribution of genes, rsID,
PMID, and MeSH terms across the three dataset partitions. (b) depicts the top fifty most represented genes in the dataset,
along with their occurrence in PMID counts and PMID associated with MeSH terms.

most relevant and meaningful search results.
We constructed co-occurrence matrices to explore the

extent of overlap within the data obtained from the
ten nutritional MeSH queries. Figure 4 shows the co-
occurrence patterns between genes, rsID, PMID, and
MeSH terms among filtered results by GI > 0.0125. The
correlation matrix7 in Figure 4 show interesting overlap
patterns among the different MeSH lists. For example,
the results obtained from the "obesity" lists show a high
overlap with the "diabetes" and "cardiovascular health"
lists, sharing approximately 80% of the items. The latter
shows a 40-60% overlap in this first group of three.

3.3 Method Validation

Figure 5 (a) shows the fifty most interesting genes in
the "Vitamin and Micronutrient Metabolism" list com-
pared to the values of interest on results obtained from
5 other nutritional MeSH lists. The genes extracted us-
ing the our method show specificity for the list of MeSH

7In this correlation analyisis, we calculated row-wise (i.e.,
dataset) relative values as the ratio between number of shared enti-
ties and total number of entities of the row. This approach allows
for a focused examination of co-occurrence within specific categories,
providing a granular understanding of the relationships and inter-
actions at the row level.

terms used as a reference model. This behavior suggests
that our method can identify genes related to that par-
ticular nutritional aspect. It can be seen in Figure 5 (a)
that some of the genes has higher GI in other MeSH lists
than the one taken as a reference in the plot, meaning they
are more closely associated with other nutritional features
or specific biological processes. This observation suggests
the complexity of gene regulation in nutrient metabolism
and underscores the importance of considering a broader
range of nutritional MeSH terms to gain a comprehen-
sive understanding of the biological system under con-
sideration. Supplementary Materials provide additional
GI comparison results, showcasing the comparison among
another MeSH list utilized in our study (Figure S3). To
ensure the accuracy and reliability of the data collected,
we compared the results obtained with biologically consis-
tent MeSH queries with those obtained with twenty ran-
dom MeSH lists8 of the same size. Figure 5 (b) provides
an example of the comparison results on the "General Nu-
trition" list. Another example is shown in Supplementary
Materials (S4).

8Containing 450 random terms each, based on 21,705 LitVar
MeSH in the GRPM dataset.
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4 DISCUSSION 3.4 GWAS data integration

Table 1: Categories of nutrition-related MeSH terms used to build the nutrigenetic database.

Category Description MeSH
count

General Nutrition A broad range of topics related to nutrition, including dietary
patterns, nutrient requirements, nutritional status, and the im-
pact of nutrition on overall health and well-being.

413

Obesity, Weight Control, and Com-
pulsive Eating

Terms related to weight management, including obesity, weight
loss strategies, and disorders such as binge eating or compulsive
overeating.

243

Cardiovascular Health and Lipid
Metabolism

Terms related to nutrition and cardiovascular health, including
the impact of dietary factors on lipid metabolism, cholesterol
levels, and the prevention of cardiovascular diseases.

319

Diabetes Mellitus Type II and
Metabolic Syndrome

Terms related to type II diabetes and metabolic syndrome. In-
cluding dietary interventions, glucose metabolism, insulin resis-
tance, and related complications.

528

Vitamin and Micronutrients
Metabolism and Deficiency-
Related Diseases

Terms related to the metabolism of essential vitamins and mi-
cronutrients, the impact of deficiencies on health and the devel-
opment of associated diseases.

175

Eating Behavior and Taste Sensa-
tion

Terms related to individual eating behaviors, including factors
influencing food choices, taste preferences, satiety, and appetite
regulation.

292

Food Intolerances Terms related to adverse reactions to specific foods, such as lac-
tose intolerance or gluten sensitivity. Explores the genetic and
physiological factors underlying food intolerances and their im-
pact on dietary choices.

145

Food Allergies Examines the genetic basis of food allergies, the identification
of allergenic components, and strategies to manage allergic reac-
tions through diet.

65

Diet-induced Oxidative Stress Explores the relationship between dietary factors and oxidative
stress and investigates the impact of diet on oxidative stress levels
and its health implications.

77

Xenobiotics Metabolism Focuses on the metabolism of foreign substances (xenobiotics)
in the body, including drugs, environmental toxins, and dietary
components.

