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Abstract

The aim of fine-mapping is to identify genetic variants causally contributing
to complex traits or diseases. Existing fine-mapping methods employ discrete
Bayesian mixture priors and depend on a pre-specified maximum number of
causal variants which may lead to sub-optimal solutions. In this work, we propose
a novel fine-mapping method called h2-D2; utilizing a continuous global-local
shrinkage prior. We also present an approach to define credible sets of causal
variants in continuous prior settings. Simulation studies demonstrate that h2-D2
outperforms the state-of-art fine-mapping methods such as SuSiE and FINEMAP
in accurately identifying causal variants and estimating their effect sizes. We fur-
ther applied h2-D2 to prostate cancer analysis and discovered some previously
unknown causal variants. In addition, we inferred 385 target genes associated
with the detected causal variants and several pathways that were significantly
over-represented by these genes, shedding light on their potential roles in prostate
cancer development and progression.
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. Introduction

> Genome-wide association studies (GWAS) have discovered numerous genetic variants
s associated with a wide range of complex traits and diseases [1]. However, pinpointing
+ the specific variants that have causal effects on the traits is challenging due to the
s presence of high linkage disequilibrium (LD) among single nucleotide polymorphisms
s (SNPs) and their small effect sizes [2-4]. The goal of statistical fine-mapping is to
7 identify the causal variants that have nonzero effects on the trait, which is essentially
s a statistical problem known as “variable selection”. Since it is difficult to distinguish a
o causal variant from other variants highly correlated with it without extra information,
10 penalized regression methods sometimes fail to select the true causal variants [5]. On
u  the other hand, Bayesian methods are more appropriate for fine-mapping by providing
12 posterior “credible sets” (CSs) [4]. A level 1 —a CS is defined as a set of variants that
13 contains at least one causal variant with posterior probability no less than 1 —« [6, 7].
1= A CS may contain multiple highly correlated candidate causal variants for further
15 functional validation.

16 To date, many Bayesian fine-mapping methods have been developed, including
v CAVIAR [2], CAVIARBEF [5], PAINTOR [3], JAM [8], DAP [9], FINEMAP [10, 11],
15 and SuSiE [12]. All these methods are based on discrete mixture priors, specifying a
19 prior probability for each variant being causal. Suppose there are M SNPs in the region
2 of interest, the number of possible models is 2™. To reduce computational cost, these
a1 methods need to set limit on the maximum number of causal variants. However, mis-
» specifying the number may lead to decrease in performance[12]. In addition, existing
23 methods rely on exhaustive search, shotgun stochastic search, or stepwise selection to
2 explore the space of causal configurations, which can be time-consuming or lead to
s poor suboptimal solutions [6, 12].

2% In Bayesian analysis, there is another class of shrinkage priors termed “continu-
27 ous global-local shrinkage priors”. Existing continuous priors have been shown to be
s efficient variable selection tools [13—-20] and have been successfully applied in genetic
2 studies, including polygenic risk prediction [21]. However, continuous shrinkage priors
s are hardly used in fine-mapping. One shortcoming of continuous priors is that they
a1 require additional procedures in order to perform variable selection, as the posterior
» mean of regression coefficients is not sparse almost surely. Existing approaches include
13 hard thresholding methods [15, 22], penalized credible regions [23, 24|, and posterior
2 variable selection summary [25]. Nonetheless, these approaches can only produce a
55 single sparse model instead of several candidate models, and cannot generate credible
s sets similar to those obtained using discrete mixture priors.

37 In this paper, we introduce a novel fine-mapping method based on a continuous
s global-local shrinkage prior, called the heritability-induced Dirichlet decomposition
3 (h2-D2) prior, which is a variant of R2-D2 prior [20]. R2-D2 prior possesses both
w0 unbounded density around the origin and very heavy tails, thus enabling it to model
a the extremely sparse structure of the fine-mapping coefficients. Our proposed h2-D2
« prior inherits the same desirable properties as R2-D2 and is adapted specifically to
s GWAS data. Without loss of generality, we will refer to our method, which represents
a for the entire fine-mapping process, as h2-D2 throughout the manuscript.
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5 Moreover, in order to address the limitations of continuous priors, inspired by the
w principles of frequentist hypothesis testing, we propose a statistic, termed “credible
ar  level”, which can be easily computed from posterior samples, to quantify how likely one
s or a set of SNPs have nonzero effects. We further define credible sets in the framework
w0 of continuous priors, offering a selection of candidate variants in the post-selection
s Process.

51 Our simulation studies show that h2-D2 has better performance in identifying
52 causal variants and accurately estimating effect sizes than the state-of-art fine-mapping
53 methods such as SuSiE and FINEMAP. The CSs produced by h2-D2 exhibit superior
s« power and achieve the target level of coverage when accurate LD matrices are pro-
55 vided. Finally, we apply h2-D2 to prostate cancer GWAS, identifying some novel causal
s signals that were not previously reported. The identified credible causal variants show
s significant enrichment in active gene regulatory regions and binding sites of specific
ss  transcription factors. In addition, we infer a total of 385 likely target genes associated
so  with these credible causal variants. These genes are significantly over-represented in
60 several pathways, providing valuable insights into the potential biological mechanisms
e underlying prostate cancer development and progression. We conclude with a discus-
62 sion of future topics and further describe our software tool h2-D2 to implement the
es method for public use.

« Material and methods

s Overview of h2-D2

6 For a GWAS of quantitative trait with N individuals, consider a region containing M
ez variants. The relationship between phenotypes and genotypes can be modeled by a
6s multiple linear regression model:

y=X0+e, (Equation 1)

e where y is a vector of standardized phenotype values for N individuals, X is an
70 N X M column-standardized genotype matrix for N individuals and M variants, 8 =
n (B, BM)T is an M-vector of effect sizes to be estimated, and € is an N-vector of
» error terms. We assume that € ~ Ny (0,021y), where Iy is an N x N identity matrix
7 and Ng(u, A) denotes the k-variate normal distribution with mean p and covariance
7 matrix A.

7 We introduce a prior for 8 satisfying F(3) = 0 and Var(8) = X, where X is
% an M x M diagonal matrix with diagonal elements o%,...,0%,. The narrow-sense
7 heritability h? of the quantitative trait explained by the M SNPs can be expressed as

_ Var(Xg)
h2 —W = Var(XB)
(Equation 2)

M
=E (8"RB) =tx(RX) =) o7 <1,
j=1
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7 where R is the linkage disequilibrium (LD) matrix of the M variants. Then 0]2 can be
7 interpreted as the per-variant heritability of variant j.

