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20 Abstract:

21 Background: Although COVID-19 infection has been associated with a number of 
22 clinical and environmental risk factors, host genetic variation has also been associated 
23 with the incidence and morbidity of infection. The CRP gene codes for a critical 
24 component of the innate immune system and CRP variants have been reported 
25 associated with infectious disease and vaccination outcomes. We investigated possible 
26 associations between COVID-19 outcome and a limited number of candidate gene 
27 variants including rs1205.

28 Methodology/Principal Findings: The Strong Heart and Strong Heart Family studies 
29 have accumulated detailed genetic, cardiovascular risk and event data in geographically 
30 dispersed American Indian communities since 1988. Chi-square tests, logistic 
31 regression and generalized linear mixed models (implemented in SOLAR) were used in 
32 analysis. Genotypic data and 91 COVID-19 adjudicated deaths or hospitalizations from 
33 2/1/20 through 3/1/23 were identified among 3,780 participants in two subsets. Among 
34 21 candidate variants including genes in the interferon response pathway, APOE, 
35 TMPRSS2, TLR3, the HLA complex and the ABO blood group, only rs1205, a 3' 
36 untranslated region variant in the CRP gene, showed nominally significant association 
37 in T-dominant model analyses (odds ratio 1.859, 95%CI 1.001-3.453, p=0.049) after 
38 adjustment for age, sex, center, body mass index, and a history of cardiovascular 
39 disease. Within the younger subset, association with the rs1205 T-Dom genotype was 
40 stronger, both in the same adjusted logistic model and in the SOLAR analysis also 
41 adjusting for other genetic relatedness.

42 Conclusion: A T-dominant genotype of rs1205 in the CRP gene is associated with 
43 COVID-19 death or hospitalization, even after adjustment for relevant clinical factors 
44 and potential participant relatedness. Additional study of other populations and genetic 
45 variants of this gene are warranted.

46 Author summary:

47 Considerable inter-individual variability in COVID-19 clinical outcome has been noted 
48 from the onset of this pandemic. Some risk factors, such as age, diabetes, obesity, prior 
49 cardiovascular disease (CVD) are well established. The possibility of inherited, host 
50 genetic risk factors has also been examined and a number validated in very large, 
51 population based datasets. The present study leveraged on-going clinical surveillance 
52 of CVD and available genetic information in an American Indian population to 
53 investigate potential host genetic contributors to COVID-19 morbidity and mortality. 
54 Although the number of cases ascertained was relatively small, a novel variant in the C-
55 reactive protein gene was found to be associated with COVID-19 outcome. This protein 
56 constitutes a critical component of the innate immune system and CRP variants have 
57 been reported associated with infectious disease and vaccination outcomes.  Improved 
58 understanding of the pathophysiology of this infection may allow more targeted therapy.

59
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60 Introduction

61 The ongoing pandemic of Severe Acute Respiratory Syndrome Coronavirus 2 
62 (SARS-CoV-2) infections has taken a devastating toll on American Indian, Alaskan 
63 Native (AI/AN) populations, with hospitalization and death rate ratios for COVID-19 
64 (compared with White ethnicity) reported as 2.5 fold; and 2.1 fold, respectively.[1]

65 A number of demographic and clinical characteristics, such as male gender, 
66 socio-economic deprivation, diabetes, cardiovascular disease and obesity, have been 
67 identified as risk factors for COVID-19 associated morbidity and mortality.[2] The 
68 hypothesis that this increased burden of COVID-19 morbidity and mortality among 
69 ethnic minorities is due to the increased prevalence of these co-morbidities in many 
70 populations, has been considered; but the proportion of effect attributable to clinical co-
71 morbidities may, be small.[2] In spite of considerable interest in possible host genetic 
72 factors that influence the severity of COVID-19 among all patients, there have been few 
73 reliably replicating studies in specific racial/ethnic groups.[3]

74 The expectation that ethnic disparities in COVID-19 outcomes are primarily 
75 driven by population specific behavioral or clinical burden of disease may have resulted 
76 in less interest in investigating genetic susceptibility among AI/AN communities. This is 
77 of importance for the possible identification of therapeutic targets and prevention 
78 strategies assisting AI/AN as well as other populations.

