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Abstract

Accurately estimating the prevalence and transmissi-
bility of an infectious disease is an important task in
genetic infectious disease epidemiology. However, gen-
erating accurate estimates of these quantities, that are
informed by both epidemic time series and pathogen
genome sequence data, is a challenging problem. While
birth-death processes and coalescent-based models are
popular methods for modelling the transmission of in-
fectious diseases, they both struggle (for different rea-
sons) with estimating the prevalence of infection.
Here we extended our approximate likelihood,

which combines phylogenetic information from sam-
pled pathogen genomes and epidemiological informa-
tion from a time series of case counts, to estimate his-
torical prevalence (in addition to the effective repro-
duction number). We implement this new method in
a BEAST2 package called Timtam. In a simulation
study our approximation is well-calibrated and can re-
cover the parameters of simulated data.
To demonstrate how Timtam can be applied to real

data sets we carried out empirical analyses of data
from two infectious disease outbreaks: the outbreak
of SARS-CoV-2 onboard the Diamond Princess cruise
ship in early 2020 and poliomyelitis in Tajikistan in
2010. In both cases we recover estimates consistent
with previous analyses.

Introduction

In the field of genetic infectious disease epidemiology,
there are two key common questions: “how many peo-
ple are infected?” (i.e. what is the prevalence?) and
“how transmissible is this pathogen?” (i.e. what is its
effective reproduction number?) Prevalence of infec-

∗Corresponding author: azarebski@unimelb.edu.au

tion is the number of individuals infected at a given
time and the effective reproduction number is defined
as the average number of secondary infections per in-
fectious individual at a given time.

Birth-death processes are an increasingly popular
family of models for describing the transmission of
infectious diseases, in part because they capture the
mechanism of the process and are amenable to analy-
sis. In the birth-death process, births represent new
infections and deaths the end of an infectious pe-
riod. In its Bayesian phylogenetic implementation,
the birth-death process enters the analysis as a prior
model for the reconstructed phylogeny (the so-called
tree prior.) Kendall, 1948 first demonstrated how to use
generating functions to describe birth-death processes
when modelling infectious disease. Later, Nee et al.,
1994 connected that process to the number of observed
species in a phylogeny, and Stadler, 2010 and Stadler
et al., 2012 demonstrated how this idea can be applied
to the analysis of phylogenies of pathogen genomes.

Coalescent models offer a computationally and math-
ematically convenient alternative to birth-death mod-
els and are often used to analyse viral genomes (Pybus
et al., 2000; Volz et al., 2013). However, a number
of assumptions must be made in order to apply coa-
lescent models to epidemiological problems and these
assumptions may not always be met. Further, while
there are exceptions, e.g. Parag et al., 2020 and Volz,
2012, coalescent models typically lack an explicit sam-
pling model, and will estimate an effective population
size, Ne, rather than the true population size. These
aspects can complicate matters in an epidemiological
setting.

As with coalescent models, it is difficult to estimate
the true population size with birth-death models, and
it is usually not undertaken (again, there are excep-
tions, e.g. Kühnert et al., 2014). This difficulty stems,
in part, from the implicit assumption of an infinite sus-
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ceptible population in most birth-death models. Two
remedies offered are the use of parametric models with
a finite population, and nonparametric models with
time-varying rate parameters. Parametric models im-
pose additional structure, which may require strong
simplifying assumptions and can make analysis compu-
tationally intractable. Nonparametric models achieve
additional flexibility by representing parameters — par-
ticularly the birth rate — as piece-wise constant func-
tions (Stadler et al., 2013). In an epidemiological con-
text, to adjust for the depletion of the susceptible pool,
the model allows the birth rate to decline over time.
While convenient, nonparametric estimates make it dif-
ficult to distinguish if a decline in apparent birth rate
is due to depletion of the susceptible pool or changes
in behaviour, e.g. due to non-pharmaceutical interven-
tions.

Incorporating unsequenced case data into phylody-
namic analyses in a principled way is a long-standing
challenge for the field (Vaughan et al., 2019). Typi-
cally, only a small number of cases are sequenced. For
example, no country with a sizeable COVID-19 out-
break sequenced > 20% of reported cases and most
sequenced < 5%. Among low and middle income coun-
tries this number is often < 1%. Note that these num-
bers are for reported cases and not the true number of
infections (Brito et al., 2022). Purely phylodynamic
methods rely on this small subset of sequenced cases to
estimate epidemiological dynamics, taking the stance
that genomic sequences contain useful information and
can facilitate reconstructing the dynamics of transmis-
sion, even before the first case in an outbreak was iden-
tified. Nevertheless, the vast amount of unsequenced
case data is also informative and can help to refine esti-
mates of epidemic parameters (Rasmussen et al., 2011;
Judge et al., 2023). The calculations needed to simul-
taneously analyse both sources of data in an integrated
framework are well-known (see for example Manceau
et al., 2020), however existing ways to compute them
are computationally intractable for all but the smallest
outbreaks (Andréoletti et al., 2022).