80 To achieve an ideal prior that shrinks most elements of 3 toward 0 while retaining
s some large coefficients, we impose a Dirichlet prior on the variance terms:

(Jf, T h2) ~ Dir (a1, ...,apm,b), (Equation 3)

& where ai,...,ap € (0,1) and b > 0 are hyperparameters. Additionally, a double-
e exponential prior is assigned to each element of 3:

85|02 ~DE( 0]2/2) L j=1,..., M, (Equation 4)
s« where DE(§) denotes a double-exponential distribution with mean 0 and variance 252.
85 Same as many other fine-mapping methods, h2-D2 requires GWAS summary
s data only [26]. Assume the single-SNP summary statistics D = {8;,&}}L, are

&z provided, where Ej is the marginal effect size estimate of SNP j, and €; is its stan-
. —~ ~ N\ 1/2
s dard error. Let B8 = (B1,...,8u)", 8 = (’e?—!—N‘lﬁf) for j = 1,...,M, and

0w S = diag(s1,...,5m). The LD matrix is estimated from some reference panel as R.
o The RSS likelihood of 3 [26] is given by

BB, S, R~ Ny (§f2§*15, §fz§) : (Equation 5)

o1 The h2-D2 prior can also be applied to binary traits by considering the observed-
e scale heritability (supplemental method 1). An MCMC algorithm that is compatible
o3 with both quantitative traits and binary traits is developed to obtain samples from
w the posterior distribution (supplemental method 2).

s Credible level and credible set

s For the j-th SNP, consider the null hypothesis Hy; : 8; = 0. In the frequentist frame-
o work, Ho; can be rejected at the level of o if 0 is not contained in a confidence interval
o at the level of 1 —a. We migrate this approach to the Bayesian framework by replacing
9 the confidence interval with the Bayesian credible interval. We propose the following
w0 statistic to evaluate how likely SNP j is causal:

CL,; & ﬂ(ﬁ] > 0|D) — 15}(5] < 0|D)| € [0, 1], (Equation 6)

11 where the posterior probability f’;(|D) is estimated from the MCMC samples. We
w2 term this statistic as the “credible level” of SNP j, since it can be interpreted as the
s maximum probability such that the corresponding equal-tailed credible interval of 3;
e doesn’t cover 0.

105 Next, we extend this concept to multiple SNPs and define credible sets (CSs)
s accordingly. Consider a set of SNPs C = {j1,...,jx}. In the frequentist framework,
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w7 claiming that C is a level 1 — a CS is equivalent to rejecting the null hypothesis
ws  Hoc : Bc £ (Bjyy---,B5.) " = 0 at the significance level of a, which can be declared if
wo  the null hypothesis v B¢ = 0 can be rejected at the significance level of a for at least
o one v € RF. Therefore, the credible level of C is defined as

CLc¢ 2 max CL¢(v)
vERF .
(Equation 7)

Pr (v Be > 0|D) — Pr (v Be < 01D)| .

= max
vERFK

1 However, it is computationally infeasible to find the v that maximize the credible
2 level when the number of variants exceeds two. Instead, we choose a single v to pro-
u3  vide a lower bound of the credible level. The coefficients of v are selected to satisfy
us  the condition that for positively correlated variants in C, the corresponding coeffi-
us  cients have the same signs, while for negatively correlated variants, the corresponding
us  coefficients have different signs. We choose v as an eigenvector of Rc¢ corresponding
u7  to its largest eigenvalue, where R¢ denotes the estimated LD matrix of SNPs in C. If
us  CL¢(v) > 1—a, we have CL¢ > 1 —a, and we conclude that C is a level 1 — « credible
1o set. A greedy algorithm is designed to search all CSs achieving a pre-specified level
120 (supplemental method 3).

= Choice of hyper-parameters

12 In the Dirichlet prior (Equation 3), a smaller a; leads to a higher concentration around
s 0 for B;, while a larger b indicates stronger global shrinkage. When incorporating
124 external information, such as functional annotations, if the j-th SNP is more likely
s to be causal, a larger a; can be set. By default, we suggest setting a1 = ... = ay =
s a € [0.001,0.01] for general fine-mapping tasks. A smaller a would make the MCMC
127 chain converge slowly, while a larger a can be considered if there are evidences that
s the region may harbor a large number of causal variants (e.g. more than 10).

129 As for the choice of b, if an in-sample or highly accurate LD matrix Ris available,
1o we recommend estimating the local heritability using some well-known estimation
m procedures, such as the HESS estimator [27], which is defined as:

ﬁiNﬁTIA%”BfM
- N-M

(Equation 8)
122 Then, b can be chosen as follows:

73\ M
(1 - h2) Zj:l aj )
b= = . (Equation 9)
h

133 However, if the accuracy of Ris poor, the HESS estimator may exhibit large bias. In
134 this scenario, even if the true heritability is known, setting b according to Equation
135 9 can lead to large effect size estimates for some non-causal variants in h2-D2. This
136 18 consistent with a recent finding that significant miscalibration due to external LD
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1 matrices can produce suspicious results in meta-analysis fine-mapping studies [28]. To
s address this, we suggest performing quality-control to filter out outlier variants before

130 fine-mapping, and setting b € [104 Z]Nil aj,2 x 103 Z;Ai1 aj} for GWAS fine-mapping
u tasks or setting b € {10 Z]M:1 aj, 200 Zj\il aj} for eQTL fine-mapping tasks.

w UK Biobank data preprocessing

12 We selected British individuals from the UK Biobank database based on specific cri-
s teria. The selection process involved the following steps: (i) Only individuals with
e available genotype data were included. (ii) We specifically chose individuals who self-
1s  identified as ”White British” to ensure homogeneity in the population. (iii) Genetic
1 sex was confirmed to be consistent with self-reported sex. (iv) Outlier individuals were
w7 identified and excluded based on heterozygosity or missingness. (v) Individuals with
us close familial relationships were removed to avoid any potential bias in the analysis.
u  After applying these filtering criteria, a total of 275, 768 individuals were retained for
150 further analysis.

151 Subsequently, we focused on variants that met the following criteria: (i) Variants
12 with at most one alternative allele were considered to ensure simplicity in the analy-
153 sis. (i) Variants with a minor allele frequency of at least 1% were selected to ensure
1 a reasonable frequency of the variant in the population. (iii) Variants with an infor-
155 mation score of at least 0.8 were included to ensure high-quality genotype data.. The
15 18ID of selected variants were labeled based on dbSNP database (build 151).

v Partition LD blocks

15 We noticed that the LD blocks partitioned by LDetect [29] based on 1000 Genome
159 reference panel are not optimal for UKBB reference panel. We developed a method
1o to divide the whole genome into nearly independent LD blocks, so as to improve
e computational efficiency and achieve accurate fine-mapping results.
For a given LD matrix R of M SNPs, we defined the optimal splitting as the
solution to the following optimization problem:

2

E . . re .
. 1<j1<k,k<jo<M
arg min SJ1SK,R<)2 Jij2

ke{l,...,M} k(M_k) ’

12 i.e., minimizing the average squared correlation r? between two blocks. Our algorithm
163 iteratively identifies optimal splitting points between consecutive LD blocks obtained
1w from LDetect. If the loss in optimal splitting, defined as the difference in the objective
165 function value before and after the split, is smaller than 0.001 and the size of the split
16 block is not smaller than 50, the split point is accepted. This process is performed
w7 recursively for each split block until no further split points satisfying the conditions
18 can be found.