79 The Strong Heart Study (SHS) and allied Strong Heart Family Study (SHFS), 
80 comprise the largest, ongoing prospective epidemiological cohort study among 
81 American Indians in 12 different Tribal communities located in Arizona, North and South 
82 Dakotas, and in Oklahoma. These cohorts have the requisite genetic datasets and 
83 ongoing surveillance of medical records for cardiovascular disease (CVD) and risk 
84 factors, including COVID-19, to also assess genetic contributions to COVID-19 death 
85 and morbidity risks. The present results derive from a case/cohort analysis of SNPs 
86 reported associated with COVID mortality or morbidity in other populations.

87

88 Materials and Methods

89 Participants and Cohorts

90 The SHS/SHFS methodology and design has been described previously.[4,5] 
91 Diabetes and hypertensive status were defined as previously;[6] and the dichotomous 
92 CVD covariate indicates any history of myocardial infarction, coronary artery disease, 
93 congestive heart failure, and atherosclerotic stroke and peripheral vasculature 
94 disease.[7] While SHS/SHFS medical record surveillance of participants focuses on 
95 ascertainment of outcome events and clinical risk factors related to CVD, in early 2020 
96 ascertainment for COVID-19 was begun, with the recognition of a bidirectional 
97 relationship between CVD and COVID-19 infection. The physicians conducting medical 
98 records reviews identified COVID-19 as either a contributing or definitive factor in death 
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99 or hospitalization (disease severity). However, medical record review was triggered 
100 primarily by CVD related events (for ascertainment criteria, see Lee et al [4]) and a 
101 small number of other conditions, but not primarily by infections. Thus, the identified 
102 COVID-19 endpoint of hospitalization is probably under-reported, given the surveillance 
103 focus on CVD outcomes. However, all deaths associated with COVID-19 during the 
104 study period are included in this report. 

105 The study period was 2/1/2020 through 3/1/2023, when medical record reviews 
106 ascertaining COVID-19 outcomes were available. We included all participants alive on 
107 2/1/2020 and identified outcome events (either COVID-19 death or hospitalization) 
108 during follow-up. There were no specific ICD-9/10 codes used to identify relevant 
109 morbid COVID-19 cases, but physician review of the medical record determined 
110 COVID-19 case status based on immune measures and clinical diagnoses, with morbid 
111 events for review selected on the basis of standard SHS protocol to ascertain incident 
112 CVD.[4]

113 Rationale for genetic variants selected

114 A PubMed literature search for candidate variants previously reported to be 
115 associated with COVID-19 pathogenesis or clinical outcomes found previously 
116 implicated genes in the interferon response pathway,[8,9] APOE,[10] TMPRSS2,[11] 
117 TLR3,[9] ACE,[12] FURIN[13] and the human leukocyte antigen (HLA)[14,15] regions. 
118 We also included ABO blood group polymorphisms which have been among the most 
119 consistently identified host factors influencing the COVID-19 phenotype.[16-18] The top 
120 17 "hits" of of the Covid-19 Host Genetics Initiative Browser, round 7 identified 
121 additional variants of interest.[19] 

122 Thus our literature search developed a total of 73 plausible candidate variants 
123 and resulted in 21 polymorphisms that were available from the genetic resources of the 
124 SHS, albeit within two subsets of participants that were genotyped in SHS/SHFS 
125 substudies. The candidate SNPs and identifying, published references are found in 
126 Table 1. 

127

128 Table 1. Variants genotyped, (associated genes) and allele frequency (AF), when 
129 the genotype is available.

Variant (gene) RISK 
ALLELE

SHFS
AF of 
risk 

allele

SHS
AF of 
risk 

allele

Literature 
citation

rs16944971 (FURIN) C 0.01 NA* [13,20]
rs7412 (APOE) C 0.02 NA [3,21]
rs1205  (CRP), alternate allele =T C 0.49 0.46 [22-25]