In Zarebski et al., 2022, we described an efficient
and accurate method to approximate the likelihood of
a point process of viral genomes and a time series of
case counts, which we call Timtam. While Timtam re-
solved a long-standing challenge for the field, (i.e. how
to reconcile genetic and classical epidemiological data
in a computationally feasible way), it had some sub-
stantial limitations: a.) while efficient, it is a compli-
cated algorithm lacking a convenient implementation,
limiting reuse and making it inaccessible to most poten-
tial users; and b.) it only estimated prevalence at the
present, not prevalence through time. Here we show

how to resolve these outstanding problems. We resolve
the first by implementing the approach in a BEAST2
package (Bouckaert et al., 2019) called Timtam, which
is available on CBAN and can be installed via BEAUti.
We resolve the second limitation with an extension to
the algorithm, which enables conditioning on historical
prevalence so it can be treated as a model parameter
and estimated.

We carried out a simulation study to demonstrate
that the methodology leads to well-calibrated esti-
mates, i.e. that approximately 95% of the 95% HPD in-
tervals (i.e. the credible intervals) contain the true pa-
rameter value from the simulation. We further demon-
strate the “real-world” use of this package with two em-
pirical case studies. In the first, we repeat an analysis
by Andréoletti et al., 2022 of SARS-CoV-2 data from
an outbreak on the Diamond Princess cruise ship. We
infer a greater prevalence of infection than Andréoletti
et al., 2022. We attribute the difference in prevalence
to a limitation of the implementation in Andréoletti et
al., 2022, which Timtam overcomes. In the second, we
reanalyse data from the 2010 outbreak of poliomyelitis
in Tajikistan from Yakovenko et al., 2014 and the Cen-
ters for Disease Control and Prevention (CDC), 2010
and compare the results to a similar analysis from Li
et al., 2017.

Methods

Figure 1A provides an example transmission tree, a
complete description of who-infected-whom during an
epidemic, along with the timing of these events, and the
surveillance of this process. Sequenced cases appear as
filled circles in the figure, unobserved cases end the lin-
eage without a circle (at the time the case is unable to
cause any onward transmissions, i.e. becomes uninfec-
tious), and unfilled circles indicate scheduled observa-
tion of cases without sequencing, which occurred at the
three times indicated with dashed lines. Figure 1B de-
picts the corresponding reconstructed tree and the time
series of case counts. The reconstructed tree is the sub-
tree of the transmission tree that results from pruning
any leaves not corresponding to a sequenced sample.
Unlike the transmission tree, the reconstructed tree is
not oriented, consequently it does not specify which of
the two descendant lineages of an internal node cor-
responds to the infector. The leaves of the transmis-
sion tree corresponding to unsequenced samples form
a separate, but not independent, time series of con-
firmed cases. Figure 1C depicts the corresponding plots
of the prevalence of infection through time (grey line)
and the lineages through time (LTT) plot for the re-
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constructed tree (dashed line). The lineages through
time (LTT) plot describes the number of lineages in
the reconstructed tree as a function of time. Typically,
the value of the LTT plot will be less than the preva-
lence of infection. In Figure 1C, a single estimate of
the prevalence appears near the present as a star.
We refer to the lineages in the transmission tree that

are not in the reconstructed tree as the hidden lineages
because they are not visible in the raw data. At any
given time the sum of the number of hidden lineages
and the LTT of the reconstructed tree is equal to the
prevalence of infection. We denote by kt the value of
the LTT at time t and by Ht the number of hidden
lineages.
In the terminology of Zarebski et al., 2022, the recon-

structed tree consists of sequenced unscheduled data,
and the time series of cases represents unsequenced
scheduled data. We may consider arbitrary combi-
nations of (un)sequenced and (un)scheduled data, but
here we focus on data sets that consist of sequenced un-
scheduled data and unsequenced scheduled data (i.e.
time-stamped sequences and a time series of cases),
since this aligns closest to typical epidemiological data
sets.
In an epidemiological setting, we are often interested

in the prevalence of infection and Re(t), because these
quantities are of critical importance when assessing
the threat posed by an outbreak of infectious disease.
Bayesian phylodynamic methods provide a coherent so-
lution with clear quantification of uncertainty. Unfor-
tunately, this usually requires us to evaluate the joint
posterior distribution of the model parameters and the
reconstructed tree (up to an unknown normalisation
constant if we are using MCMC to generate posterior
samples), conditioning on time-stamped viral genomes
and a time series of confirmed cases. To do this, we
need to evaluate the log-likelihood function in a com-
putationally efficient way. Simulation based methods
exist, but tend to be far more computationally expen-
sive, which can reduce the utility of the resulting esti-
mates if they are time-sensitive.
The data for our model consists of DMSA and Dcases,

where DMSA is the multiple sequence alignment (MSA)
containing the time-stamped pathogen genomic data,
and Dcases is the observation of confirmed cases without
associated pathogen genomes.
The parameters of this process partition into four

groups:

• H, the number of hidden lineages at specified
points in time (which we use to estimate the preva-
lence of infection);

• T , the time-calibrated reconstructed tree describ-

Figure 1: The transmission process is viewed as a sequence of
events with the observations processed (in order) to approx-
imate their joint likelihood. Panel A demonstrates a trans-
mission tree with intervals of time an individual was infected
indicated by horizontal lines and the vertical grey arrows in-
dicating transmission. Three scheduled unsequenced samples
are taken at the times indicated by the vertical dashed lines.
Panel B shows the corresponding reconstructed tree and time
series of confirmed cases in each of the scheduled unsequenced
samples. In the third sample no cases were observed. Panel
C shows the prevalence of infection (grey line) and the LTT
(black dashed) along with a single (hypothetical) estimate of
the prevalence (the star).
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ing the ancestral relationships between the se-
quences in DMSA;

• θevo the parameters of the evolutionary model, de-
scribing how genome sequences change over time
(e.g. the molecular clock rate and nucleotide sub-
stitution model relative rate parameters);

• and θepi, the parameters of the epidemiologi-
cal model, describing how the outbreak/epidemic
grows or declines over time and how we observe it.