169 As a result, we divided the entire autosomal region (excluding the major histo-
wo compatibility complex [MHC] regions) into a total of 3,717 nearly independent LD
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w1 blocks. We provide the script and the full list of LD blocks on our GitHub repos-
w2 itory at https://github.com/xiangli428/PrCaFineMapping. This approach allows for
w3 improved efficiency and accuracy in fine-mapping analyses using the UK Biobank
s reference panel.

ws Simulations

e We conducted simulation studies using UK Biobank imputed genotype data from
w N = 275,768 unrelated British individuals [30]. For the simulations, we selected 100
ws nearly independent LD blocks on chromosome 2 (Table S1), and included variants
1w with MAF > 0.01 and INFO score > 0.8. We pruned SNPs such that the absolute
o correlation |r| between any two SNPs was less than 0.99. Each block contained a
w1 varying number of SNPs, ranging from 288 to 1,122, and had a length between 0.25
182 and 2 Mb.

183 We designed four simulation scenarios with varying sample sizes, local heritabili-
18+ ties, and numbers causal variants. For the first three scenarios, we used the genotypes
15 of all N = 275,768 individuals and considered different combinations of local heri-
s tability and numbers of causal variants: (1) h? = 0.1%, Neausal = 9; (2) h? = 0.05%,
1857 Neausal = 55 and (3) A% = 0.1%, Necausal = 10. In the last scenario, we simulated eQTL
188 studies, where the sample sizes were small (N = 1,000), but the effect sizes of causal
1w SNPs were large (h? = 10%), and ncausal = 5. Genotype values of each SNP were
1o standardized. In each scenario, for each block, the causal variants were chosen ran-
11 domly and the effect sizes of causal variants were sampled from a normal distribution
12 with mean 0. The phenotype values were then computed according to the multiple
103 regression model (Equation 1), where the error term e were sampled from a multi-
14 variate normal distribution with mean 0 and covariance matrix o2Iy. o2 was chosen
s such that Var(X3)/ (Var(XB) + o2) equaled h? in each scenario. After standardiz-
s ing the phenotype values and scaling the effect sizes of causal variants consistently,
17 we computed summary statistics for each variant.

108 To assess the influence of LD matrix accuracy on the fine-mapping performance,
o we computed four LD matrics for each block. The first one was an in-sample LD
20 matrix computed from all 275,768 UKBB individuals (R). The second one and the
20 third one were down-sample LD matrices, computed from randomly sampled 3,000
22 or 500 UKBB individuals, denoted by Rukss,3000 and RuksB,s00, respectively. The
23 fourth one was an out-of-sample LD matrix computed from 522 unrelated European
24 ancestry individuals using the genotype data from the 1,000 Genomes Project on
25 GRCh38 [31, 32], denoted by Rikg. When using mismatched LD matrices, we applied
26 SLALOM to all pairs of SNPs with |r| > 0.8 and remove outlier non-causal variants
207 with DENTIST-S statistics > 40 [28].

2 Compared methods

200 We performed a comprehensive comparison between h2-D2 and two state-of-art fine-
20 mapping methods requiring only summary statistics, FINEMAP [10, 11] and SuSiE-
an - RSS [12]. FINEMAP utilizes a general discrete distribution as prior for the number of
a2 causal SNPs,
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Pr(number of causal SNPsis k) = p, k=1,..., K,

a3 where K < M is the maximum number of causal variants, and uses a shotgun stochas-
2 tic search algorithm to identify models with high posterior probabilities. SuSiE [6] is
215 a novel variable selection method that decomposes the effect size as the sum of single-
a6 effect vectors and imposes a multinomial prior distribution on each single-effect vector.
a7 SuSiE adopts an iterative Bayesian stepwise selection algorithm to optimize a varia-
218 tional approximation to the posterior distribution, as well as a refinement procedure
29 to address the convergence problem of the algorithm.

220 As for the choices of hyper- parameters, for h2-D2, we set a1 = ... = apyy = a =
21 0.005. When using LD matrices R or RUKBB 3000, We set b according to Equation 8
2 and Equation 9. When using RUKBB 500 OT RlK(;, we set b =2 x 10°Ma for scenario
23 1-3, and 100M a for scenario 4, respectively. For SuSiE, we set options “refine=TRUE”
24 and “estimate_residual_variance=TRUE”. For both SuSiE and FINEMAP, we set the
25 number of single-effect vectors or the maximum number of causal variants equals the
2 true number of causal variants in each scenario (5 or 10).

»» Comparison of causal variant effect sizes and their posterior
» mean in simulation studies

29 In each simulation setting, we merged the results from 100 datasets together. Since
20 causal variants with small effect sizes are difficult to be identified by fine-mapping
an methods, we used the following piecewise linear model to assess the relationship
2 between the true effect sizes () of causal SNPs and their posterior means (3):

B k(B — Bo) for B> Py,
=<0 for |8] < P, (Equation 10)

k(B + po) for B < —ph,

23 where k and By > 0 are the coefficients to be estimated. We used least square method
24 to estimate these coeflicients. The fitted curves are shown in Figure S4.

»s Prostate cancer GWAS data preprocessing

26 We applied h2-D2 to identify candidate causal variants of prostate cancer (PrCa)
23 using summary GWAS data from a large meta-analysis involving N1 = 79, 148 cases
2 and Ng = 61,106 controls of European ancestry [33]. We excluded the major histo-
20 compatibility complex MHC region (chr6 25-33 M) from our analysis. The remaining
a0 autosomal regions were partitioned into 3,717 nonoverlapping regions with approxi-
on mately independent LD (Material and methods). There are 126 risk variants out of
x2 3,717 regions (i.e., contain at least one SNP with P < 5 x 1078). 275, 768 unrelated
23 British individuals from UK Biobank database were used as reference panel.