rs3091244 (CRP) G 0.31 NA [26-28]
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rs3093068 (CRP) G NA 0.01 [29,30]
rs1800947 (CRP) C NA 0.02 [23,25,29,31]
rs201253322 (IRF7) C NA <0.001 [3,9]
rs116302758 (DPP4) T NA 0.02 [11]
rs56179129 (DPP4) C NA 0.002 [11]
rs12329760 (TMPRSS2) C NA 0.20 [11,13,32]
rs150892504 (ERAP2) C NA 0.001 [33,34]
rs1800795 (IL-6) G NA 0.08 [23,35,36]
rs1799752 (ACE) Insertion NA 0.26 [3,13]
rs8176719 (ABO, O allele) Insertion NA 0.76 [16,37]
rs8176746 (ABO, B allele) G 0.02 0.02 [38,39]
rs10735079 (OAS3) A NA 0.13 [40,41]
rs1405655 (NR1H2) G NA 0.45 [42]
rs1886814 (FOXP4-AS1) A NA 0.41 [40]
rs2109069 (DPP9) G NA 0.22 [41,42]
rs9380142 (HLA-G) A NA 0.32 [40,41]
rs111837807 (CCHCR1) A NA 0.20 [42,43]
rs2071351 (HLA-DPA1) A NA 0.08 [40]
rs529565 (ABO, intron variant) A NA 0.23 [40]
rs10774671 (OAS1) A NA 0.13 [40]
rs61667602 (LINC02210-CRHR1) A NA 0.06 [42]

130 * NA, Not available in this cohort 

131

132 Although genotypes were derived from extensive microarray sources, no attempt 
133 was made to screen or identify variants of interest on the basis of genome-wide analysis 
134 of SHS microarray data. 

135 The only exception to the qualification of previously identified association was the 
136 choice of CRP polymorphisms as explained below. This was felt to be justified due to 
137 the central role of CRP in the innate immune system and dramatic elevation during 
138 COVID-19 and other viral infections.[43]

139 C-reactive protein (CRP) levels are typically thought of as a biomarker for 
140 inflammatory response and not as a pathogenetic factor, although inherited CRP 
141 variants have been associated with, and thus possibly a modifying factor in some 
142 infections[22,23] response to vaccination,[26] as well as other conditions such as 
143 cancer[44,45] and pre-eclampsia.[46,47] For this reason, we selected 4 available 
144 variants related to CRP expression for our analysis.

145 Laboratory methods and considerations

146 Clinical, anthropometric and laboratory measures are reported as obtained from 
147 the most recent SHS exam prior to the study period. Laboratory methodology for 
148 determination of serum creatinine,[48] HgbA1c[49] and high sensitivity C-Reactive 
149 Protein (hsCRP)[50] have been reported previously
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150 The SHFS [5] participants were genotyped with the Illumina Human Cardio-
151 Metabo BeadChip microarray (Illumina, San Diego, CA), incorporating approximately 
152 200,000 single nucleotide polymorphisms (SNPs) in loci previously identified as 
153 significantly associated with metabolic and CVD traits.[51] These genotypes were 
154 generated exclusively from SHFS participants without diabetes mellitus during exams 
155 between 1997-2003. Further details related to quality filters and data preparation have 
156 been published.[50]

157 The SHS participants were genotyped using the Illumina Infinium Multi-Ethnic 
158 Global-8 vs1. Quality control included filtering variants with call rates <95% and 
159 duplicated QC samples. The CRP rs1205 variant was genotyped from both the SHFS 
160 (N=1,666) and SHS (N=2,114) participants, providing a total of (N=3,780) rs1205 
161 genotypes. This is presented graphically in Figure 1. Except for rs1205 and rs8176746, 
162 genotypic data from other variants were available from either the SHFS or the SHS 
163 participants (Table 1).

164 Figure 1. Venn diagram illustrating relationship between analysis cohorts.

165

166 Although two different genotyping platforms were used for the SHS and SHFS 
167 participants, the genotyping for both was conducted in the same laboratory at Texas 
168 Biomedical Research Institute in San Antonio, Texas. All 121 participants genotyped for 
169 rs1205 and the ABO variant rs8176746 on both platforms and meeting the criteria for 
170 inclusion in the study had concordant genotyping.

171

172 Statistical analysis methods

173 Descriptive statistics presented counts and percentages for discrete variables 
174 and means with standard deviations for continuous variables. Between-group 
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175 comparison of continuous variables used T-tests and assumed independent samples. 
176 Discrete variables utilized Pearson chi-square comparisons between groups. 