170

3.4 GWAS data integration

Cross-referencing data between the GRPM dataset and
the GWAS catalog dataset provides indicative informa-
tion about possible risk alleles associated with the col-
lected studies. Table 3 shows a sample of this integra-
tion on the GRPM "General Nutrition" dataset, along
with the corresponding GWAS catalog information, such
as Mapped Trait and Strongest Risk Allele. The prelim-
inary results obtained through NLTK show congruence
between the MeSH associated with the PMID and the
mapped GWAS trait. The merging process on the "Gen-
eral Nutrition" dataset, with a GI cut-off of 0.0125, re-
sulted in the following statistics: The number of genes
from the LitVar database was 365, while the number of
genes with mapping information was 359. There were 186
MeSH terms, 467 mapped traits, 1155 disease/traits, and
1678 identified strongest SNP-risk alleles.

4 Discussion

Understanding how genetic variations influence individ-
ual nutritional requirements, metabolism, and health out-
comes is crucial for developing personalized nutrition in-
terventions [17]. By considering an individual’s genetic
profile, healthcare operators and nutritionists can provide
tailored dietary advice, optimizing nutrient bioavailabil-
ity, and promoting better health outcomes, thus prevent-
ing chronic diseases such as obesity [18], diabetes [19], or
cardiovascular diseases [20].

Personalized approaches in healthcare and prevention
are at the forefront of translational bioinformatics [21].
The development of computational methods and tools
for consolidating and analyzing information from multi-
ple sources enhances data integration, enabling the trans-
lation of findings into personalized nutrition interventions
and disease prevention strategies [22, 23].

The GRPM dataset is an integrated resource for diverse
data sources related to genetic polymorphisms associated
with nutrition. This resource enables efficient retrieval,
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4 DISCUSSION

Table 2: Categories of nutrition-related MeSH terms used to build the nutrigenetic database.

All MeSH matching in DB Interesting entries based on GI (0.0125)
label gene rsID PMID MeSH gene rsID PMID MeSH
General Nutrition 11,560 83.288 62.473 413 686 26.456 44.859 397
Obesity & Weight Control 9,713 53.879 35.563 243 317 10.842 22.123 230
Diabetes Type II & MS 10,717 68.844 49.896 319 603 22.270 36.198 297
Cardiovascular Health 12,368 105.598 85.065 528 975 41.931 66.113 521
Vitamins & Minerals 4,045 16.857 11.941 175 89 3.525 6.882 147
Eating Behavior 5,525 20.607 13.734 292 211 4.252 7.241 256
Food Intolerances 4,040 14.117 7.416 145 392 5.008 4.726 125
Food Allergies 4,681 16.777 11.032 65 451 6.289 7.762 64
Oxidative Stress 5,156 20.919 19.295 77 75 2.559 10.058 60
Xenobiotics Metab 7,115 35.686 27.237 170 173 7.159 14.171 151

Figure 4: Co-occurrence pattern among genes, rsID, PMID, and MeSH terms observed in the filtered results (GI > 0.0125)
from the ten nutritional MeSH lists used for screening. The color key represents the amount of overlap between datasets scaled
over the total size of each dataset.

merging, and analysis, facilitating comprehensive research
in nutrigenomics. Our approach leverages data mining
and data integration techniques to identify relevant stud-

ies on nutrition-associated genetic polymorphisms based
on specific MeSH sets. The pipeline allowed us to extract
subsets of genes and associated SNPs linked to nutrition-
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4 DISCUSSION

Figure 5: (a) Comparison of Gene Interest Index (GI) for the top fifty genes on the “Vitamin and Micronutrient Metabolism”
MeSH list with GI obtained from five different lists of nutrition MeSH terms. (b) Comparison between GI obtained from the
"General Nutrition" list and GI obtained using twenty randomly generated MeSH lists of the same size represented as boxplots.
In both graphs the y-axis is logarithmic; genes are ordered by decreasing interest relative to the reference list.

related traits. Machine learning algorithms could further
enhance the analysis of these data to uncover intricate
gene-diet interactions by enabling the discovery of pat-
terns and correlations and by producing predictive models
[24]. Indeed, although focused primarily on genetic poly-
morphism and associated literature, integrating our study

with multi-omics data could provide further insight into
the interplay between genetics and nutrition, thus pro-
viding a more holistic understanding of such a complex
biological field [24]. It is essential to highlight that this
method’s potential applications extend beyond the scope
of our study. Our approach can be employed to gather
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Table 3: Sample of GRPM associations from the "General Nutrition" list merged on rsID with the GWAS Catalog dataset.