244 We filtered out duplicated SNPs, SNPs that were not present in UKBB reference
s panel, SNPs with a imputation 2 < 0.3, with a standard error of marginal effect size
us on the allelic scale < 5x 1073 or > 1072, with a MAF< 0.01 in UKBB reference panel,
27 or with a logit(MAF) difference between UKBB reference panel and meta-analysis
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xus  larger than 0.5. Since mismatched LD matrices were used, to avoid unreliable results,
20 for each pair of SNPs with an absolute correlation |r| > 0.8, we checked if the pattern
0 of LD and GWAS summary statistics is suspicious using DENTIST-S statistic [28]. If
s DENTIST-S statistic was greater than or equal to 30, the less significant SNP would
2 be removed. After these quality control steps, 6,446,747 common SNPs were retained
53 in our analysis. Before fine-mapping, the variants were pruned such that all pairwise
¢ correlation |r| < 0.95. A total of 1,342,667 tag SNPs were retained for fine-mapping.
s We used h2-D2 with specific hyper-parameters (a; = ...ay = 0.005 and b = 2 x 10°)
»6  to fine-map each region and identify 95% CSs. Each 95% CS includes a set of tag
7 SNPs with a joint credible level > 0.95, as well as the pruned SNPs that are in high
»s LD with them.

» Annotations of variants

%0 The gene-based annotations of variants and their associated genes were extracted from
21 the dbSNP database (build 151) with GRCh37.p13 as the reference assembly [34].
%2 These annotations include: NSF (non-synonymous frameshift), NSM (non-synonymous
%3 missense), NSN (non-synonymous nonsense), SYN (synonymous), U3 (in 3° UTR), U5
s (in 5 UTR), ASS (in acceptor splice site), DSS (in donor splice-site), INT (in intron),
s R3 (in 3’ gene region), and R5 (in 5’ gene region).

266 Prostate cancer-specific cis- and trans-eQTL data were obtained from PancanQTL
wr  database [35]. Cis-eQTLs from normal prostate tissues mapped in European-American
s subjects were obtained from GTEx V8 database [36].

269 DNasel peaks, ChIP-seq peaks of histone marks and transcription factor binding
20 sites in prostate-derived cell lines were obtained from Cistrome database [37]. Details
on - of downloaded data are shown in Table S3. The peak coordinates were converted from
a2 hg38 to hgl9 reference assembly using LiftOver. Variants located within these peaks
a3 were selected using BEDTools.

214 Enhancer-promoter loops identified from Hi-C data in RWPE1, C42B, and 22Rv1
a5 cell lines were obtained from Supplementary Table 5A-C of ref. [38]. Annotated
2 H3K27ac HiChIP loops in LNCaP cell line were obtained from Table S7 of ref. [39].
a7 Variants located within the identified enhancers were selected using BEDTools.

= Pathway enrichment analysis

x9  Potential target genes of credible causal variants (CCVs) were derived by merging (i)
20 associated genes of CCVs annotated in dbSNP database (build 151); (ii) associated
s genes of eQTLs in CCVs in PancanQTL and GTEx V8 databases; (iii) genes whose
22 promoters interact with enhancers covering CCVs in Hi-C or H3K27ac HiChIP data.
23 Protein-coding genes were retained based on GENCODE v42 annotations mapped to
e GRCh37 assembly.

285 Enrichment analyses for pathways from GO Biological Process [40] and WikiPath-
26 ways [41] were carried out using GeneCodis [42]. To remove redundant pathways, we
27 computed Dice coefficients for all pairs of pathways. If the Dice coefficient between
28 two pathways is larger than 0.3, only the more significant one was retained.
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» Results

w0 Simulation results

2 We conducted simulation studies to evaluate the performance of h2-D2 and compared
22 1t with other fine-mapping methods. In brief, we chose 100 regions on chromosome
23 2 (Table S1) and simulated quantitative traits for each region. We considered four
204 scenarios with varying sample sizes, local heritabilities, and numbers causal variants.
25 'To examine the influence of LD matrix accuracy on the fine-mapping performance, we
206 computed four LD matrics from different reference panels with varying sample sizes
27 for each block. Details are provided in Material and methods.

208 We compared h2-D2 with two state-of-art fine-mapping methods, FINEMAP
20 [10, 11] and SuSiE-RSS [12]. On the SNP level, we evaluated the performance of vari-
30 able selection using the area under the precision-recall curve (AUPRC), which was
sn computed based on the credible level of each SNP for h2-D2 or the marginal poste-
32 rior inclusion probability (PIP) of each SNP for SuSiE and FINEMAP. In addition,
;3 we assessed the accuracy of effect size estimation using the sum of squared error
s¢ (SSE) of B based on its posterior mean. When using in-sample LD matrices, h2-D2
305 consistently outperformed SuSiE and FINEMAP in terms of both AUPRC and SSE
w6 across all scenarios (Figure 1A B). As expected, all methods exhibited degraded per-
s7  formance as the accuracy of the LD matrices decreased. In most cases, h2-D2 still
w08 demonstrated superior performance. Additionally, h2-D2’s credible levels were bet-
w00 ter calibrated than PIPs of SuSiE and FINEMAP, particularly when inaccurate LD
s0  matrices were used (Figure S1). The performance of SuSiE was close to that of h2-
su D2, However, FINEMAP had significantly larger SSE and performed much worse in
sz Scenario 3 where the true number of causal variants was 10.

313 To gain further insights into the differences among the three methods, we compared
ae  the AUPRC for each simulated dataset between h2-D2 and the other two methods
us  (Figure S2). While the AUPRC values were generally close for all three methods across
aie  most datasets, h2-D2 exhibited significantly better performance in certain datasets. By
a7 visualizing the fine-mapping results of these datasets, we noticed that in many cases
as  if there was a non-causal SNP having moderate LD with one or more causal SNPs
a0 and having a stronger marginal association than causal SNPs, SuSiE and FINEMAP
20 tended to select that non-causal SNP instead of the causal ones. Figure S3 provides
21 two examples illustrating this issue. This phenomenon may be attributed to the step-
22 wise selection nature of SuSiE and the shotgun stochastics search algorithm employed
23 by FINEMAP. Once a marginally significant variant is included in the model, it is dif-
24 ficult for discrete-mixture prior-based methods to remove it, i.e., the algorithms are
;s more prone to be trapped into suboptimal solutions. It appears that the refinement
s step of SuSiE cannot always alleviate this problem. On the other hand, continu-
27 ous shrinkage prior-based methods allow for the continuous updating of coefficients,
»s enabling smoother transitions among different local modes, and making the Markov
2o Chain Monte Carlo (MCMC) algorithm to explore the space of causal configurations
;0 more extensively.