177 Logistic regression models were developed for both univariate and multivariate 
178 analysis of COVID-19 associated death or hospitalization during the observation period 
179 (2/1/20 through 3/29/22). Only a single COVID-event was counted for each participant. 
180 To select covariates included in the final multivariate model, BMI and any history of 
181 CVD were chosen on the basis of apparent independent association (p<0.05) when all 
182 available covariates (sex, body mass index (BMI), hypertension, diabetes mellitus (DM), 
183 impaired fasting glucose (IFG) or normal fasting glucose (NFG), history of CVD event, 
184 (tobacco (current, ever, never), serum creatinine, and hemoglobin A1c (HgbA1c)) were 
185 considered jointly. Age, sex and center were deemed important, standard adjustments 
186 and therefore kept in models. The covariate related to diabetes and dysglycemia was 
187 not independently associated with COVID-19 when included with BMI (as seen in the 
188 first section of Table 5), so was not retained in the final logistic model.  The serum 
189 hsCRP was not included as a covariate, given we were testing CRP genetic variants 
190 with known effects on serum levels. Significance was accepted at a p-value of 0.05, 
191 since the genetic variants were chosen on the basis of a priori evidence of potential 
192 association with COVID-19 as well as recognizing the hypothesis driven nature of the 
193 presented analysis.

194 The SHFS cohort enrolled large families, and therefore we accounted for the 
195 relatedness using random effects of pedigree relationships (established with 
196 participants at recruitment) in generalized linear mixed models implemented in 
197 SOLAR.[52,53] For discrete phenotypes such as affection status, SOLAR employs a 
198 classic liability model.[54] Briefly: the unmeasured, presumed multifactorial, basis of 
199 liability to disease is modeled as a standard normal distribution (mean=0, SD=1), with 
200 affected individuals represented by an upper tail of the distribution that has the same 
201 density as the incidence of affection status in the general population. For this study we 
202 used the mean weekly incidence of COVID-19 in the US population during the study 
203 period (217.72 cases/100,000 population, 0.218%)[55] Heritability of liability is 
204 estimated from genetic correlations between relatives[56] and the effects of measured 
205 factors (age, sex, etc., as well as measured genotypes) are estimated as deviations of 
206 the liability threshold from the population incidence.

207 Ethics Statement

208 All participants in this study have provided written, informed consent to allow 
209 genetic and other research related to CVD and its risk factors. Consent was obtained at 
210 least once in all cases since Phase I of SHS in 1988, and in most instances has been 
211 renewed during each the 6 subsequent phases until the present. Approval has been 
212 obtained from the following institutional review boards (IRB) of record: Arizona Area 
213 Indian Health Service IRB, MedStar Health Research Institute IRB, Great Plains Area 
214 Indian Health Service IRB, Oglala Sioux Tribe Research Review Board, University of 
215 Oklahoma Health Sciences IRB, and Oklahoma Area Indian Health Service IRB. In 
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216 addition to these formal, IRB approvals, all of the participants' Tribal governments have 
217 approved the conduct of the SHS/SHFS studies for these purposes. The close 
218 association between CVD (especially stroke) and COVID-19 infection, often in a 
219 bidirectional manner, justified IRB approval for this substudy.

220 Results

221 Table 1 shows the genotyped variants selected, their associated genes and allele 
222 frequencies in the SHFS or SHS cohorts. The characteristics of both the SHS and 
223 SHFS cohorts are summarized in Table 2.

224 Table 2. Demographic and clinical measures stratified by enrolled cohort.

SHFS SHS Total P value

Participants, N (%) 1666 (44.1) 2114 (55.9) 3780 (100)

Male Sex, N (%) 660 (39.6) 916 (43) 1576 (42) .021*

Mean Age (SD), 
years on 2/1/2020 

52.0 (14.8) 83.9 (8.4) 69.8 (19.7) <.001**

Mean Age (SD), 
years at last clinical 
exam 

41.7 (14.6) 62.9 (8.7) 53.6 (15.7) <.001

Diabetes status, N, 
(%)

<.001

Diabetes Mellitus 
(DM)

214 (13) 1001 (49) 1215 (33)

Impaired fasting 
glucose tolerance 
(IFG)

347 (21) 500 (24) 847 (23)

Normal fasting 
glucose tolerance 
(NFG)

1080 (65) 563 (27) 1643 (44)

Hypertension, N (%) 470 (28) 1110 (53) 1580 (42) <.001

Cardiovascular 
disease***

 N, (%)

169 (10) 870 (41) 1039 (28) <.001

Mean BMI (SD), 
kg/m2

32.3 (7.7) 30.3 (6.5) 31.2 (7.1) <.001

Current smoker N 
(%)