Using the terminology of birth-death processes, θepi
contains the birth rate λ and the death rate µ along
with the sequenced sampling rate ψ, the unsequenced
sampling rate ω (a.k.a. the occurrence rate), probabil-
ity of observation in a scheduled sequenced sample ρ
and the probability of observation in a scheduled unse-
quenced sample ν. Examples of these events are shown
in Figure 1A. Throughout this manuscript, we treat
these parameters as piecewise constant functions with
known change times.
We can express the posterior distribution,

f(H, T , θepi, θevo | DMSA,Dcases), in terms of sim-
pler components with the factorisation in Equation (1)
below. The likelihood of the sequence data given
the reconstructed tree and genomic parameters
f(DMSA | T , θevo), which appears in Equation (1),
is sometimes called the phylogenetic likelihood. This
function is well-known and can be efficiently calculated
with Felsenstein’s pruning algorithm (Felsenstein,
1981). The likelihood of the time series of cases, recon-
structed tree and prevalence, given the epidemiological
parameters f(Dcases, T ,H | θepi), often called the tree
prior, is more accurately called the phylodynamic
likelihood. Here we make the standard simplifying
assumption that there is no dependence between
the tree structure and the sequence evolutionary
process. Consequently the phylogenetic likelihood is
independent of Dcases,H and θepi. We also assume θepi
and θevo have independent priors.
We summarise the LTT and time series of unse-

quenced observations as a sequence of labelled events,
each with an associated time in order to evaluate the
phylodynamic likelihood f(Dcases, T ,H | θepi). There
are four types of events we consider:

1. new infections (births), corresponding to the inter-
nal nodes of the reconstructed tree;

2. unscheduled sequenced samples, corresponding to
the leaves of the reconstructed tree;

3. scheduled unsequenced samples, corresponding to
the elements of the time series of cases;

4. and pseudo-observations of the number of hidden
lineages at prespecified times.

These events are not the same as the data: event types
1 and 4 are parameters. Event types 3 and 4 have
a value associated with them: for a scheduled unse-
quenced datum this is the value of the time series, and
for the pseudo-observations this is the number of hid-
den lineages. Note also that only a subset of all in-
fection events in the epidemic will be captured by the
reconstructed tree (see Figure 1). We denote the event
observed at time tj by Etj , and the sequence of events
that occur up until time t (inclusive) by E≥t. We useKj

to indicate the value of the LTT of T at time tj. In the
following we order events using a backward time formu-
lation, with 0 being the present (the time of the most
recent sequenced sample in our data) and events further
in the past having a larger time: t0 > t1 > · · · > tN .
A consequence of specifying time in this way is that
events occurring after the time of the last sequenced
sample have negative times.
Expressions of the form f

(
Etj | E≥tj−1

)
are simpler,

so we will consider the following factorisation:

f (E≥tN ) =
N∏
j=1

f
(
Etj | E≥tj−1

)︸ ︷︷ ︸
=cj lj

. (2)

The factors in the product in Equation (2) are fur-
ther divided into two parts: cj, which is the likeli-
hood of the interval of time between tj−1 and tj dur-
ing which we observed nothing, and lj the likelihood
of the event that we observed at time tj. We start

by considering cj. For tj−1 > t > tj let M
(i)
t =

Pr
(
Ht = i | E≥tj−1

)
, for i ≥ 0 i.e. the joint distribu-

tion of the number of hidden lineages and not having
observed any events since tj−1. Evaluated at tj this

becomes M
(i)
tj = Pr

(
Htj = i, Etj | E≥tj−1

)
, i.e. the joint

distribution of the number of hidden lineages and the
event observed at time tj.
Consider the time during which we know there are

no observed events, i.e. over an infinitesimal time step,
δt, inside the interval tj−1 > t > tj. In this case, M

(i)
t

satisfies the following equation (up to leading order):

M
(i)
t−δt =(1− γ(Kj−1 + i)δt)︸ ︷︷ ︸

no event

M
(i)
t +

λ(2Kj−1 + i− 1)δt︸ ︷︷ ︸
unobserved birth

Ii>0M
(i−1)
t +

µ(i+ 1)δt︸ ︷︷ ︸
death

M
(i+1)
t ,
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f(H, T , θepi, θevo | DMSA,Dcases) =

f(DMSA | T , θevo)︸ ︷︷ ︸
phylogenetic likelihood

f(Dcases, T ,H | θepi)︸ ︷︷ ︸
phylodynamic likelihood

f(θepi)f(θevo)

f(DMSA,Dcases)
(1)

where Ix is the indicator random variable for event x.
The factor of 2 in the term corresponding to unob-
served births appears because the birth event creates
two lineages (moving forward) and there are two ways
to select one of them to be a hidden lineage and the
other to continue the reconstructed tree.
Re-arranging the terms of these equations and tak-

ing the limit as the time step vanishes, we retrieve the
master equations for this distribution, i.e. the system
of differential equations that describe how it changes
across the interval tj−1 > t > tj:

dM
(i)
t

dt
=− γ(Kj−1 + i)M

(i)
t +

λ(2Kj−1 + i− 1)Ii>0M
(i−1)
t +

µ(i+ 1)M
(i+1)
t .

