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Abstract18
19

Background20

Plasmodium knowlesi is a zoonotic parasite that causes malaria in humans. The pathogen has a natural host21

reservoir in certain macaque species and is transmitted to humans via mosquitoes of the Anopheles Leucos-22

phyrus Group. The risk of human P. knowlesi infection varies across Southeast Asia and is dependent upon23

environmental factors. Understanding this geographic variation in risk is important both for enabling ap-24

propriate diagnosis and treatment of the disease and for improving the planning and evaluation of malaria25

elimination. However, the data available on P. knowlesi occurrence are biased towards regions with greater26

surveillance and sampling effort. Predicting the spatial variation in risk of P. knowlesi malaria requires meth-27

ods that can both incorporate environmental risk factors and account for spatial bias in detection.28

Methods & Results29

We extend and apply an environmental niche modelling framework as implemented by a previous mapping30

study of P. knowlesi transmission risk which included data up to 2015. We reviewed the literature from Octo-31

ber 2015 through to March 2020 and identified 264 new records of P. knowlesi, with a total of 524 occurrences32

included in the current study following consolidation with the 2015 study. The modelling framework used33

in the 2015 study was extended, with changes including the addition of new covariates to capture the effect34

of deforestation and urbanisation on P. knowlesi transmission.35

Discussion36

Our map of P. knowlesi relative transmission suitability estimates that the risk posed by the pathogen is37

highest in Malaysia and Indonesia, with localised areas of high risk also predicted in the Greater Mekong38

Subregion, The Philippines and Northeast India. These results highlight areas of priority for P. knowlesi39

surveillance and prospective sampling to address the challenge the disease poses to malaria elimination40

planning.41

Author Summary42

Plasmodium knowlesi is a parasite that can cause malaria when it infects humans. Although most people do43

not experience severe illness from Plasmodium knowlesi infection, a small number will develop serious or44

even fatal disease. The parasite is found naturally in some monkeys throughout Southeast Asia, and spreads45

from these monkeys to humans through mosquitoes. Previous research predicted where the risk of being46

infected is highest according to what we know about the environment across Southeast Asia, such as if there47

are forests in an area or if the altitude is high. In this work, we extend this previous research with more up-to-48

date data on environmental conditions and infections to predict the risk of being infected with Plasmodium49

knowlesi. We show that the risk Plasmodium knowlesi poses to humans is high across much of Southeast50

Asia, and that the disease will continue to challenge national goals to eliminate malaria.51
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Introduction52

Plasmodium knowlesi is a zoonotic pathogen of growing public health concern in Southeast Asia. The pathogen53

has a reservoir in Macaca fascicularis and the closely related Macaca nemestrina and Macaca leonina macaques,54

and is transmitted between macaques and from macaques to humans via mosquito vectors of the Anopheles55

Leucosphyrus Group [1, 2]. Although demonstrated experimentally [3], evidence of direct human-to-human56

transmission of P. knowlesi occurring in nature is limited [4, 1, 5, 6, 7]. Infection by P. knowlesi most often57

causes mild to moderate illness in humans [8]. However, a range of outcomes are possible, with both asymp-58

tomatic infection [9, 10, 11] and severe disease being reported. Studies of patients presenting to health care59

facilities in Malaysia reported severe disease in around 6-9% of patients [12, 13].60

For humans, the likelihood of contracting a P. knowlesi infection has been found to be dependent upon a61

range of risk factors, with case-control and seroprevalence studies demonstrating associations between envi-62

ronmental variables and the occurrence of infection. A seroprevalence survey performed in Malaysia and the63

Philippines found that prior infection with P. knowlesi was associated with the proximity of forested areas to64

an individual’s home and the clearing of forest near their home [14]. A similar study performed in northern65

Sabah, Malaysia, found associations between prior infection and an individual reporting that they have had66

activity in forested areas or that they have had contact with macaques [15]. A population-based case-control67

study performed within Sabah, Malaysia, found an association between current P. knowlesi infection and an68

individual reporting either that they had recently cleared vegetation or that their home was in proximity to69

long grass [11].70

The spatial epidemiology of P. knowlesi malaria has historically been poorly understood. This is partially due71

to widespread misdiagnosis. By clinical presentation, the symptoms of P. knowlesi infection can be easily mis-72

attributed to other major human species of malaria such as P. vivax or P. falciparum [16]. Under microscopic73

examination, the parasite appears almost identical to P. malariae [17] and the early ring stages of P. falci-74

parum [18]. One review of historical microscopy diagnoses demonstrated that across 375 studies, 57% of P.75

knowlesi infections were misdiagnosed [17]. In addition to misdiagnosis, the understood spatial distribution76

of P. knowlesi malaria has been biased by differences in surveillance effort. Within peer-reviewed literature,77

reported P. knowlesi infections are most common in Malaysia, which is likely reflective of both high burden78

and a substantial surveillance effort in the country [19]. Indigenous cases of P. knowlesi malaria have also79

been detected in Brunei, Cambodia, Indonesia, Laos, Myanmar, the Philippines, Thailand, and Vietnam, but80

these have historically been the result of small-scale prospective sampling efforts and individual case reports.81