644 (39) 618 (30) 1310 (35) 0.657Δ
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Ever smoker, N (%) 391 (24) 749 (37) 1140 (31) <.001ΔΔ

Never smoker, N 
(%)

619 (37) 618 (29) 1237 (34)

Mean serum 
creatinine (SD), 
mg/dL

0.87 (0.36) 1.14 (1.22) 1 (0.90) <.001

Mean % HgB A1c 
(SD)

6.36 (1.6) 7.10 (2.22) 6.90 (2.10) <.001

Mean hsCRP 
(SD)****

4.12 (3.58) 4.35 (3.31) 4.23 (3.45) .074

COVID-19 any 
case, N (%)

48 (2.9) 43 (2.0) 91 (2.4) 0.09

COVID-19 death,

N (%)

21 (1.3) 26 (1.2) 47 (1.2) 0.93

Participants with either fatal or non-fatal COVID

SHFS SHS Total P value

Male sex, N (%) 18 (37) 15 (35) 33 (36) 0.796

Mean Age (SD), 
years on 2/1/2020 61.9 (14.7) 78.1 (5.0) 69.6 (13.8) <0.001

DM/IFG/NFG, N (%) 19/5/23 
(40.4,10.6,48.9)

17/13/13 
(39.5,30.2,30.2)

36/18/36 (40.0, 
20.0,40.0) 0.043

HTN, N (%) 22 (45.8) 21 (48.8) 43 (47.3) 0.774

CVD, N (%) 13 (27.1) 25 (58.1) 38 (41.8) 0.003

Mean BMI (SD) 36.07 (9.10) 31.04 (6.64) 33.7 (8.38) 0.001

Smoking

Current/ever/never 
(%)

15/15/18 
(31.3,31.3,37.5)

14/11/18 
(32.6,25.6,41.9)

29/26/36 
(31.9,28.6,39.6) 0.828

Serum Creatinine 
(SD), mg/dL 0.85 (0.20) 1.12 (1.86) 0.98 (1.27) 0.362

Mean HgbA1c (SD), 
% 7.44 (2.14) 6.65 (1.74) 7.00 (1.95) 0.191
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Mean hsCRP (SD), 
mg/L**** 5.00 (3.78) 4.48 (3.40) 4.76 (3.60) 0.715

225 Values are mean (SD) or N (%). * Pearson chi square test for count data. **T-
226 test for mean (SD) data  *** Any history of coronary heart disease, stroke, congestive 
227 heart failure, or other cardiovascular disease Δ smoking "current" vs smoking "never" ΔΔ 
228 smoking "ever" vs smoking "never" **** hsCRP values >15mg/L excluded

229

230 Unadjusted results limited to the primary variant of interest from the SHFS, the 
231 SHS cohort or combined SHFS/SHS cohorts, using additive and dominant models 
232 based on risk or non-risk alleles are shown in Table 3.

233

234 Table 3. Primary results of interest, rs1205: univariant associations with either 
235 fatal or non-fatal COVID-19.

Cohort SNP Risk 
allele Model

Chi-
square 

p value*
OR** 95% CI P value

SHS rs1205 C Add 0.564 0.922 0.603 - 1.411 0.709
SHS rs1205 C C-DOM 0.815 1.084 0.553 - 2.124 0.815
SHS rs1205 T T-DOM 0.368 1.452 0.642 - 3.285 0.370
SHFS rs1205 C Add 0.039 0.599 0.396 - 0.906 0.015
SHFS rs1205 C C-DOM 0.099 0.609 0.336 - 1.104 0.102
SHFS rs1205 T T-DOM 0.016 2.976 1.171 - 7.565 0.022
SHS/SHFS rs1205 C Add 0.066 0.743 0.553 - 0.998 0.049
SHS/SHFS rs1205 C C-DOM 0.332 0.804 0.516 - 1.251 0.333
SHS/SHFS rs1205 T T-DOM 0.020 2.038 1.105 - 3.758 0.023

236  

237 * Pearson chi-square, asymptotic significance, two-sided

238 ** OR: univariate logistic regression odds ratio

239

240  Results for the remaining variants are found in Supplemental Table S1. For 
241 variants with low frequency, logistic models were often unstable and not reported. 
242 Analyses in the SHFS cohort showed nominally significant associations for the rs1205 T 
243 allele dominant (T-Dom) genotype in the combined SHFS/SHS cohort and both additive 
244 and T-Dom models in the SHFS cohort). 