(3)

Let Mt(z) be the generating function for this system

of differential equations: Mt(z) =
∑∞

i=0M
(i)
t zi. We can

write the system in Equation (3) as the following PDE
which has the generating functionMt(z) as its solution.

∂zMt(z) = (µ−γz+λz2)∂tMt(z)+Kj−1(2λz−γ)Mt(z).
(4)

Manceau et al., 2020 solved Equation (4) in terms of re-
sults from Stadler, 2010. This partial differential equa-
tion allows us to updateMt(z) across the intervals with-
out observed events: (tj−1, tj).
Given the generating function across each interval we

can evaluate the cj in Equation (2), since cj =Mt+j
(1−).

Note that we have to take the limit as time decreases
to tj because we are working with backwards time and
there is a discontinuity.
The form ofMtj(z) depends on both the limitMt+j

(z)

and the event observed at tj. To simplify the descrip-
tion below, let M+

tj (z) := limx→t+j
Mx(z) which is the

limiting value of the generating function before the ob-
servation. How we transform the generating function
depends on the type of Etj . The expressions for lj and
Mtj(z) are as follows:

• for λ events lj := λ andMtj(z) =M+
tj (z)/M

+
tj (1

−);

• for ψ events lj := ψ andMtj(z) =M+
tj (z)/M

+
tj (1

−);

• for ω events lj := ω d
dz
[M+

tj (z)]
∣∣∣
z=1

and Mtj(z) =
ω
lj

d
dz
[M+

tj (z)];

• for ρ events when ∆Kj individuals were sampled
and there are Kj lineages in the reconstructed tree

just after the event, lj := ρ∆Kj(1− ρ)KjM+
tj (1−ρ)

and Mtj(z) =
ρ∆Kj (1−ρ)Kj

lj
M+

tj ((1− ρ)z);

• and for ν events when ∆Hj cases were ob-

served, lj := (1−ν)Kjν∆Hj d∆Hj

dz∆Hj
[M+

tj (z)]
∣∣∣
z=1−ν

and

Mtj(z) =
(1−ν)Kj ν∆Hj

lj

d∆Hj

dz′∆Hj
[M+

tj (z
′)]
∣∣∣
z′=(1−ν)z

.

When co-estimating the prevalence, there is an ad-
ditional event corresponding to a pseudo-observation
of the number of hidden lineages. When we condition

on Htj = Hj, then lj := M
(Hj)+
tj (z) (which is the co-

efficient of zHj in M+
tj (z)) and Mtj(z) = zHj , i.e. the

generating function of the degenerate distribution cor-
responding to Hj hidden lineages. Note that while the
Hj are parameters of this model, we still include the
corresponding lj because we are also evaluating their
prior distribution under the birth-death process. A
novel contribution from this paper is the co-estimation
of prevalence through time: the prevalence is treated
as proper random variable under the posterior distri-
bution.

Timtam

We can compute the cj analytically, however, we lack a
closed form for the lj. In Zarebski et al., 2022, we de-
scribe the time series integration method through ap-
proximation of moments (Timtam). Timtam matches
moments to approximate the relevant distribution with
a negative binomial distribution. The generating func-
tion of the negative binomial distribution allows us to
efficiently and accurately approximate the lj and hence
the likelihood of the model.

The effective reproduction number

The reproduction number describes the average num-
ber of secondary infections: there are multiple ways to
make this definition precise. We choose to define the
effective reproduction number Re(t) as the expected
number of secondary infections generated by a newly
infected individual from time t onward.
Without scheduled sampling, the value of Re in the

birth-death model is λ/(µ + ψ + ω). Including sched-
uled sampling complicates matters because it combines
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Figure 2: The approximation smooths out the saw-tooth
value of the effective reproduction number in the case of
scheduled samples. The parameters used for this figure are
birth rate of 0.4, death rate of 0.1, sampling rate of 0.02
and a scheduled unsequenced sampling probability of 0.08 (at
varying intervals). The solid lines indicate the values obtained
with our approximation and the dashed lines indicate the true
values accounting for scheduled sampling.

continuous and discrete sampling. We derive a closed
form expression for Re in the Supplementary Informa-
tion. However the result is unwieldy so we will instead
make use of a simple approximation.

An approximation to Re for scheduled data

Consider the case of unscheduled sequenced and sched-
uled unsequenced samples at regular intervals of du-
ration ∆t. From the perspective of an infectious in-
dividual, given they are removed during some sched-
uled sample, the number of intervals until this occurs,
W , has a geometric distribution with probability ν.
Given the scheduled samples occur at regular inter-
vals of duration ∆t, the waiting time is approximately
∆t(W + 1/2) (where the half has come from a conti-
nuity correction). Provided ∆t and ν are small, this
distribution will be similar to an exponential distribu-
tion. The rate of an exponential distribution with the
same mean is 2ν/(2∆t − ν∆t).

This suggests the following approximation: we re-
place the scheduled unsequenced sampling (which com-
plicate Re calculations) with unscheduled unsequenced
sampling at rate ω̃ = 2ν/(2∆t − ν∆t) (for which it
is simple to calculate the Re). I.e. we approximate

the scheduled sampling with unscheduled sampling at
a comparable rate, ω̃, obtained by matching the ge-
ometric and exponential distributions as above. With
unscheduled sampling at this rate, Re can be written as
λ/(µ+ψ+ω̃). Figure 2 shows the effective reproduction
number calculated using both the recursive method de-
scribed in the Supplementary Information and the ap-
proximation that results from expressing the scheduled
sampling as a rate ω̃. The values of Re are greater
for longer intervals between scheduled samples, ∆t, be-
cause there is a longer duration during which the in-
dividual can infect others before being removed in a
scheduled sample.