One study reported identifying P. knowlesi in India within the Andaman and Nicobar Islands [20].82

The elimination of malaria in at least 20 countries by 2025 is listed as a key milestone of the World Health Or-83

ganisation’s 2016–2030 Global technical strategy for malaria [21]. P. knowlesi presents a challenge to these ef-84

forts, since interventions that are effective against the human malaria species such as indoor residual spraying85

will be less effective against P. knowlesi due to the pathogen’s persistence in wildlife reservoirs. Furthermore,86

cross-reactivity of antibodies between P. knowlesi and the closely genetically related P. vivax may provide pro-87

tection against P. knowlesi infection [22], implying that the elimination of P. vivax in a region could lead to88

reduced immunity and subsequently an increase in the number of P. knowlesi infections [19].89

The incidence of P. knowlesi in humans appears to be increasing within Southeast Asia; in Malaysia, the num-90

ber of recorded human P. knowlesi infections doubled over the period from 2015 to 2018 [23]. A similar trend91

is visible in the rising number of case reports within Indonesia [24]. Though these trends may simply reflect92

improvements in surveillance [23], it has been suggested that deforestation in the region may be leading to a93

real increase in the number of human P. knowlesi infections [25, 24, 26, 27]. A primary driver of deforestation94

in the region is the development of oil palm or timber plantations, which produce an environment that is95

believed to be of enhanced risk for P. knowlesi infection, with plantation labourers being required to live and96

work in proximity to recently disturbed forests that may contain P. knowlesi reservoirs and vectors.97
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Sustained transmission of vector-borne zoonoses can only occur at the nidus where pathogen, host and vec-98

tor are present in sufficient abundance [28]. For each of these, certain constraints limit their distribution, for99

example: a pathogen may be unable to survive at certain temperatures; a host may be displaced by human100

activity; and a vector may be unable to reproduce without access to standing water. The field of geospatial101

information systems (GIS) provides a large amount of data on such environmental and anthropological fac-102

tors [29]. Environmental niche modelling utilises this geospatial data to identify relationships between the103

presence of a pathogen, host or vector and the environments in which they have been observed, allowing104

for prediction of the suitability for transmission of a vector-borne zoonosis such as P. knowlesi across a geo-105

graphic area of interest [30].106

In 2015, Shearer and colleagues applied a niche modelling approach to produce the first predictive map of107

P. knowlesi malaria risk across Southeast Asia [31]. This map provided an initial evidence base for identifying108

areas where disease surveillance and epidemiological investigations would be most informative to improve109

understanding of P. knowlesi malaria risk. Since the publication of the 2015 occurrence database and risk110

map, the volume of P. knowlesi data has increased across Southeast Asia, with this including detections of111

the pathogen in new locations. As new data accrues, it is important to update risk predictions to ensure that112

the most up-to-date evidence is available to public health researchers, practitioners, and policymakers. Fur-113

thermore, since 2015, studies providing evidence of the importance of deforestation in the risk of P. knowlesi114

malaria have been published, and novel datasets characterising spatial and temporal variation in land use115

patterns have become available.116

In this study, we present updates to the P. knowlesi infection database and risk map produced in 2015 [31].117

We perform a comprehensive review of the literature from October 2015 through to March 2020 to produce118

a consolidated database of P. knowlesi infection occurrences across Southeast Asia. By combining this oc-119

currence dataset with data on a range of environmental covariates using a niche modelling framework, we120

produce updated predictions of relative suitability for P. knowlesi transmission to humans at fine-scale across121

Southeast Asia. We compare the outputs of our model to those from the 2015 model.122

Methods123

Infection Data124

The infection occurrence database is a listing of reported locations of P. knowlesi infections in either humans,125

macaques or mosquitoes. The infection occurrences used in the 2015 analysis were extracted from litera-126

ture published up to October 2015. In order to identify new occurrences, we searched the ‘Web of Science’127

database on March 2nd 2020, using the keywords “knowlesi” or “monkey malaria” and filtered for results pub-128

lished after October 2015 (Figure 1A). Following the exclusion of laboratory studies, we extracted infection oc-129

currence records from publications which utilised validated P. knowlesi-specific diagnostics (i.e. semi-nested130

PCR or a combination of microscopy and molecular techniques, as in the 2015 review [31]). The data col-131

lection protocol used was the same as in the 2015 analysis and further detail can be found therein [31]. We132

combined the collected infection occurrences produced by the current study (n = 264, Figure 1) with those133

identified in the 2015 analysis (n = 260).134

Each location in the infection occurrence database could either take the form of a point or a polygon record.135

We created point records where the likely exposure site was reported with enough precision that it could be136

assigned to a 5×5 km grid cell. Where this level of precision was not available, we created polygonal records,137

assigning the likely exposure site to a region bounded by a polygon (Figure 1B). We created these polygons as138

either administrative level 1 (the first subdivision below national, e.g. state or province) or administrative level139