245 Table 4 shows the distribution of COVID-19 cases among recruitment centers, 
246 highlighting the relatively larger number of cases identified in the Dakota center 
247 compared to other centers, and provides the allelic prevalence of rs1205 by center. 
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248 Among the combined SHFS/SHS cohorts, the prevalence of the rs1205 T allele was 
249 0.525 (95% CI 0.51 - 0.54).

250

251 Table 4. Combined SHFS/SHS participant and SNP results from adjusted analysis 
252 by recruitment center.

Center* AZ DK OK  p value analysis
N 488 1705 1587
Age  mean (SD) 70.65 (19.48) 68.39 (20.29) 71.13 (19.05) <0.001 1
Male sex   N (%) 184 (38) 734 (43) 658 (41) 0.104 2
BMI    mean (SD) 34.78 (9.88) 30.25 (6.36) 31.15 (6.55) <0.001 1
ANY CVD_YN   N(%) 119 (24) 547 (32) 373 (23) <0.001 2
SHFS cohort   N(%) 165 (34) 698 (44) 803 (47) <0.001 2
Fatal/non-fatal
 COVID-19
  N (% of total)

11 (12.1) 62 (68.1) 18 (19.8) <0.001 2

Risk of outcome
  % (95% CI)

2.25%
 (0.94-3.57)

3.64%
 (2.75-4.52)

1.13%
 (0.61-1.66)

3

rs1205,C allele count
  (95% CI)

0.48
 (0.45 - 0.51)

0.58
 (0.56 - 0.59)

0.48
 (0.47 - 0.50)

<0.001 4

rs1205 T-Dom
  (95% CI)

0.72
 (0.68 - 0.76)

0.81
 (0.79 - 0.83)

0.73
 (0.71 - 0.75)

<0.001 2

 rs1205 T-Dom
 p value

0.254 0.333 0.147 5

253 * AZ = Arizona, DK = Dakotas, OK = Oklahoma centers

254 1= Independent samples, T-test

255 2= between center Pearson chi-square p value, 3X2 table

256 3= within center binomial confidence interval on proportion

257 4= between center Pearson chi-square p value, 3X3 table

258 5= within center COVID fatal/non-fatal outcome via logistic regression adjusted for age, sex, BMI, 
259 ANY_CVD

260

261

262

263 Multivariate logistic regression model findings for the primary SNPs of interest 
264 are reported in Table 5. Results of the rs1205 T-Dom model is attenuated after 
265 adjustment for covariates, but retains nominally significant association (OR 1.859, 95% 
266 CI 1.001-3.453, p=0.049) with COVID-19 in in the combined SHS/SHFS cohorts. Within 
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267 the younger SHFS cohort, the same model showed an odds ratio of 2.857, 95%CI 
268 1.108-7.362, p=0.030.
269

270 Table 5. Results of multivariate adjusted models evaluating the composite 
271 outcome of either fatal or non-fatal COVID-19 within the combined SHFS and SHS 
272 cohorts.

SHFS and SHS COMBINED
95% CI

Multivariate model 
including:

N OR Lower Upper P value

Age 3780 0.999 0.987 1.012 0.923
Sex 3780 0.817 0.527 1.267 0.367
AZ center 3780 Indicator variable
DK center 3780 2.132 1.064 4.272 0.033
OK center 3780 0.649 0.296 1.423 0.280
BMI 3780 1.050 1.023 1.079 <0.001
ANY CVD (Y/N) 3780 1.871 1.153 3.036 0.011

SHFS COHORT
95% CI

SNP* model N OR Lower Upper P value
rs1205 C-Add 1647 0.587 0.381 0.905 0.016
rs1205 T-DOM 1647 2.857 1.108 7.362 0.030

SHS COHORT
rs1205 C-Add 2042 1.057 0.683 1.634 0.804
rs1205 T-DOM 2042 1.243 0.541 2.860 0.608

SHFS and SHS COMBINED
rs1205 C-Add 3689 0.799 0.592 1.078 0.142
rs1205 T-DOM 3689 1.859 1.001 3.453 0.049

273 * Genetic variant included in model adjusted for age, sex, center, BMI, and ANY CVD.