Model parameterizations

There are multiple ways to parameterize this process.
We refer to the parameterization in terms of the rates λ,
ψ, ω, and probabilities ρ, and ν as the canonical param-
eterization. We derive the approximate likelihood in
terms of these parameters. In an epidemiological con-
text, with a time series of confirmed cases and point
process sequence data, we prefer to parameterize the
process in terms of the effective reproduction number,
Re, the net removal rate, σ = µ+ψ+ ω̃ (where ω̃ is as
described above), and the observed proportion of infec-
tions captured by the time series, ω̃/σ, and the point
process, ψ/σ, respectively. Given the focus on the use
of time series data, we refer to this parameterization as
the time series parameterization.

Note that when we use the time series parameteri-
zation in the SARS-CoV-2 and poliomyelitis analyses,
we use the approximation of ω̃ to simplify the model
specification. This avoids the issue of having to adjust
for future scheduled sampling in Re(t).

Sampled ancestors

A natural extension to this model is the inclusion
of sampled ancestors (Gavryushkina et al., 2014),
which Manceau et al., 2020 and Andréoletti et al., 2022
have already considered. Including sampled ancestors
involves a probability r that an infected individual is re-
moved upon (unscheduled) observation. Currently we
assume all individuals are removed upon observation.
We have not yet implemented this extension in Tim-
tam, however we include the relevant expressions and
the explanation of some additional details in the Sup-
plementary Information, and leave the implementation
as an exercise for the future.
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Results

Calibration study

To assess the calibration of Timtam and the validity
of our approximation of Re, we carried out a simula-
tion study. We sampled 100 epidemics from a birth-
death process using remaster (Vaughan, 2024). Each
epidemic ran for 56 days with the birth rate decreas-
ing on day 42, (i.e. boom-bust dynamics), and two
types of surveillance: sequenced and unsequenced with
fixed rates, (see Table 1.) We assume a known removal
(death) rate. The prevalence of infection in each of
the simulated epidemics is shown in Fig. S1. There
is a substantial amount of variability in the prevalence
across the simulations, but the boom-bust dynamics
can be seen in the average of the simulation trajecto-
ries.

Event Rate Transition

Infection λ(t) X
λ−→ 2X

Removal µ = 0.046 X
µ−→ ∅

Sequence ψ = 0.008 X
ψ−→ Sequence

Occurrence ω = 0.046 X
ω−→ Case

We assume a known death rate, µ = 0.046. The number of
infectious individuals, X, was simulated for 56 days (after
starting with a single infection X(0) = 1). The birth rate is
λ(t) = 0.185 for t < 42 (“boom”: Re = 1.85) and λ(t) = 0.0925
for t ≥ 42 (“bust”: Re = 0.925).

Table 1: The simulated data for the calibration study was
sampled from a birth-death process with two types of sam-
pling and a change in birth rate leading to “boom-bust” dy-
namics. A final sequence sample is collected at the end of
the simulation to ensure a consistent duration across the 100
replicates. Each simulation was conditioned to have at least
two sequenced samples and a positive final prevalence of in-
fection.

From each simulation we constructed two data sets:
one with unsequenced samples treated as a point pro-
cess, and a second with these samples aggregated
into a time series of daily case counts. The pa-
rameters used are similar to those used in Zareb-
ski et al., 2022 with an extension for the change in
birth rate; we based the parameter values on the
early dynamics of SARS-CoV-2 in Australia. The
code implementing this simulation and the subse-
quent inference is available at https://github.com/

aezarebski/timtam-calibration-study.
We sampled the posterior distribution of the model

parameters for each simulated data set and compared
the resulting estimates to the true values from the sim-
ulations. Figure 3 shows the estimates of prevalence

and reproduction numbers across the simulations, or-
dered by the final prevalence in the simulation in the
case where the unsequenced data is modelled as a point
process. Figure 4 shows the corresponding results when
the unsequenced data are aggregated into a daily time
series of counts.

Comparing the simulations with a small final preva-
lence to those with a large final prevalence we see that
for simulations with a larger prevalence the estimates of
the reproduction number have less uncertainty and are
less biased. We attribute this to the strong correlation
between the final prevalence and the total number of
data points (as shown in Fig. S2), as the reconstructed
tree is likely to be larger for simulations with a larger
final prevalence.

The credible interval is distinct from the confidence
interval. (We have used the highest posterior density
interval (HPD interval) as our credible interval, so have
referred to them as “HPD intervals” rather than the
less specific “credible interval”.) Due to the influence
of the prior distribution, we do not necessarily expect
95% of the posterior distributions to contain the true
parameters, however, we would like it to be close to
this. We performed a hypothesis test of the null hy-
pothesis that 95% of the HPD intervals contain the
true parameter. Of course, the truth of this null de-
pends upon the choice of prior distribution, nonethe-
less, we would like it to be difficult to falsify such a
null hypothesis for plausible prior distributions.