2 (the second subdivision below national, e.g. district or regency) then disaggregated these polygons onto to140

the 5×5 km grid for model fitting, prediction and evaluation.141

Prior to model fitting and evaluation, we excluded nine records which spanned an area greater than 1,000142

grid cells (approximately 25,000 km2). These records were unlikely to affect results given that each had sub-143

stantial overlap with other more precise spatial records.144
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Figure 1: A: Study and sample selection process for the 2020 infection occurrence database. Records were produced via a literature
review which was performed on March 2nd 2020, filtering for publications released after October 2015. B: Newly extracted point and
polygon occurrence records across Southeast Asia by spatial type. Admin 1 regions are the first subdivision below national, e.g. state or
province. Admin 2 regions are the second subdivision below national, e.g. district or regency. C: The number of occurrence samples in
each occurrence database by the year the sample was collected.

Covariate Data145

The infection risk model incorporated 20 environmental covariates (Table 1), each a 5×5 km gridded raster146

covering Southeast Asia. Of these 20 covariates, we treated 14 as time-varying with an annual resolution,147

allowing the model to associate each infection occurrence records with covariate values corresponding to the148

year the infection was recorded, capturing the variation of risk factors over time. Data for these annually-149

varying covariates were available for each year from 2001 to 2019, extending upon the coverage of the 2015150

model (which covered 2001 to 2015). We assigned five samples which were collected before the year 2001151

covariate values for the year 2001.152

While tasseled-cap values (transformed Landsat imagery which can help differentiate areas of vegetation153

and urbanisation) and human population density were included as synoptic (static) variables in the 2015154

model, in this work we incorporated them as temporally-varying covariates. The 2015 model incorporated155

an urban accessibility metric which defined the travel time to the nearest city of 50,000 people or more by156

land- or water-based travel in the year 2000 [32]. Here, we instead used the healthcare accessibility surface157

— a modelled measure of travel time to the nearest healthcare facility produced by the Malaria Atlas Project158

which used data up to mid-2019 [33] — as a measure of urban accessibility.159

We replaced the intact and disturbed forest coverage layers used in the 2015 model with covariates that bet-160

ter captured the temporal and spatial dynamics of forest change in Southeast Asia. The forest coverage data161

sets used in the 2015 model were derived from the Intact Forest Landscapes project, which utilised a strict,162

manually assessed criteria for defining intact versus disturbed forest [34, 31, 35]. However, the temporal res-163

olution of this dataset is low, with data only available for four distinct years (2000, 2013, 2016 and 2020). We164

chose instead to utilise data provided through the Global Forest Change project, which provides annual data165

on tree coverage over the last 20 years on forest presence at the resolution of 1 arc-second (roughly 30 m) [36].166
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We aggregated the Global Forest Change dataset up to the 5×5 km grid over the Southeast Asia study region167

through the calculation of both a tree coverage and a tree loss metric. We defined tree loss to be the proportion168

of forest area lost within each 5× 5 km cell for each study year. Similarly, we defined tree coverage as the169

proportion of land where forest coverage was present at the beginning of the Global Forest Change data period170

and where no subsequent loss was recorded up until each study year. As the Global Forest Change project171

has not calculated forest gain past the year 2012, we were not able to include any possible increase in forest172

coverage.173

Name Description Temporal
resolution

Host species distribution

Macaca fascicularis suitability Modelled suitability of inhabitation by macaques of species M.
fascicularis [35].

Synoptic

Macaca nemestrina suitability Modelled suitability of inhabitation by macaques of species M.
nemestrina [35].

Synoptic

Anopheles Leucosphyrus Group suitabil-
ity

Modelled suitability of inhabitation by mosquitoes of the
Anopheles Leucosphyrus Group [35].

Synoptic

Environmental

SRTM elevation Mean elevation [37] Synoptic
Tasseled cap wetness s.d. Tasseled-cap transformed MODIS data [38, 39]. Now treated as

temporally-varying.
Annual

Tasseled cap wetness mean “ “ “ Annual
Tasseled cap brightness s.d. “ “ “ Annual
Plasmodium falciparum temperature

suitability
Modelled temperature suitability index for P. falciparum trans-
mission used as proxy for suitability of P. knowlesi [40].

Synoptic

Forest loss Proportion of land where forest coverage has been lost in a given
year [36]. Replaced the disturbed forest dataset.

Annual

Forest coverage Proportion of land with forest coverage present in a given year
[36]. Replaced the intact forest dataset.

Annual

Sociodemographic

Healthcare accessibility Modelled duration travel time to the nearest healthcare facility
[33]. Replaced the urban accessibility dataset.

Synoptic

WorldPop human population Mean human population density [41, 42]. Now treated as
temporally-varying.