274
275 In the SHFS analysis, using a generalized linear threshold model in SOLAR to 
276 adjust for the random effect of family relatedness, and adjusting for fixed effects of sex, 
277 age, BMI, CVD, and center, either fatal or non-fatal COVID-19 was significantly 
278 associated with the fixed effect of the rs1205 T allele-dominant genotype (p=0.0003). 
279 The regression beta for this association was negative (= -0.50 standard deviations), 
280 indicating a tendency to increase the affected upper tail of the liability distribution (thus 
281 confirming rs1205-T Dom genotype as a risk allele).
282
283 While those with rs1205 T-Dom genotypes trended toward lower mean hsCRP 
284 levels at baseline than others (p=0.087 excluding levels over 15 mg/L to avoid spurious 
285 elevations due to intercurrent infections), mean hsCRP levels were not significantly 
286 different between COVID-19 cases or controls. (Supplemental Table S2). 
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287

288 Discussion 

289 We present previously unreported evidence of association between a common 
290 human variant (rs1205) and the clinical impact of the SARS-CoV-2 virus causing 
291 COVID-19. While our study has a modest number of cases, these results derive from a 
292 large cohort of American Indian individuals who are being followed longitudinally using 
293 standardized, physician review of medical records[4] The rs1205 variant has been 
294 recognized as functionally affecting serum levels of CRP,[25,28,29] in several 
295 populations and, in the present SHFS population as well.[50] CRP is an important 
296 component of the innate immune system, thus supporting a role of the gene and this 
297 variant's potential effects on the pathophysiology of COVID-19. A genome-wide 
298 association meta-analysis has reported an intron variant (rs67579710) associated with 
299 COVID-19 hospitalization among 24,741cases and 2,835,201controls.[42] This variant 
300 is 4.5Mb from rs1205 [57] and within the thrombospondin3 gene, thus it may play a 
301 role in the thrombosis associated with COVID-19, rather than inflammatory pathways.

302 There are ample theoretical reasons that heritable genetic variation could affect 
303 SARS-CoV-2 infection, beginning with the viral requirement for surface receptors to gain 
304 entry to the cytoplasm[58] and running through multiple immune response pathways 
305 generating the "cytokine storm" which has been prominently noted in the pathogenesis 
306 of COVID-19.[59] A number of genetic variants have been associated with morbidity 
307 and mortality, including variants in the angiotensin converting enzyme 1 (ACE1) 
308 gene,[60] the TMPRSS2 gene,[61] the IL-6 gene[62] and others extensively reviewed by 
309 Ishak et al.[63] The COVID-19 Host Genetics Initiative, a massive ascertainment of 
310 nearly 50,000 cases from 19 countries has identified 13 genome-wide loci related to 
311 either initial infection, or morbidity.[64]

312 The rs1205 variant is a C/T single nucleotide polymorphism in the 3' untranslated 
313 region of the C-reactive protein gene (CRP), with a prevalence of the C allele ranging 
314 from ~ 0.67 in European populations, to ~ 0.40 in Asian populations,[65] and 0.51 to 
315 0.54 in the present study. The 4 CRP variants were chosen for their role in the innate 
316 immune system and availability in the SHS dataset, but no literature was found that 
317 examined CRP variants related to COVID-19 severity, perhaps because CRP has 
318 traditionally been viewed as a biomarker and not as a potential causal factor. There are, 
319 however, reports of CRP variants associated with the clinical outcomes of other 
320 infections[22,23] and the response to vaccination.[26] Additionally, reduced expression 
321 of serum CRP is consistently reported associated with the rs1205 T allele, with the beta 
322 coefficient for each additional T allele ranging between -0.17 and -0.27;[25,28,29] and 
323 estimated at -0.23 in the SHS Dakota center.[50] As noted in Table S2 the mean serum 
324 CRP level is lower in the present study, among those with the rs1205 T-Dom genotype 
325 compared with those homozygous for the C allele, although the difference is not 
326 significant.
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327 Although the prevalent view of COVID-19 pathophysiology implicates a 
328 hyperactive immune response (often characterized by increased CRP serum levels as 
329 well as coordinated production of other cytokines), it also seems plausible that a 
330 relative, baseline insufficiency of an innate immune factor, particularly in the early phase 
331 of exposure, could also result in increased morbidity. 