In our hypothesis test, of the null hypothesis that
the intervals are well-calibrated, we expect 91–99 of
the HPD intervals to contain the true parameter value
(out of the total 100 replicates). When interpreting
the hypothesis test of whether the intervals are well
calibrated at 95%, we need to bear in mind that the
sampling of the limits of this interval are sparse (by
construction) so one would ideally want a large effective
sample size (ESS). Kruschke, 2014, p. 184 suggests an
ESS ≥ 10000 is desirable for reliable 95% limits, while
for each of our analyses the ESS was ≥ 200 for all
variables.

Table 2 contains a summary of the rate parameter
estimates from the first set of simulations (i.e. the ones
with point process data) and Table 3 contains the cor-
responding summary for the second set of simulations
(i.e. with unsequenced samples aggregated into a time
series). For the estimates based on the point process
data, the HPD intervals of both the reproduction num-
ber and the prevalence at the time of the last sequenced
sample have a coverage that is consistent with the de-
sired level (95%). This suggests the estimation method
is well-calibrated. For the estimates based on the aggre-
gated data, the coverage for R1

e is lower than desired,
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however for both R2
e and H the coverage is suitable.

This suggests that, despite the model misspecification
due to aggregating the point process data, we are still
able to generate good HPD intervals for the reproduc-
tion number and prevalence.

Par True Median Error Bias Width Coverage
λ1 0.185 0.186 0.116 0.004 0.523 94
λ2 0.092 0.095 0.337 0.032 1.375 94
µ 0.0460 - - - - -
ψ 0.008 0.010 0.351 0.275 1.754 96
ω 0.046 0.052 0.248 0.140 1.163 98
R1

e 1.850 1.689 0.180 -0.087 0.664 91
R2

e 0.925 0.897 0.291 -0.030 1.132 96
H - - 0.360 -0.046 - 97

For each parameter (Par), the median over the 100 medians of
the estimate, relative error, relative bias and the percentage of
HPD intervals containing the true value is provided.

Table 2: Posterior parameter estimates and accuracy in the
100 simulations. There are boom-bust dynamics, for the first
42 days of the simulation the birth rate is λ1 after which it
changes to λ2 for the subsequent 14 days. The death rate is
assumed known.

Par True Median Error Bias Width Coverage
λ1 0.185 0.186 0.121 0.003 0.535 91
λ2 0.092 0.094 0.337 0.018 1.377 95
µ 0.0460 - - - - -
ψ 0.008 0.010 0.344 0.267 1.757 96
ω̃ 0.046 0.053 0.265 0.143 1.185 98
R1

e 1.850 1.670 0.191 -0.097 0.655 88
R2

e 0.925 0.873 0.287 -0.057 1.141 95
H - - 0.367 -0.055 - 96

Table 3: Posterior parameter estimates and accuracy in the
100 simulations after we aggregated the unsequenced obser-
vations into daily counts and used the resulting time series as
data.

SARS-CoV-2 on the Diamond Princess
cruise ship

To demonstrate the utility of our new approach we
replicated the analysis of a SARS-CoV-2 outbreak on-
board the Diamond Princess cruise ship initially re-
ported by Andréoletti et al., 2022. This outbreak is
particularly well-suited to analysis because it occurred
on an isolated cruise ship (with 3711 people onboard)
in a carefully monitored population with detailed ac-
counts of isolation and testing measures. The outbreak
appears to have originated from a single introduction
of the virus (Sekizuka et al., 2020). Figure 5 displays
the cases and sequencing effort across the duration of
the quarantine. We obtained a time series of daily con-
firmed cases from Dong et al., 2020 to use as Dcases

Figure 3: Parameter estimates converge to true values as
the data set gets larger. The solid black lines display the
HPD intervals, and points indicate the point estimates; the
point is filled if the HPD interval contains the true value and
empty if it does not. The green points and the green dashed
lines indicate the true values of the final prevalence and the
reproduction number in the boom and bust portions of the
simulation. We ordered the replicates by the final prevalence
in each simulation.
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Figure 4: The estimated quantities and their true values from
the simulation as shown in Figure 3 when the unsequenced
observations were aggregated into a time series of daily case
counts.

and an alignment of 70 pathogen genomes (Sekizuka
et al., 2020) was used as DMSA. The accession numbers
for the sequences are available in the Supplementary
Information.

Model

We made minor adjustments to the model to bet-
ter match standard epidemiological workflows for Re

estimation, as described in the Supplementary In-
formation. Importantly, we modelled daily case
counts of confirmed cases as scheduled samples (i.e.
a time series) instead of unscheduled samples (i.e.
a point process of occurrences.) Additionally, we
put an explicit prior on the reproduction number.
Table S1 lists the prior distributions used in the
model. The XML file specifying the analysis and post-
processing are available from https://github.com/

azwaans/timtam-diamond-princess.

Results

Figure 6 shows the estimates of the reproduction num-
ber through time along with the 95% HPD intervals.
The estimates of the effective reproduction number are
consistent with those from previous analyses of these
data (Andréoletti et al., 2022, Figure 5). Our estimates
differ from those of (Vaughan et al., 2024, Fig. S3).
The discrepancy between the estimates from Vaughan
et al., 2024 and ours may be due to the different data
sets used: our analysis used both the time series of con-
firmed cases and pathogen genomes, while Vaughan et
al., 2024’s estimates are based on genomic data alone.
Figure 7 shows the estimates of the prevalence of

infection and the 95% HPD intervals along with the
corresponding values from Andréoletti et al., 2022. Our
estimates suggest a larger prevalence of infection than
the estimates from Andréoletti et al., 2022. Estimates
from Vaughan et al., 2024 are not included as they
estimated the cumulative number of infections, instead
of the prevalence.
The MCMC chain to sample the posterior distribu-

tion (of both the tree and model parameters) ran in
approximately an hour on a mid-range laptop. The
effective sample size of each variable was > 300.