331 We also compared differences among the three methods in effect size estimation. We
s grouped the variants into causal and non-causal categories and analysed the prediction
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a3 error for each group (Material and methods, Figures S4 and S5). Although SuSiE and
s h2-D2 produced similar estimation of causal variant effect sizes, h2-D2 had smaller
s prediction errors for the non-causal variant effect sizes, suggesting that h2-D2 had
s lower FDR than SuSiE. While FINEMAP demonstrated the lowest SSE for non-causal
;7 variant effect sizes, it grossly underestimated causal variant effect sizes, presumably
18 from excessive shrinkage, resulting in larger SSE compared with SuSiE and h2-D2.
330 Next, we compared theAleve1A95% CSs produced by the three methods. As shown in
s Figure 1C-G, when using R or Rukss,3000, the numbers of 95% CSs generated by the
s three methods were comparable, and CSs from h2-D2 exhibited higher coverage and
2 greater power in most cases. When using Ruksg 500 or Rikg, SuSiE and FINEMAP
a3 detected more CSs with higher power but lower coverage, while h2-D2 detected fewer
s CSs with lower power but higher coverage. These results suggested that the CSs from
ss  h2-D2 have a lower false discovery rate (FDR) even when low accuracy LD matrices are
us  used. Although the CSs based on continuous priors may not guarantee the frequentist
s coverage, we found that the coverage was generally higher or close to the target level
us  of 0.95, except when using Rikg. It is not surprising that 95% CSs from h2-D2 had
us  larger sizes and lower purity, since SuSiE and FINEMAP focus on regions with high
0 posterior probability density and select ”best candidates” among a set of SNPs in high
1 LD. In contrast, h2-D2 samples from the full posterior distribution, providing a more
32 comprehensive representation of the uncertainty in the fine-mapping results.

353 Finally, we compared runtime of the three methods (Figure 1H). The computa-
s tional complexity of h2-D2 is proportional to M? (where M is the number of variants)
35 and the number of MCMC iterations (nycomc), while the computational complexity
s of SuSiE is proportional to M? and the maximum number of single effects L. When
s nyomc = 10000 and L = 5, the runtime of h2-D2 were approximately three times as
s long as the runtime of SuSiE. The computational complexity of FINEMAP is primarily
39 determined by the maximum number of causal variants and the number of iterations,
0 50 the runtime of FINEMAP didn’t significantly vary with the number of variants.

s Fine-mapping causal variants of prostate cancer

2 We applied h2-D2 to identify candidate causal variants of prostate cancer (PrCa) using
s summary GWAS data from a large meta-analysis of European ancestry [33] (Material
s« and methods). Overall, we identified 164 CSs at 95% level (Table S2), containing
w5 4,706 credible causal variants (366 tags). Among these CSs, 93 overlaped with the
6 106 CSs in autosomal risk loci reported by ref. [43] and 86 overlaped with the CSs
s identified by ref. [39]. Out of the 3,717 regions analysed, 92 regions contained a single
e CS, while 23 regions contained multiple CSs. 6 CSs were detected within non-risk
0 regions. The region with the highest number of CSs was chr8 127708268-128658961,
s where 15 CSs were detected. This finding is consistent with previous research that
sn chr8q24 region harbors multiple loci associated with PrCa susceptibility [44]. The
s sizes of the CSs ranged from 1 to 282 variants, with a median size of 12 variants.
sz There were 22 CSs containing only a single variant, including some well-established
s causal variants of PrCa, such as rs77559646, which disrupts ANO7 mRNA splicing
ss and protein expression [45], and rs61752561, which affects glycosylation and function
s of prostate-specific antigen [46] (Table 1).

11


https://doi.org/10.1101/2023.08.04.23293456

medRxiv preprint doi: https://doi.org/10.1101/2023.08.04.23293456; this version posted September 8, 2023. The copyright holder for this

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in

perpetuity.
All rights reserved. No reuse allowed without permission.

HLA € Ugy
‘UOr3ar oues (¢ UL,

‘uorsar ouesd (G Ul

UoIYUT ULy

"9SULSSIUI SNOWAUOUAS-UON] ¢

.va@n@m 1981e) aarreInd S pUR JURLIRA 9} UsamIaq (s)adA) UOTIRIOOSSY ¢
“JuBRLIRA O} JO (S)ouoS jo81e} eAreIn g,

‘[oAS[ S[qIpPaT ¢d-¢Ug

ronrea-d sisAeue-eloiy o

‘sIsA[eure-g1oUl Ul S[0I3U0D JOo Lousnbol) o[o[[e SAIIRUINY[ Y,

"arst (618u/LeUDYD ‘TST PIMY) ANSIPg
“{bosyre}-{bosjor}~{sod}~{1yo} yewrioy oyy ur (I yueLIRA ,

6184/ L£uDygD) uordea Surddew-ouy Jo Arepunoq pue IoquNu (1Yo) SWOSOWOIY)) ¢

T 1,—0T X 69°¢ 0<0 LIT6GLGST L7D7¢1c005€V ¢C LG9679ETV-980CL8CY ¢ U2

INI'NSN EMTM ! g—0T X €€°C ¥0°0 T9GCGLTI9SL VD C8ETIETS 61 YEG0SVTIS-L8TVSCTS 612

T G0'0 ¢0'0  0LLOVCOVIsT L™D7L6VCE89T LT 09GTTCLY-LY080€ST-LTIY

T L2°0 T0°0  9LBERVTEYTSL V=O70€991897 LT 09GTTELY-LV080E€ ST LTIY

e160l §9d.L 1 601 X €L°T 10°0 CTTBLEBLST O LTCGLTLGL LT 9IVL008-E€TLTGCL LTIYD

e TIdWIN - 86°0 g—0T X G9'T (44 0€0700TSsL O~ L 67950€€T VT 9L686S€C-0ETTSGCEC T TIYD

! 11—0T X 6C°€ L0°0 Y0CLG6T9ST VO P89780VLET C€LILVEVL VLY LVSEL ETIYD

Z1€H SN qINMAD T 6—01 X 1€C ¥¢0 L28990¢sI D"L76601L8¢T7 ¢l 6€€¢c6¢1-90T10TCT:¢ Ty

(*ILD) 1L ST INI GXONMd T 11-0T X 10°C T10°0  6€099¥8ETST LD €6LVS0SCT IT  9PSTTTSCI-9TCL69VCT TTIYD
AmeOth%wW,MWOH BMEQE"Q%MMNW@WWN T ,51-01 X6C°C c9'0 766£660T1s1 O~ L796¥6¥S157 01 TE€EIPTESG-LIS6E80G-0T Y2
96°0 g—0T X 169 LE°0 €ETI8ETST L7D70875998C1T°8 81GL6C6CT-€TL6SIBCT 812