Annual

MODIS/IGBP landcover

Open shrublands Proportion of land with given land classification [43]. Annual
Woody savannas “ “ “ Annual
Savannas “ “ “ Annual
Grasslands “ “ “ Annual
Permanent wetlands “ “ “ Annual
Croplands “ “ “ Annual
Cropland/natural vegetation mosaic “ “ “ Annual
Urban and built up “ “ “ Annual

Table 1: The set of raster covariate datasets used in model fitting and prediction. Differences in raster datasets between this work and
those used in the 2015 P. knowlesi risk model appear in bold. STRM: Shuttle Radar Topography Mission, MODIS: Moderate Resolution
Imaging Spectroradiometer, IGBP: International Geosphere-Biosphere Programme.
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Model Fitting174

We utilised a bootstrapped boosted regression tree modelling framework to characterise relationships be-175

tween a region’s environment and the occurrence of P. knowlesi transmission. Regression trees produce an176

approximation of some latent function (e.g. the probability of a P. knowlesi infection occurring) by recursively177

splitting across potential predictor variables (e.g. environmental covariates). The points at which these splits178

occur and the value assigned across each split region are selected such that the error between the regres-179

sion tree and the observations is minimised [44]. Boosted regression trees extend upon the regression tree180

framework by producing a large number of trees and combining them in an ensemble (a process known as181

boosting) such that they better approximate the latent function [45]. Boosted regression trees are able to fit182

complex nonlinear responses including high-dimensional interactions between explanatory variables due to183

their hierarchical tree structure and have been shown to exhibit high predictive accuracy [46]. Finally, boot-184

strapping of the boosted regression tree process can be performed, allowing for uncertainty in the output to185

be estimated [47].186

When applied to presence-absence data (such as from a systematic survey), niche models generally use a187

binomial likelihood to represent the probability of a species being present at a given location. Where most188

of the data available for modelling are presence-only, as is the case for P. knowlesi malaria, it is common189

practice in niche modelling to supplement occurrence records with “background” points to represent areas190

where the species or disease has not been reported [46]. A variety of approaches have been employed to select191

background points, including sampling to ensure that their spatial distribution emulates the sampling bias in192

the presence records [48].193

Most P. knowlesi occurrences to date are recorded in Malaysia, Brunei and Singapore, with all three of these194

countries having eliminated the human malaria species (e.g., P. vivax and P. falciparum), such that that P.195

knowlesi is routinely considered a potential cause of malaria cases. Outside of these countries, surveillance for196

P. knowlesi is limited and infection records are sparse. As per the 2015 study, the goal of our niche modelling197

analysis is to predict broadly into the under-sampled regions outside of Malaysia, Brunei, and Singapore,198

using a model fit to data from within these three countries (i.e. the model training region, Figure 2A) where199

we can account for reporting bias through the selection of background points. Data from outside of these200

three countries formed the evaluation dataset (i.e. the model evaluation region, Figure 2B), which we used to201

assess the model’s predictive ability outside of the training region.202

To produce background points for the human and mosquito records, as in the 2015 model [31], we sampled203

points across the training region, with this sampling weighted by human population density [41] under the204

assumption that more populous areas would have a greater probability of reporting human cases and that the205

locations of mosquito infection studies were selected based on the presence of human P. knowlesi cases. To206

produce macaque background records, we sampled points from a survey of macaques and other mammals207

[35], as we expected this survey to have similar sampling bias to that of macaque P. knowlesi infection records.208

This approach is not biased by the under-ascertainment of P. knowlesi infections that arise due to asymp-209

tomatic/submicroscopic or spontaneously resolving disease [9, 10, 11], given such effects would be expected210

to be uniform geographically.211

As in the 2015 model [31], the geographic distribution of Macaca leonina — a putative host species of P.212

knowlesi which was only classified as a species distinct from Macaca nemestrina in 2001 [49] — has not been213

included as an explanatory covariate in model fitting as the species is not found in the model training region.214

To produce each bootstrap we performed sampling with replacement across each of the combined occur-215

rence polygons, occurrence point records and background points, using occurrence records present in the216

training region of Malaysia, Brunei and Singapore. We constrained this sampling so that at least 10 presence217

and 10 background points were present within each bootstrap. We then degraded the occurrence polygon218

records sampled to points via spatially uniform sampling of a singular point across the set of points bounded219

by each polygon (Figure 2A). For each bootstrap, we assigned weights to sampled points such that the sum of220

weights for presence points was equal to the sum of weights for the background points, and environmental221

values were assigned to each point from the set of covariate rasters corresponding to the spatial location and222

year the sample was recorded. We produced a covariate for host species, indicating if the sample was collected223

from a human, a mosquito or a macaque. We repeated this process to produce 500 bootstrapped datasets.224

6

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 8, 2023. ; https://doi.org/10.1101/2023.08.04.23293633doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.04.23293633
http://creativecommons.org/licenses/by/4.0/


For each bootstrapped dataset, we fit boosted regression trees using the gbm3 and seegSDM packages. Hy-225

perparameters for model fitting were unchanged from the defaults provided by seegSDM version 0.1-9 (initial226

trees = 10, learning rate/shrinkage = 0.005, tree complexity = 4, maximum trees = 10,000). We produced pre-227

dictions across each of the 500 bootstrapped models, with summary statistics including mean, variance, and228

interquartile range calculated for each 5× 5 km grid cell across Southeast Asia (Figure S1). As in the 2015229

model, we restricted predictions to areas within the range of macaque and mosquito species known to be re-230

quired for zoonotic transmission of P. knowlesi (i.e. the overlap in range maps of at least one reservoir and one231

vector species), using predicted species extent maps previously reported [35]. This includes areas where such232

populations may not yet be present, such as Sulawesi, where M. fascicularis and M. nemestrina macaques are233

currently kept as pets and there is the potential for a feral population to establish [35].234