332 CRP genotypes correlating with increased baseline CRP levels have been 
333 positively associated with risk of pre-eclampsia[46,47,66] and conversely, as in the 
334 current study, CRP genotypes (including rs1205 T-Dom) correlated with lower CRP 
335 levels have been associated with increased infectious burden.[22-24] These divergent 
336 effects invite speculation that CRP polymorphisms may have experienced balanced 
337 selection during evolution. 

338 Our multivariate logistic regression results are in accord with prior studies that 
339 showed the contribution of commonly reported clinical factors, such as age,[67] BMI[64] 
340 and pre-existing CVD,[68,69] which negatively impact COVID-19 outcomes.  Although 
341 the mean BMI of the SHFS is somewhat greater than the SHS cohort, it should be noted 
342 that the SHFS cohort has a low prevalence of DM (13%) and is younger than the SHFS, 
343 due to selection for that substudy of those without diabetes at baseline. Perhaps this 
344 allows a clearer genetic (vs an acquired clinical or environmental) association to 
345 become apparent. 

346 The small number of cases when stratified by Center suggests cautious 
347 interpretation, but is presented since the number of cases from the Dakota Center is 
348 considerably higher than from the comparable Oklahoma center. Although the 
349 possibility of population stratification confounding our results is present, we believe the 
350 fact that all 3 centers show an effect of the T-Dom genotype in the same direction, 
351 including the Arizona Center, which is likely to be most distant in their genetic 
352 background, suggests genetic background effects are not likely. The statistical 
353 significance of the center covariate could be due to various differences in regional, 
354 environmental factors, such as household density, weather, and accessibility of medical 
355 care.

356 The lack of significant results in the other SNPs is not surprising, given the 
357 number of these variants with low allele frequencies and the small number of COVID-19 
358 cases. Further surveillance of the SHS cohort will likely identify new cases and improve 
359 the power for other variants (eg rs111837807  and rs2109069).

360 The limitations of this analysis are chiefly related to the relatively small number of 
361 cases obtained to this point. The morbid case ascertainment is subject to undercounting 
362 since the choice of medical records for review is based primarily on CVD outcomes. 
363 This does not affect ascertainment of mortal cases, since all deaths are reviewed and 
364 recorded as soon as possible. The possibility of population stratification is noted, 
365 although seems unlikely for reasons noted above. P values have not been adjusted for 
366 multiple testing.
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367 The study’s strengths include a robust physician assignment of outcomes using 
368 medical records and comprehensive analysis of genetic variabilities as well as 
369 adjustment for relatedness between individuals.

370 It is clear that race/ethnicity is a valid and critical risk marker for other underlying 
371 conditions affecting the complexity of COVID-19 disease, such as structural racism, 
372 discrimination and socioeconomic status,[70] lack of health care access,[71] and 
373 exposure to infectious agents related to high risk and service industry occupations.[72] 
374 Although one can never be confident that all confounding factors have been adjusted 
375 properly, Williamson et al[2] showed that ethnicity among a very large cohort in England 
376 was associated with COVID-19 outcomes, even after adjusting for socioeconomic 
377 factors. Thus, even though we are committed to improving our understanding of the 
378 complex social and behavioral factors influencing COVID-19 disease landscape among 
379 Tribal communities we also believe that investigating the potential influence of common 
380 genetic variants among the high risk American Indian/Alaska Native populations may 
381 provide opportunities for therapeutic or preventive options. Although severely impacted 
382 by COVID-19,[73,74] Tribal communities are, at times, excluded from scientific studies 
383 due to their smaller proportion in the U.S. population and various socio-political factors. 

384 In conclusion, a statistically significant association was found between the rs1205 
385 T-Dom genotype and risk of COVID-19 death or hospitalization among American Indian 
386 participants, employing chi-square tests, logistic regression models adjusting for age, 
387 sex, center, BMI and prior history of CVD, and SOLAR software analysis also adjusting 
388 for relatedness within the SHFS cohort. The direction of effect suggests a lower level of 
389 CRP during early phases of infection may increase the risk of subsequent 
390 complications, a novel finding we will continue to investigate further as the pandemic 
391 continues and our samples size tragically continues to increase. 

392 Supporting Information:

393 Supplemental Table 1. Additional univariant associations with either fatal or non-
394 fatal COVID-19.

395 Supplemental Table 2. Baseline hsCRP measures* in relation to rs1205 T-Dom 
396 genotype and COVID-19 case/control status.

397
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