1 2,-0T X 0¢°¢ ¢cro T9L6VSCTSL D7D79LL0VS8CT8 1968598 1-89C80LLET 812

ombﬁmnmmw%‘w@%mm%wm %MWWW&MMN&% 66°0 ¢—0T X 1€'T ¥1°0 €8¢9797s1 O~ L ¢0S18509T°9 ETILY8TIT-0E8TS66ST:9142
odnmﬁ%&www%mm%hm %MM@W&M%M@M ! 9g—0T X GT'C 69°0 9TTG9s1 DTV PLETRG09T™9 ETTLY8TIT-0E8TS66ST:9142
(*XALD) TLDO SO NI XUI 1 zg—0T1 X 846 cro 9V6€99C TSI L7D76685681°¢ I89T1€TC-0E6TSST G2
L6°0 g1—0T X 86'% 200  9V8L6T8Y TSI VD L1086C1°¢ 8ETTGST-TOL6LCT GIY

LNI LYAL  96°0 o1—0T X 84T €00 €00G6GTLST VD 811¢6C1 ¢ 8ECTTGST-TOL6LCT GIY

NI LYHHAL 1 z1—01 X 988 €L°0 9L9€G8¢s1 O L7 LyS88¢1¢ 8ECTTGST-T0L6LCT GIY

LNI LHHL T c00 8¢°0 LL9€G8CSL VD V61L821 ¢ 8ETTGST-TOL6LCT GIY

LNI TIMS ! e9—0T X 9L°1T 1¢°0 TGCIETTISL D7D76¢9€800LT°€ 68€0LTOLT-FPCV61691:€142

o1 LNI‘gINSN LONV T 1z—0T X €66 0’0 9r96GGLLST VO G9¢SE1CrT T IV 1I¥0EV¢-6C0C161V¢-¢1U

T op—0T X GE'L 0<0 LL6GTGIST VO PITT0€E9C 09L00L¥9-TLECSVCY G 1Y

wﬁmvwm\ﬁ UOIIRIDOSS Y »Amvocmbw JesIel,  §ID onea d  AvVv (I8t gYueLIeA puordar Surddeuwr-out

SjuRLIRA [ESTIRD I90URD 9)e)soId JO $19S 9[qIPaId JNS-O[SUIS T o[qel,

12


https://doi.org/10.1101/2023.08.04.23293456

medRxiv preprint doi: https://doi.org/10.1101/2023.08.04.23293456; this version posted September 8, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
All rights reserved. No reuse allowed without permission.

377 In our analysis, we identified some novel independent association signals that have
srs not been previously reported. One such example is chrll 68810837-69542062, where
s four 95% CSs were detected (Figure 2A, Figure S6A). CS:11-88-1 is represented by
s 1512275055 (P = 3.7 x 10798), which is known to have pleiotropic associations with
s multiple cancer types [47]. This SNP acts as an eQTL in multiple tissues for TPCNZ,
s which plays a role in autophagy progression and extracellular vesicle secretion in cancer
ss cells [48]. The location of CS:11-88-2 overlaps with CS:11-88-1. Hi-C data from the
s normal prostate cell line RWPEL indicated that several SNPs within CS:11-88-2 are
s located in an enhancer region that looping to the promoter of the cell cycle related
s gene CCNDI [38]. Furthermore, an interaction between the TPCN2 promoter and the
s CCND1 promoter was detected by H3K27ac HiChIP in the LNCaP prostate cancer cell
s line [39]. These findings suggest a possible mechanism involving a three-way interaction
s between an enhancer harboring the causal SNPs in CS:11-88-1 and CS:11-88-2, the
0 TPCN2 promoter, and the CCND1 promoter. We also identified two other CSs, CS:11-
s 88-3 and (CS:11-88-4, near the gene CCND1. Within CS:11-88-3, 4 out of 17 variants
s are located in the 5’ flanking region of CCND1. In CS:11-88-4, the most likely causal
03 variant is the lead SNP 1s3212870 (P = 1.5 x 1073), which is located intronic in
su  CCNDI1. The associations between CS:11-88-4 and PrCa have not been previously
ss  reported, because of the weak marginal associations, which can be explained by the
w6 moderate LD between CS:11-88-1, CS:11-88-2, and CS:11-88-4 (Figure S6A). Another
s7  interesting example is chrd 73256856-74885359 (Figure 2B, Figure S6B), where we
w8 identified a novel CS, CS:4-88-3, insignificantly associated with PrCa (minimum P =
w0 6.5 x 107%). The lead SNP in CS:4-88-3, rs72649118, is a non-synonymous missense
w SNP of RASSF6, a member of the RASSF family of tumor suppressors [49].

« Functional enrichment of prostate cancer credible causal
402 variants

w3  We used the hypergeometric tests to investigate the enrichment of credible causal
w¢  variants (CCVs) in specific genomic features, including prostate-specific DNasel hyper-
w5 sensitivity sites, ChIP-seq peaks of transcription factors and histone marks (Material
w5 and methods, Table S3). We observed significant enrichment of CCVs in active reg-
«r  ulatory regions (defined by H3K27ac and H3K4mel marks), active gene promoters
ws  (defined by H3K4me3 and H3K9ac marks), actively transcribed gene bodies (defined
w0 by H3K36me3 and H3K79me2 marks), and DNasel hypersensitivity sites (Figure 3A).
sno  CCVs were also significantly enriched in the binding sites of various transcription fac-
a1 tors (Figure 3B, Table S3), including AR (androgen receptor), NR3C1 (glucocorticoid
a2 receptor), ASH2L, and FOXA1.

a3 To formally evaluate the relationship between the biological functions associated
as - with SNPs and their contributions to the risk of PrCa, we fitted a linear model for the
a5 logarithm of per-SNP heritability (i.e., the posterior mean of squared effect size) of all
ne 1,342,667 tag SNPs using the following functional annotations of SNPs as predictors:
ar (i) 11 gene-based annotations extracted from the dbSNP database (build 151) [34];
ss (i) cis- and trans-eQTLs within PrCa tissues from the TCGA database [35]; (iii) cis-
ao  eQTLs within normal prostate tissues from the GTEx v8 database [36]; (iv) DNasel
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w20 hypersensitivity sites, ChIP-seq peaks of 48 transcription factors and 9 histone modifi-
w1 cations from normal prostate or prostate cancer cell lines, obtained from the Cistrome
« Data Browser [37]; (v) enhancer elements identified by Hi-C data and H3K27ac ChIP-
w23 seq peaks in normal prostate (RWPEL) and prostate cancer (C42B and 22Rv1) cell
o+ lines [38]; (vi) enhancer elements predicted by H3K27ac HiChIP in the prostate cancer
ws cell line LNCaP [39]. In addition, log (f(1 — f)) and log(LD score) were included as
w6 covariates, where f is the minor allele frequency of SNP. This analysis revealed that
21 cis-eQTL (TCGA) (Poqj = 5.4 x 107137), cis-eQTL (GTEx) (Paqj = 8.2 x 10752), and
28 enhancer (H3K27ac HiChIP, LNCaP) (P,q; = 1.8 x 1075Y) were the most significant
w9 three annotations associated with per-SNP heritability (Figure 3C, Table S4). Trans-
s  eQTL (TCGA) (Pagj; = 1.5 x 1078) exhibited the largest effect size (0.36). Notably,
s HDACI (histone deacetylase 1) binding site was the only significant functional anno-
w2 tation with a negative effect on per-SNP heritability. These findings suggested that
a3 genetic variants influencing gene expression levels and enhancer activity play a crucial
s role in the development and progression of PrCa.