GRPM Data GWAS Data
LITVAR
GENE

LIVAR
RSID

LITVAR
PMID

PUBMED MeSH MAPPED TRAIT DISEASE-TRAIT STRONGEST
RISK AL-
LELE

SEM1 rs778137022698912 Body Mass Index body height Height rs7781370-T
MTHFR rs965111833213085 Hypertension red blood cell distri-

bution width
Red cell distribution
width

rs9651118-T

CADM2 rs1307880725893265 Pediatric Obesity obesity Obesity rs13078807-G
C1QTNF6 rs229533 25751624 Diabetes Mellitus,

Type 1
type 2 diabetes melli-
tus

Type 1 diabetes rs229533-C

GHR rs6184 34074802 Body Mass Index body height Height rs6184-A
TMEM258 rs102275 31636271 Lipoproteins, LDL high-density lipopro-

tein cholesterol mea-
surement

Fasting total choles-
terol in large HDL

rs102275-C

SHROOM3 rs5628144234502231 Diabetes Mellitus,
Type 2

type 2 diabetes melli-
tus

Type 2 diabetes rs56281442-G

LDLR rs651172027973560 Coronary Artery Dis-
ease

coronary artery dis-
ease

Coronary artery dis-
ease

rs6511720-T

TP53INP1 rs1009761730054458 Diabetes Mellitus,
Type 2

type 2 diabetes melli-
tus

Type 2 diabetes rs10097617-T

PROX1 rs207542332390949 Diabetes, Gesta-
tional

type 2 diabetes melli-
tus

Type 2 diabetes rs2075423-G

HFE rs179994511473047 Blood Glucose systolic blood pres-
sure

Systolic blood pres-
sure

rs1799945-G

ESR1 rs690277131213659 Body Mass Index body weight Weight rs6902771-T
LEP rs1715191933631239 Leptin leptin measurement Circulating leptin

levels
rs17151919-A

CYP2R1 rs712978123456391 Vitamin D3 24-
Hydroxylase

vitamin D measure-
ment

Vitamin D levels rs7129781-C

specific genetic polymorphisms associated with various
health or biological dysfunctions, empowering healthcare
practitioners to tailor interventions based on an individ-
ual’s genetic profile [25].

As remarked by Floris et al., the current approach
adopted by many companies in nutrigenetic counseling
still relies on a limited set of genes and polymorphisms for
genetic testing and counseling [26]. However, as sequenc-
ing costs continue to decrease and sequencing technolo-
gies become more accessible than before, it is no longer
justifiable to base nutrigenetic panels on a small num-
ber of genetic markers [26]. Using a limited set of genes
and polymorphisms may overlook significant genetic vari-
ations that affect an individual’s response to nutrients and
dietary patterns. Our study addresses the limitations of
current approaches in nutrigenetics by consolidating and
standardizing information on genetic polymorphisms as-
sociated with nutrition. Our nutrigenetic dataset offers a
broader scope and coverage, improving the global under-
standing of the interplay between genetics and nutrition-
related traits.

Within GRPM dataset, MeSH term richness across nu-
trigenetic categories is quite heterogeneous, confirming
that some categories may have a broader range of MeSH
terms, covering various aspects of nutrition, while others
may have a narrower focus, addressing specific subtopics
within nutrition. Regarding our nutrigenetic dataset, par-

ticularly concerning the genes found on the MeSH lists de-
scribed in Table 2, it is worth mentioning that the most
interesting genes identified in our study are well-known in
the field of nutrigenetics. These genes have been exten-
sively studied and represented in literature. The fact that
these genes consistently appear in multiple MeSH lists fur-
ther supports their relevance concerning nutrition-related
traits.

From a broader standpoint, the analysis revealed a high
degree of overlap between genes associated with specific
nutritional aspects (Figure 4). For example, the "obesity"
lists exhibit high overlap with the "diabetes" and "cardio-
vascular health" lists, indicating shared genetic polymor-
phisms and pathways. This finding is not surprising given
the close relationship between obesity, diabetes, and car-
diovascular health, as these conditions often coexist and
share common genetic and physiological factors. The high
overlap suggests that shared genetic polymorphisms and
pathways may be involved in these conditions.

Conversely, the lower degree of overlap between specific
lists could be attributed to the specificity of these lists,
focusing on more specific biological processes or conditions
with distinct genetic underpinnings. This behavior can be
attributed to several factors. Firstly, these lists may be
described by fewer MeSH terms, leading to a narrower
focus and less overlap with other lists. Secondly, these
lists may pertain to more specific biological processes or
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5 CONCLUSION

conditions with distinct genetic underpinnings than the
broader conditions captured by the other lists.