We produced a multivariate environment similarity surface (MESS) map (Figure 2C), indicating geographic235

areas where the value of at least one environmental covariate was outside the range of values present in the236

training data (i.e. the model is extrapolating) or vice-versa [50].237

Prediction results for each bootstrapped model, rasters of summary statistics, the code used to produce238

results, and the updated occurrence database have been made available at osf.io/k5bsa (DOI 10.17605/239

OSF.IO/K5BSA).240

Model Evaluation241

We evaluated the model’s predictive performance by calculating the area under the curve (AUC) metric across242

both the training and evaluation datasets. For the training dataset, we estimated a 10-fold cross-validated243

AUC throughout the tree count optimisation process, and reported the training AUC for each bootstrap as that244

of the optimal model selected. Across the evaluation dataset, we calculated AUC across each bootstrapped245

model, with pairwise distance selection of samples performed to avoid spatial sorting bias [51].246

We calculated covariate relative influence scores for each bootstrapped model, representing the number of247

times a variable is selected for regression tree splitting, weighted by the squared improvement to the model as248

a result of each split and averaged over all trees [52]. We summarised these scores across the models as means249

and 95% confidence intervals, with mean values also being used to rank the relative covariate importance.250

We further calculated accumulated local effect (ALE) scores to describe the average effect of a covariate on251

the prediction value across the range of each covariate. The ALE score achieves this by identifying how the252

model prediction changes in response to small changes in the covariate of interest while all other covariates253

are kept constant, allowing for the effects of covariates to be identified even when the covariates may be highly254

correlated [53].255
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Figure 2: A: The data-set of occurrence points and polygons used for fitting the boosted regression tree model across the model training
region of Malaysia, Brunei, and Singapore. Presence polygons are displayed as the number of polygons covering each given pixel, with
this density being proportional to the probability distribution of points sampled from the polygons for each bootstrap. B: The presence
and absence records used in the model evaluation process, across the evaluation region of Southeast Asia excluding Malaysia, Brunei
and Singapore. C: Multivariate environmental similarity surface (MESS) for the model, where areas shaded in light grey indicate that at
least one covariate value at that point is outside the range of values within the training data (extrapolation).

Results256

Infection data257

The literature review of articles including data on P. knowlesi infection occurrences published between Oc-258

tober 2015 and March 2020 returned 511 candidate articles. Following a review of titles and abstracts, 159259

articles were deemed likely to contain data for extraction, and 56 articles were identified as meeting the final260

criteria (Figure 1A). From these 56 articles, 264 occurrences of P. knowlesi were extracted, with 91 (34%) be-261

ing assigned a point record type and 173 (66%) being assigned a polygon record type. Of the 264 extracted262

records, 241 (91%) were infections identified in humans, with only 14 in macaques and nine in mosquitoes263

(Table S1). The number of records by year of sample collection was greatest in 2014 with 80 records across 14264

publications (Figure 1C).265

A majority of records added to the 2015 database were collected in Malaysia (n = 201, 76%). Within Malaysia,266

the spatial distribution of records was highly heterogeneous (Figure 1, Table S1), with 127 polygon records as-267

signed to the region of Sabah in contrast to the three records identified in the capital region of Kuala Lumpur.268

Malaysia was also the location of eight of the nine observed infected mosquitoes in the dataset, consistent269

with the greater sampling effort within the country [19].270

Our literature search reveals that more infection occurrences from Indonesia have been reported since 2015,271

comprising 17% (n = 45) of the new presence records (where the prior 2015 literature search identified only272

five infections within the country). These records are the result of a small number of high-quality surveys and273

case reports from Aceh [54] and North Sumatra [55]. The literature review dataset contains three records from274

Laos, where the first confirmed human P. knowlesi infection was reported in 2016 [56].275
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In combination with the 260 occurrences used in the 2015 analysis, the total number of infection occurrences276

used in model fitting and evaluation was 524. Of these, 396 were within the training region of Malaysia, Brunei277

and Singapore, with the remaining 128 located elsewhere in Southeast Asia (Table S1).278

Transmission Suitability Model Output279

0 1

P. knowlesi transmission suitability

A

0 0.15 0.28

Prediction standard deviation

B

Figure 3: A: Modelled transmission suitability mean over Southeast Asia across the 500 bootstraps. Results are displayed only where an
area is within the range of both a vector and reservoir species necessary for transmission (see Methods), regions outside of this range
(displayed as grey) are considered to be very low risk for P. knowlesi transmission. Transmission suitability is a relative measure of the
risk of P. knowlesi transmission from known reservoir species (via vector species) to humans. B: Standard deviation of the predicted
transmission suitability across the 500 bootstraps.