Poliomyelitis in Tajikistan

Poliomyelitis, polio, is caused by infection with the po-
liovirus, an RNA virus spread through the fecal-oral
route. While most poliovirus infections are asymp-
tomatic, it has the potential to cause permanent paral-
ysis. Polio has a long history but since the introduc-
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Figure 5: Sequences were collected across three days and testing varied throughout the quarantine period. The stacked
bar chart shows the daily number of confirmed cases and sequenced samples. We indicate the timing of changes to
surveillance and quarantine with lines at the top of the figure.

Figure 6: Estimates of the reproduction number and the 95% HPD intervals. In addition to our estimates (shown in
green) estimates from Andréoletti et al., 2022 (purple) and Vaughan et al., 2024 (orange) are shown.

tion of vaccines in the 1950s incidence has declined and
there are sustained efforts towards eradication.
In 2010 there was an outbreak of wild poliovirus type

1 (WPV1) in Tajikistan. We re-analysed the genomic
and time series data collected during the outbreak.
These data had previously been jointly analysed by Li
et al., 2017 using an age-structured model from Blake
et al., 2014. A previous genomic analysis by Yakovenko
et al., 2014 suggests the outbreak of WPV1 stemmed
from a single importation in August–December 2009.

However, substantial increases in the incidence of acute
flaccid paralysis (AFP) did not occur until early 2010.
A vaccination campaign was launched in May and the
outbreak abated after that. Figure 8A shows a time
series of cases and sequences generated; the timing of
the rounds of vaccination is also shown.

10

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2023.08.03.23293620doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.03.23293620
http://creativecommons.org/licenses/by-nd/4.0/


Figure 7: Estimates of the prevalence of infection and the
95% HPD intervals onboard the Diamond Princess. In addi-
tion to our estimates (green) estimates from Andréoletti et al.,
2022 are shown (purple).

Model

We modelled the transmission of poliovirus with a
birth-death process with time varying effective repro-
duction number and surveillance rates to explain the
effect of vaccination and heightened surveillance once
the outbreak was recognised.

We extracted the weekly case counts of laboratory
confirmed polio infections with paralysis as reported by
the Centers for Disease Control and Prevention (CDC),
2010 (with WebPlotDigitiser (Rohatgi, 2021)) to use
as Dcases, and obtained an alignment of publicly avail-
able sequences from Li et al., 2017 (originally sequenced
by Yakovenko et al., 2014) to use as DMSA. We sub-
tracted the number of sequences from the time series
to avoid duplication. As part of the sensitivity analy-
sis we re-ran the analysis without this subtraction step
and obtained similar estimates, (see Table S4.) Ac-
cession numbers for the sequences are available in the
Supplementary Information.

Since case counts were only available at a weekly
resolution, we distributed them uniformly across the
days of the week and the sequenced samples uniformly
within the date associated with them (when more than
one genome was associated with the same date). I.e.
cases were modelled as a daily time series of unse-
quenced samples and a point process of sequenced sam-
ples. Further details are available in the Supplementary
Information and Table S2 lists the prior distributions
used in the model. The XML files specifying the full
analysis and post-processing are available from https:

//github.com/aezarebski/timtam-tajikistan.

Results

Figure 8B shows the estimates of the prevalence of in-
fection and the 95% HPD intervals at 13 dates sepa-
rated by 21 day intervals. Note that the estimates of
the absolute prevalence extend before the first observed
case. For example, we estimate that before February
2010 the prevalence was below 100. Even adjusting
for a change in surveillance, there is little evidence of
widespread transmission before February in the esti-
mates of the prevalence of infection.
Figure 8C shows the estimates of the effective repro-

duction number through time along with the 95% HPD
intervals. A full summary of parameter estimates can
be found in Table S3 of the Supplementary Informa-
tion. The estimates in Figure 8C suggest the effective
reproduction number may have already started to de-
cline before the beginning of the vaccination rounds,
potentially due to public awareness. A comparison of
these estimates with previous age-structured estimates
is given in Figure S3.
The MCMC chain to sample the posterior distribu-

tion (of both the tree and model parameters) ran in
approximately four days on a mid-range laptop and the
effective sample size of each variable was > 200.