= Putative target genes of prostate cancer credible causal variants

s To identify potential target genes of CCVs, we integrated various sources of infor-
s mation, including gene-based annotations from the dbSNP database (build 151),
s eQTL data, and enhancer-promoter interaction data from Hi-C and HiChIP experi-
a0 ments (Material and methods). As a result, we identified 385 protein-coding genes as
wmo  potential target genes of CCVs across all 95% CSs (Figure 4A, Table S2).

a1 We further conducted pathway enrichment analysis to gain insights into the biolog-
w2 ical functions and processes associated with these putative target genes. Our analysis
w3 revealed significant over-representation of these genes in 52 non-redundant pathways
ws at an FDR of 0.05 (Figure 4B, Table S5). Notable enriched pathways included prostate
ws  gland development, DNA damage response (only ATM dependent), positive regula-
ws  tion of transcription by RNA polymerase II, and regulation of mitotic cell cycle. The
w7 enrichment of putative target genes in cellular response to BMP (bone morphogenetic
us  protein) stimulus, collagen catabolic process, and definitive hemopoiesis pathways may
s be attributed to the involvement of these processes in PrCa bone metastasis [50-
w0 52]. Furthermore, putative target genes were also over-represented in toxin transport
s pathway. Although previous studies have reported associations between PrCa and sev-
s eral genes in toxin transport pathway, such as SLC2241-A3 [53, 54], the relationship
3 between PrCa and this pathway is not well elucidated and needs further investigation.

= Discussion

ss  In this article, we present h2-D2, a fine-mapping method that utilizes a continuous
w6 global-local shrinkage prior. As an extension of R2-D2, h2-D2 is designed for GWAS
s7  data where the phenotype values are standardized. Unlike existing fine-mapping meth-
w3 ods that rely on discrete mixture priors, h2-D2 does not impose a constraint on the
0 maximum number of causal variants and allows for the exploration of a wider range
wo of causal configurations. In addition, h2-D2 does not reply on assumptions regard-
w1 ing the distribution of causal variant effect sizes, compatible with infinitesimal effect
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w2 assumption for non-causal variants, which has been adopted by some recent works in
w3 fine-mapping [55, 56]. These features ensure the applicability and flexibility of h2-D2
w4 In various scenarios.

465 We develop an efficient MCMC algorithm for h2-D2 to sample from the posterior
ws  distribution. We utilize several strategies to accelerate the mixing of MCMC chains,
w7 allowing for a more extensive exploration of the model space. Simulation studies show
ws that h2-D2 is less likely to get trapped into local optima and performs better in variable
w0 selection than discrete-mixture-prior-based methods including SuSiE and FINEMAP.
s This may be due to the property of continuous priors that the coefficients are updated
an  continuously and the transitions among local modes can be smoothly. Our results also
a2 highlight the importance of using accurate LD matrices derived from adequately large
ws  reference panels, which concurs with previous discoveries [12, 57].

a7 Another important contribution of our work is that we propose an inference
a5 approach to define credible sets in the framework of continuous priors, which addresses
ws  the limitation of continuous priors that do not yield selection results directly. Sim-
a7 ulation studies show that the CSs produced by h2-D2 can achieve the target level
as  of coverage and are well-powered when using in-sample LD matrices, and exhibit an
a9 improved control of FDR when using mismatched LD matrices. These results suggest
w0 the robustness and effectiveness of our proposed approach. Theoretical properties of
s the credible level defined for multiple SNPs deserve further investigation. Addition-
w2 ally, we acknowledge that the greedy search algorithm used to identify credible sets
.3 may not always yield the optimal sets and may miss some sets (supplemental method
s 3). Further refinement and improvement of the algorithm are needed to enhance its
s performance.

a6 In the real data application on prostate cancer GWAS, we identified several novel
w7 signals that have not been previously reported. Variants in 95 % CSs are significantly
ws  over-represented in prostate-specific epigenetic marks associated with activation of
w0 gene transcription. Through integrating gene-based annotation of SNPs, eQTL, Hi-
w  C, and HiChIP data in prostate cell lines, we identified 385 potential target genes of
w1 variants in 95 % CSs. These genes are enriched in prostate development and cancer
w2 related pathways.

203 As a future direction, fine-mapping resolutions may be improved by integrating
w4 functional annotations into the h2-D2 prior. Stratified LD score regression-based meth-
ws ods like PolyFun [58] are well suited to be incorporated with h2-D2, since h2-D2
ws prior is imposed on the per-SNP heritability directly. Furthermore, h2-D2 can also be
w7 extended to multi-trait fine-mapping. Given the widespread existence of pleiotropy,
w8 fine-mapping multiple traits simultaneously has the potential to enhance the power
w0 of identifying shared causal variants among traits [59-61]. Jointly analyzing multiple
s0  traits may provide valuable insights into the genetic architecture underlying complex
s diseases and traits, and improve our understanding of the shared genetic basis between
se  different phenotypes.
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«» Data and code availability

sa  Prostate cancer summary data are available from the PRACTICAL Consor-
s tium (http://practical.icr.ac.uk/blog/?page_id=8164). Enhancer-promoter loops iden-
so  tified from Hi-C data in RWPE1, C42B, and 22Rvl cell lines are available
sor at https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-019-12079-8/
ss  MediaObjects/41467_2019_.12079_ MOESM7_ESM.xlsx. Annotated H3K27ac HiChIP
s0 loops in LNCaP cell line are available at https://ars.els-cdn.com/content /image/1-s2.
si0 0-S0002929721004195-mmc3.csv. The software h2D2 is available at https://github.
su  com/xiangli4d28 /h2D2. Scripts and data related to PrCa fine-mapping analysis are
sz available at https://github.com/xiangli428 /PrCaFineMapping.
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=« Web resources

sio UK Biobank, https://www.ukbiobank.ac.uk/

520 1000 Genomes on GRCh38, https://www.internationalgenome.org/

521 Prostate cancer summary data, http://practical.icr.ac.uk /blog/?page_id=8164
522 dbSNP (build 151) with GRCh37.p13 as reference assembly, https://ftp.ncbi.nih.
3 gov/snp/organisms/human_9606_b151_GRCh37p13/