The mean and standard deviation of predicted P. knowlesi transmission suitability across at-risk areas of280

Southeast Asia is presented in Figure 3. Further summary statistics of transmission suitability are presented281

in Figure S1.282

The map of P. knowlesi transmission suitability (Figure 3A) shows highly heterogeneous levels of predicted283

risk across Southeast Asia. On the island of Borneo, all areas other than lower-lying coastal regions are ex-284

pected to have a relatively high risk of P. knowlesi transmission. Other more sparsely distributed areas of rela-285

tively high risk are predicted in Indonesia within the provinces of Sulawesi, Sumatra and West Nusa Tenggara.286

Peninsula Malaysia is predicted to have inland areas of high transmission risk. Thailand, Laos, Cambodia,287

Vietnam, Myanmar and the Philippine island of Luzon have smaller, localised areas of high predicted risk,288

with greater uncertainty in these predictions (Figure 3B) as a result of environmental differences to the model289

training region of Malaysia, Brunei and Singapore.290

Within the training region, a mean area under the curve (AUC) of 0.81 was produced across the 500 boot-291

strapped models with a standard error of 0.001. For the evaluation region, the mean AUC was found to be 0.75292

with a standard error of 0.003. These values indicate a high degree of predictive performance.293

Examining predictions within the evaluation region of the model (Southeast Asia excluding Malaysia, Brunei294

and Singapore), we may qualitatively assess the model’s predictive performance. Regions with both a high295

modelled transmission suitability and previously identified occurrence samples of P. knowlesi — indicative of296

good model sensitivity — include the Aceh province of Sumatra island in Indonesia, the Koh Kong province297

in southern Cambodia and the Mimaropa region of the Philippines (Figure S2A). We also see that there are a298

substantial number of regions where the model predicts high transmission suitability where P. knowlesi oc-299

currence has not previously been identified as of the 2020 literature review (i.e. omission errors [57]). These300

areas include much of northern Sulawesi and the province of West Nusa Tenggara in Indonesia (Figure S2A).301

Such predictions may be suggestive of a lack of surveillance in these regions, or that an environment is con-302

ducive to transmission but currently lacking widespread occurrence of a necessary vector or host species (e.g.303

in Sulawesi, there are no native M. nemestrina or M. fascicularis macaques).304
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The covariate of human population density was found to have the highest ranked relative influence for the305

majority (496/500, 99.2%) of the bootstrapped models, closely followed by that of healthcare accessibility.306

Mean and 95% confidence intervals of relative influence scores across bootstraps are presented in Figure S5.307

The new covariates of tree coverage and forest loss were found to be highly influential; out of 21 covariates (20308

environmental covariates and the species covariate), the median rank for tree coverage was 5 (95% confidence309

interval: 2-11), and for forest loss was 10 (95% confidence interval: 6-15). Plots of the accumulated local310

effects (ALE) describing the influence of each continuous covariate across the covariate’s range are presented311

in Figure S6.312

Discussion313

In this study, we utilised an environmental niche modelling approach to predict the relative suitability for P.314

knowlesi transmission to humans across Southeast Asia. We extended a previous analysis that incorporated315

data up to 2015 [31] by adding infection and environmental data up to 2020, and improving the utilisation316

of data on land use patterns. Through a review of literature published between October 2015 and March317

2020, we identified 264 published occurrences of P. knowlesi. This resulted in a total of 524 records being318

utilised in model fitting and evaluation for the current study. As changes in P. knowlesi transmission risk319

may be expected where substantial amounts of deforestation have occurred [25, 24, 26, 27], we now capture320

this in the model by deriving annual forest loss and coverage datasets. We predict that the distribution of P.321

knowlesi risk is highly heterogeneous across Southeast Asia, with the largest areas of predicted risk in Malaysia322

and Indonesia, and smaller, localised regions of high risk predicted in the Greater Mekong Subregion, The323

Philippines and Northeast India.324

Our analysis can help to guide the prioritisation of locations for future sampling and surveillance for P.325

knowlesi malaria by highlighting areas of high predicted risk that may have been under-sampled. Since the326

publication of the 2015 analysis, there has been no change to the World Health Organization’s malaria elim-327

ination status of any country believed to be at risk for indigenous P. knowlesi transmission [58]. However,328

within the Greater Mekong Subregion of Cambodia, Myanmar, Thailand, Laos and Vietnam, substantial de-329

clines have been observed in the total number of reported malaria cases as of 2021 [59]. The 2015 analysis330

noted that Laos, Myanmar, Thailand and Vietnam were likely high-value sites for future sampling efforts [31]331

and our literature search revealed only a small number of additional P. knowlesi occurrences in these coun-332

tries as of 2020 (Figure 1, Table S1). Our current analysis predicts localised areas of moderate-to-high relative333

transmission risk in this region (Figure 3), suggesting an ongoing need for surveillance of P. knowlesi malaria.334