Discussion

We implemented a model, which can also act as a
phylodynamic tree prior to facilitate the co-estimation
of the prevalence and the effective reproduction num-
ber. The resulting model can draw on both sampled
pathogen sequence data and an epidemic time series of
confirmed cases (i.e. observations of infection for which
the pathogen genome was not sequenced). The algo-
rithm used to compute the (approximate) log-likelihood
is fast, requiring a number of steps linear in the num-
ber of sequences and length of the time series of unse-
quenced cases (Zarebski et al., 2022). The implementa-
tion is available as a BEAST2 package and tutorials on
the usage of the package are bundled with the source
code: https://github.com/aezarebski/timtam2.
We extended the method previously developed

in Zarebski et al., 2022 to estimate historical preva-
lence, by explicitly modelling prevalence as a model pa-
rameter. This differs from several previous approaches,
in which estimates of the prevalence come from inter-
mediate steps in the likelihood calculation or from post-
hoc simulation. Treating the prevalence as a bona fide
parameter also means we can incorporate additional
data concerning prevalence into the analysis. For ex-
ample, if survey data on infection in a random sam-
ple from the population was available for specific dates
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Figure 8: An outbreak of poliomyelitis in Tajikistan in 2010: A. Sequences were collected throughout the outbreak. The
stacked bar chart shows the weekly number of confirmed cases and sequenced samples. We indicate the hypothesised
origin time and the timing of vaccination rounds at the top of the figure. B. Estimates of the prevalence of infection
(on a logarithmic scale) and the 95% HPD intervals at 30 day intervals across the outbreak. C. Estimates of the
reproduction number and the 95% HPD intervals as constants before and after the start of vaccination.

(e.g. from seroprevalence surveys) we could condition
the model on this as additional data.

We performed a simulation study to demonstrate
that the method is well-calibrated, i.e. that approxi-
mately 95% of the 95% HPD intervals do contain the
true value. The simulation study also demonstrated
that the performance of the method does not degrade
substantially when we aggregated the occurrence data

into a time series.

We used the validated method to replicate two anal-
yses of limited single-source outbreaks. The first, car-
ried out by Andréoletti et al., 2022, is of an outbreak of
SARS-CoV-2 aboard the Diamond Princess cruise ship.
The second, empirical analysis of the 2010 outbreak of
poliomyelitis in Tajikistan, uses data from Yakovenko
et al., 2014 and the Centers for Disease Control and

12

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2023.08.03.23293620doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.03.23293620
http://creativecommons.org/licenses/by-nd/4.0/


Prevention (CDC), 2010.
The outbreak of SARS-CoV-2 aboard the Dia-

mond Princess cruise ship was a relatively small, well-
contained outbreak, for which where the majority of in-
fections were ascertained. However, only a small num-
ber of sequenced samples exist, all dating from a period
of only three days (Figure 5). Our estimates of the re-
production number (displayed in Figure 6) are consis-
tent with the values from Andréoletti et al., 2022 and
are broadly similar to those from Vaughan et al., 2024.
However, Vaughan et al., 2024 only used genomic data,
which may explain the difference in the Re estimates.
Our prevalence estimates are greater than those

from Andréoletti et al., 2022 (Figure 7). We attribute
this difference to their implementation having an up-
per limit of 40 on the number of hidden lineages, which
was necessitated by the computational complexity of
the numerical integration algorithm used to compute
the likelihood. As such, their estimates should be in-
terpreted as lower bounds on the prevalence and not
absolute estimates. Timtam overcomes this limitation
by a negative binomial approximation of the the num-
ber of hidden lineages, making it efficient at estimating
large numbers of hidden lineages and applicable to real-
world epidemic scenarios.
We modelled the sequenced SARS-CoV-2 infections

as a point process, consistent with previous analyses of
the data. Where multiple samples were available for a
particular day, we uniformly spaced the sequenced sam-
ples across the day the samples were collected. A more
nuanced analysis would have modelled these samples as
scheduled sequenced samples, however this would make
the resulting estimates harder to compare to previous
results and complicate the interpretation.
The empirical analysis of the 2010 outbreak of po-

liomyelitis in Tajikistan uses data from Yakovenko et
al., 2014 and the Centers for Disease Control and Pre-
vention (CDC), 2010. This is a much larger outbreak
over a period of months instead of weeks. Although a
large proportion of the ascertained cases (all present-
ing with AFP) were sequenced across the entire report-
ing period of the outbreak (Figure 8A), we expect that
most infections were not ascertained, since the majority
of poliovirus infections are asymptomatic.
It is not possible to directly compare our estimates

of the effective reproduction number of poliomyelitis
in Tajikistan to previous work. Timtam does not sup-
port structured populations yet, so we were not able
to obtain age-specific Re estimates such as those re-
ported in Li et al., 2017. However, our estimates of the
effective reproduction number during the central four
weeks of the outbreak are similar to a demographically
weighted average of the estimates from Li et al., 2017.

In addition, Timtam allows us to obtain estimates of
the outbreak prevalence through time. Our estimates
suggest more than a hundred asymptomatic infections
for every AFP case, which is consistent with previous
estimates (Nathanson et al., 2010). To the best of our
knowledge, prevalence estimates for this outbreak have
not been reported elsewhere.
Our implementation does not yet support the use

of sampled ancestors (Gavryushkina et al., 2014). Ex-
tending the approximation to handle this case seems
feasible, however there are substantial engineering chal-
lenges involved in implementing this in the BEAST2
platform. As the model and its implementation are
useful without this extension we present it as is, and
include the expressions required for including sampled
ancestors in the Supplementary Information.
In summary, the Timtam package is an efficient im-

plementation of our model within the BEAST2 frame-
work, where it can be combined with a multitude of
other model components. The model is suitable as a
tree prior or demographic model for unstructured out-
breaks and provides similar functionality to the model
presented in Andréoletti et al., 2022, with the added
advantages of being able to incorporate unsequenced
cases (observations) as a time series, being able to con-
dition on historical prevalence estimates and being ef-
ficient enough to handle large trees.
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ment, Alexandra Gavryushkina, Joseph Heled,
Graham Jones, Denise Kühnert, Nicola De Maio,
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