The results obtained from cross-referencing the GRPM
dataset with the GWAS catalog dataset further validated
the findings, providing information about potential risk
alleles associated with the identified genetic polymor-
phisms. The preliminary results obtained through NLTK
show congruence between the MeSH associated with the
PMID and the mapped GWAS trait (Table 3).

We thoroughly validated our method to ensure the va-
lidity and reliability of our results. Firstly, we compared
the most interesting genes associated with each MeSH list
to the results obtained from other nutritional MeSH term
lists (Figure 5, (a)). This validation step demonstrated
the effectiveness of the GRPM system in identifying genes
specifically related to the chosen nutritional aspect. How-
ever, we also observed that specific genes showed higher
interest in other MeSH term lists, highlighting the com-
plexity of gene regulation in nutrient metabolism and the
need to consider multiple aspects of nutrition.

Furthermore, to ensure our data’s accuracy and reli-
ability, we compared the results obtained with biolog-
ically consistent MeSH term lists and randomly aggre-
gated MeSH terms (Figure 5, (b)). This comparison was
crucial in assessing the significance of our findings. Our
results demonstrated that using biologically consistent
MeSH lists led to meaningful results. The genes and vari-
ants identified using these lists were relevant to the specific
nutritional context studied. On the other hand, when we
adopted randomly aggregated MeSH terms lacking biolog-
ical cohesion, the results were non-significant and lacked
meaningful associations. This comparison highlights the
importance of utilizing biologically relevant MeSH lists
to retrieve and prioritize genuinely relevant to the chosen
biomedical context.

However, it is essential to acknowledge the limitations
of this approach. One limitation of our approach is the
reliance on available literature and databases. The accu-
racy and reliability of the build resource depend on the
quality and completeness of the data retrieved from vari-
ous sources, as well as the accuracy of the data structuring
and integration process. Our method relies on data from
Medline studies, which may be subject to publication bias
[27]. The data quality and consistency of retrieved data
heavily depend on the quality of the original studies and
the curation process. Despite efforts to ensure data qual-
ity, the original studies’ inconsistencies, errors, and biases
may still be present in the constructed dataset.

Moreover, our dataset is limited to the data available in
the LitVar database, GWAS-Catalog, and other sources
used in our study [28]. As a result, it may not encom-
pass all potential genetic polymorphisms associated with
nutrition-related traits. Relying on available literature
and data collection databases has limitations [29]. De-
spite our efforts to minimize MeSH attribution bias, the
dataset could not contain all the relevant literature. In-
consistencies, errors, and biases in the original studies may
be transferred to the constructed dataset. Finally, the

dataset may cover only some populations and ethnicities,
which could limit its applicability to diverse populations
with different genetic backgrounds [30].

Furthermore, it is essential to acknowledge gene-
environment interactions’ complex and multifactorial na-
ture, including interactions with dietary factors [31].
While our dataset captures a subset of the possible in-
teractions, it may not encompass their full complexity.
In interpreting the associations between genetic polymor-
phisms and nutrition-related traits, it is crucial to consider
other factors, such as environmental influences, epigenetic
modifications, and gene-gene interactions [32]. Therefore,
the complexity of gene-environment interactions, includ-
ing interactions with dietary factors, requires further in-
vestigation beyond the scope of this research.

Finally, to improve the validity of the study’s results,
it is essential to assess the quality and scientific valid-
ity of the literature sources through established criteria.
Future research could follow the scientific validity assess-
ment criteria described by Grimaldi et al.[33] to ensure
the reliability of individual sources.

5 Conclusion

Our study presents a comprehensive nutrigenetic
dataset, constructed by integrating data from multiple
sources using the MeSH ontology. This dataset is a valu-
able resource for exploring genetic polymorphisms associ-
ated with nutrition-related traits. By consolidating and
standardizing genetic polymorphism data, our work aims
to advance personalized nutrition interventions and con-
tribute to the field of nutrigenomics.

The curated dataset fills a significant gap in the ex-
isting literature, providing a reliable and unified resource
for investigating gene-diet interactions. It underscores the
importance of standardized curation processes and high-
lights the role of translational bioinformatics in merging
and analyzing information from diverse sources. By do-
ing so, it facilitates comprehensive research in nutrition
and genetics, offering a practical tool for researchers and
nutritionists alike.

We hope this dataset will serve as a foundational re-
source for future nutrigenetic studies and help in the de-
velopment of personalized nutrition strategies based on
genetic insights.
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