Indonesia has a stated goal to eliminate malaria by 2030 [60, 61], and may be on track given that a majority of335

administrative regions have declared elimination [62]. However, the presence of P. knowlesi across the country336

presents a serious challenge to these efforts. In March 2022, the WHO Malaria Policy Advisory Group (MPAG)337

concluded that certification of malaria elimination status should only occur where the risk of P. knowlesi was338

‘negligible’, i.e. below some low threshold of annual incidence [63, 58] – a requirement that has already pre-339

vented Malaysia from receiving elimination certification [64]. Given this requirement, continued surveillance340

and mitigation of P. knowlesi throughout at-risk regions of Indonesia will be important. Between the period of341

2015 and 2020, a small number of studies have identified substantial numbers of P. knowlesi infections within342

Indonesia [65, 66, 67], particularly within northern Sumatra [54, 68, 69], a region identified as a valuable target343

for surveillance effort in the 2015 model [31]. Despite this, the Indonesian region of Kalimantan on the island344

of Borneo still has a relative scarcity of occurrence data given its high predicted transmission suitability and345

the number of P. knowlesi cases reported in adjacent areas of Malaysia.346

Our map of P. knowlesi transmission risk may also help to quantitatively guide site selection for public health347

surveillance or intervention. For example, surveillance sampling could be concentrated in regions where the348

model predicts a high transmission suitability but with a high variance, such that the understanding of the ge-349

ographical distribution of the disease is maximised for the least effort and that the uncertainty in these regions350

could be reduced in future risk mapping outputs. If value was instead placed on maximising the probability351

of identifying cases of P. knowlesi, sampling could be concentrated where a high transmission suitability is352

accompanied by lower variance. Efficient deployment of sampling resources could be achieved by combining353

the modelling outputs with constraints; for example, sites where access would require a prohibitive amount354

of travel time could be excluded [70].355
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As niche modelling frameworks are correlative, the secondary results described in this work should be in-356

terpreted with care. The relative influence scores (Figure S5) and the accumulated local effect plots (Figure357

S6) may provide insight into risk factors for P. knowlesi transmission. However, these results do not provide358

evidence for causal relationships, which would instead be more appropriately identified through studies util-359

ising a causal inference framework. For example, the covariate of healthcare accessibility, which ranks highly360

according to relative influence scores (Figure S5), could capture a direct causal effect on the risk of being diag-361

nosed with P. knowlesi (e.g. likelihood that someone is identified as having a P. knowlesi infection increasing362

with access to healthcare) or may simply be confounded by a common variable (e.g. likelihood of acquiring a363

P. knowlesi infection increasing for those who work at plantations, confounded by such plantations occurring364

in areas of lower healthcare accessibility).365

Our model predicts the relative suitability for P. knowlesi transmission, not the prevalence of infection nor366

the incidence of cases (which would require different input data that are not widely available for P. knowlesi367

malaria). While transmission suitability is a useful metric for prioritising locations for future P. knowlesi sur-368

veys, the absolute values are specific to the input data and model parameterisation, and we therefore cannot369

directly compare absolute values produced by the model presented here and those from the model developed370

in 2015. Although we expect that the transmission suitability prediction produced by either of the models371

should be qualitatively related to the underlying ‘true’ risk of P. knowlesi infection, little can be said of this372

relationship other than that it is expected to be monotonic under the assumption that the background data373

points are biased in the same manner as the presence data [48]. This means, for instance, that any differences374

between the models that could arise as a result of dilation in this relationship (such as the upwards dilation375

observed in Figures S4A and S4B) cannot be taken alone as indicating a change in underlying transmission376

suitability.377

Noting the limitations in these comparisons, we find that the predictions in our work and the 2015 model378

broadly align, though with clear differences in the local spatial variation of the prediction surface (Figures S3,379

S4A). As an example, on the island of Borneo our predictions form a smooth region of high predicted risk,380

whereas in the 2015 model predictions over the same area varied substantially at a small spatial scale; this381

pattern is repeated similarly elsewhere across Southeast Asia [31]. In countries such as Laos, Myanmar and382

Vietnam, we predict overall a lower transmission suitability than those presented in the 2015 model, though383

within these countries we continue to predict small areas of high transmission risk. Comparing the overall384

distributions of predicted transmission suitability between the 2015 and 2020 models shows that our new385

predictions produce a more highly contrasting bimodal distribution of risk compared to that produced by the386

2015 model [31] (Figure S4A).387

The temperature suitability index covariate used in the model attempts to describe the effect of tempera-388

ture on the basic reproduction number for some combination of malaria parasites and mosquito vectors. As389

data on the incubation periods for P. knowlesi under differing temperatures and mosquito hosts is currently390

unavailable, no suitability index for the species can currently be produced. In this work, we instead utilise391

a proxy in the form of a suitability index for P. falciparum [40]. Even if this proxy does not itself accurately392

capture mechanistic limits on P. knowlesi reproduction, it is not immediately obvious what bias this would393

introduce into the results, if any, as the boosted regression tree model may still infer suitability under some394

transformation of the index. There is clear value in further laboratory research on the reproduction of P.395

knowlesi under different temperatures that could inform a species-specific suitability index.396