524 PancanQTL, http://gong lab.hzau.edu.cn/PancanQTL/

525 GTEx V8, https://gtexportal.org/home/

526 Cistrome, http://cistrome.org/

521 plink, https://zzz.bwh.harvard.edu/plink/

528 BEDTools, https://bedtools.readthedocs.io/en/latest/

520 LDetect, https://bitbucket.org/nygcresearch/ldetect /src/master/

530 bigsnpr, https://privefl.github.io/bigsnpr/

531 GeneCodis, https://genecodis.genyo.es/

532 FINEMAP, http://christianbenner.com/

533 SuSiE, https://github.com/stephenslab/susieR

16


http://practical.icr.ac.uk/blog/?page_id=8164
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-019-12079-8/MediaObjects/41467_2019_12079_MOESM7_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-019-12079-8/MediaObjects/41467_2019_12079_MOESM7_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-019-12079-8/MediaObjects/41467_2019_12079_MOESM7_ESM.xlsx
https://ars.els-cdn.com/content/image/1-s2.0-S0002929721004195-mmc3.csv
https://ars.els-cdn.com/content/image/1-s2.0-S0002929721004195-mmc3.csv
https://ars.els-cdn.com/content/image/1-s2.0-S0002929721004195-mmc3.csv
https://github.com/xiangli428/h2D2
https://github.com/xiangli428/h2D2
https://github.com/xiangli428/h2D2
https://github.com/xiangli428/PrCaFineMapping
https://www.ukbiobank.ac.uk/
https://www.internationalgenome.org/
http://practical.icr.ac.uk/blog/?page_id=8164
https://ftp.ncbi.nih.gov/snp/organisms/human_9606_b151_GRCh37p13/
https://ftp.ncbi.nih.gov/snp/organisms/human_9606_b151_GRCh37p13/
https://ftp.ncbi.nih.gov/snp/organisms/human_9606_b151_GRCh37p13/
http://gong_lab.hzau.edu.cn/PancanQTL/
https://gtexportal.org/home/
http://cistrome.org/
https://zzz.bwh.harvard.edu/plink/
https://bedtools.readthedocs.io/en/latest/
https://bitbucket.org/nygcresearch/ldetect/src/master/
https://privefl.github.io/bigsnpr/
https://genecodis.genyo.es/
http://christianbenner.com/
https://github.com/stephenslab/susieR
https://doi.org/10.1101/2023.08.04.23293456

medRxiv preprint doi: https://doi.org/10.1101/2023.08.04.23293456; this version posted September 8, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in

perpetuity.

All rights reserved. No reuse allowed without permission.

A AUPRC B Scaled SSE
0.6 1y N 0.8 { L
| Bl et !
My H o+ +
0.5 ity i } 4ot
¥ i
0.4 mm_‘_w AN “., Lt 0.6 i § ++ # i “H
¥
0.3 P4 0.4 TRCRURSE A
0.2 4 TRt
Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 1 Scenario 2 Scenario 3 Scenario 4
C Number of 95% CSs D Coverage
4.5 o+ 1004 |, ) Hip " T
4.0 ookt ot 0.95¢ i P-4 Ly
. Y
3.0 HMM."‘+H 0.90 * ++ + % + +
25 I 0.85 f 4
i'g st 0.80 t ﬂ
’ Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 1 Scenario 2 Scenario 3 Scenario 4
E Power F Size
0.6 {
i g AR !
05 . LA { " {* m by
0.4 H* ﬁﬂﬁ} { 3 { ++ ++ ! ++ # I H+# ++
it iy Oy Aty
+ L 2 +
0.3
Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 1 Scenario 2 Scenario 3 Scenario 4
G Purity H  Running time
0.96 i
|y
T A W 30
092 iy " HH 44; . ! ot 0
f |4t 1} + o 10
0.88 bt H + E
! 4 4 = 3
0.84 {

Scenario 1 Scenario 2 Scenario 3 Scenario 4

A AY
. a
R Rukes, 3000

N N
" Rukes,s00 * Rike

500
Number of variants

~ h2-D2 — SuSiE — FINEMAP

300 1000

Figure 1 Performance comparison of h2-D2, SuSiE and FINEMAP on simulated data.
In A-G, all values are the average ones across 100 datasets, with standard errors indicated by the error
bars. (A) Area under the precision-recall curve (AUPRC) based on the credible level of each SNP for
h2-D2 or the marginal posterior inclusion probability (PIP) of each SNP for SuSiE and FINEMAP.
(B) Sum of squared error (SSE) of 3 based on its posterior mean, scaled by h? in each scenario. (C)
Number of detected 95% credible sets (CSs). (D) Coverage of 95% CS (the proportion of CSs that
capture at least one causal variant). (E) Power of 95% CS (the proportion of causal variants captured
by at least one CS). (F) Size of 95% CS (the number of variants in each CS). (G) Purity of 95%
CS (the minimum absolute correlation among all pairs of SNPs in each CS). (H) Running time of
the three methods against the number of variants in scenario 1. Each point represents a simulated
dataset. For h2-D2, MCMC ran 10,000 iterations. For SuSiE, L = 5. For FINEMAP, K = 5.
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Figure 2 Fine-mapping results of two genomic regions in prostate cancer data analysis.
(A) chrll 68810837-69542062; (B) chrd 73256856-74885359. The top panel depicts the marginal asso-
ciations of variants (—log;o(P)) from the GWAS meta-analysis data. The second panel illustrates
the credible levels of tag SNPs computed by h2-D2. In the first two panels, each color represents a
95% credible set (CS). The CS is named in the format CS:{chromosome ID}-{region ID}-{index}.
The third panel demonstrates the patterns of linkage disequilibrium of the genomic region. The
fourth panel displays the positions of genes in the corresponding regions. The bottom panel shows
the H3K27ac HiChIP loops detected in the LNCaP prostate cancer cell line [39].
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Figure 3 (A,B) Enrichment of credible causal variants in prostate-specific (A) histone marks and
DNasel hypersensitivity sites (B) top 10 transcription factor binding sites. Hypergeometric test P
values are adjusted using the Benjamini-Hochberg (BH) method. (C) A linear regression model is
fitted for the logarithm of per-SNP heritabilities of tag SNPs using the functional annotations of
tag SNPs as predictors. Effect sizes and adjusted P values of significant functional annotations are
shown. P values are adjusted using the BH method. Significance is defined as P,q; < 0.05.
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Figure 4 (A) Venn diagram showing the numbers of putative target genes inferred from different
sources of information. (B) Enrichment of putative target genes in pathways from Gene Ontology
Biological Processes and WikiPathways. Hypergeometric test P values are adjusted using the BH
method. Pathways with P,q; < 0.005 are shown.
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