It is believed that workers involved in the development and cultivation of oil palm plantations are at greater397

risk for developing P. knowlesi infection given their proximity to P. knowlesi vector and reservoir species [71].398

However, we were unable to include this as a covariate in our model as there is currently no published dataset399

of palm oil plantations with complete coverage across the Southeast Asia region.400

Annual data is not available for some of the covariates used in the model where the underlying phenomena401

may be expected to change over time; the covariates of reservoir/vector species distribution and temperature402

suitability are dependent upon variables such as climate or land cover, and the covariate of healthcare acces-403

sibility is dependent upon changes in transportation infrastructure and locations of healthcare sites. In lieu404

of available data on change in these covariates over time they are instead assumed to be constant. In effect,405

this means that the modelled species distributions as of 2014, temperature suitability index for P. falciparum406

as of 2010 and healthcare accessibility as of 2019 are all assumed constant over the years 2001 to 2019. Future407

modelling efforts could be improved by considering the change in these covariates over time.408
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Our map of P. knowlesi transmission suitability predict high P. knowlesi disease risk across broad areas of409

Southeast Asia, with large regions of high predicted P. knowlesi risk that have not yet been sampled for the410

pathogen. Our work demonstrates the importance of continued surveillance and prospective sampling of the411

pathogen, especially in regions where malaria elimination is currently being pursued.412
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Supplementary Information656

Figure S1: Summary statistics for modelled transmission suitability across Southeast Asia, calculated across the set of 500 bootstraps.
Results are only displayed where an area is in the range of both a vector and reservoir species necessary for transmission (see Methods).
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Human Macaque Mosquito Totals

Country/Region n n n 2020 (2015)

Brunei 0 0 0 0 (6)
Cambodia 5 0 0 5 (6)
Indonesia (Total) 44 1 0 45 (5)

Kalimantan Selatan 0 0 0 0 (3)
Kalimantan Tengah 1 0 0 1 (2)
Lampung 0 1 0 1 (0)
Nanggroe Aceh Darusalam 36 0 0 36 (0)
Sumatera Utara 7 0 0 7 (0)

Laos 3 0 0 3 (1)
Malaysia (Total) 181 8 12 201 (183)

Johor 3 0 0 3 (3)
Kedeh 2 0 0 2 (1)
Kelantan 5 0 0 5 (17)
Melaka 2 0 0 2 (1)
Negeri 2 0 2 4 (3)
Pahang 3 0 1 4 (11)
Perak 3 0 1 4 (1)
Pulau Pinang 1 0 0 1 (1)
Sabah 127 7 0 134 (60)
Sarawak 22 1 5 28 (52)
Selangor 7 0 3 10 (30)
Terengganu 1 0 0 1 (2)
W.P. Kuala Lumpur 3 0 0 3 (0)
W.P. Labuan 0 0 0 0 (1)

Myanmar 2 0 0 2 (3)
Philippines 1 0 2 3 (7)
Singapore 0 0 0 0 (6)
Thailand 4 0 0 4 (32)
Vietnam 1 0 0 1 (11)

Table S1: The number of human, macaque and mosquito samples in the occurrence database produced by the 2015 literature review,
with samples in Indonesia and Malaysia shown stratified by region (province, state or territory). Total counts are shown for records from
both the 2020 literature review and 2015 literature review.
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Figure S2: Predicted mean transmission suitability with overlay of infection occurrence data across the evaluation region. Results are
only displayed where an area is in the range of both a vector and reservoir species necessary for transmission (see Methods). A: Predicted
transmission suitability with infection occurrence polygons and points in blue. B: Predicted transmission suitability with infection ab-
sence polygons in blue.

0 1

P. knowlesi transmission suitability

A

0 1

P. knowlesi transmission suitability

B

Figure S3: Comparison of the modelled mean transmission suitability value between the current work, with data up to 2020 (A), and the
values presented in the 2015 model [31] (B). Note that the absolute value of predictions are not necessarily comparable given differences
in model specification and training data. Results are only displayed where an area is in the range of both a vector and reservoir species
necessary for transmission (see Methods).
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Figure S4: Histograms (A) and quantile-quantile plot (B) comparing the distributions of mean predicted transmission suitability for the
2015 and 2020 models of P. knowlesi transmission risk. Histograms are presented on a relative x-axis (ranging from minimal to maximal
predicted mean risk), with quartiles of predicted risk displayed as dashed vertical lines.

Figure S5: Relative influence scores for each covariate, calculated for each bootstrap, with points and lines representing median values
and 95% confidence intervals respectively.
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Figure S6: Accumulated local effect (ALE) plots for each covariate, indicating the mean effect of changing a covariate’s value upon the
prediction (on logistic scale) across the range of that covariate. The ALE values are calculated for each bootstrap, with the median value,
50% and 95% confidence intervals presented as lines, darker shaded regions and lighter shaded regions respectively.

22

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 8, 2023. ; https://doi.org/10.1101/2023.08.04.23293633doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.04.23293633
http://creativecommons.org/licenses/by/4.0/

