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Abstract

Accurately estimating the prevalence and transmissi-
bility of an infectious disease is a critical part of ge-
netic infectious disease epidemiology. However, gener-
ating accurate estimates of these quantities, informed
by both time series and sequencing data, is challenging.
Birth-death processes and coalescent-based models are
popular methods for modelling the transmission of in-
fectious diseases, but they struggle with estimating the
prevalence of infection.
We extended our approximation of the likelihood for

a point process of viral genomes and time series of case
counts so it can estimate historical prevalence, and we
implemented this in a BEAST2 package called Timtam.
In a simulation study the approximation recovered the
parameters from simulated data, even when we aggre-
gated the point process data into a time series of daily
case counts.
To demonstrate how Timtam can be applied to real

datasets, we estimated the reproduction number and
the prevalence of infection through time during the
SARS-CoV-2 outbreak onboard the Diamond Princess
cruise ship using a time series of confirmed cases and
sequence data. We found a greater prevalence than
previously estimated and comment on how differences
in the algorithms used could explain this.

Introduction

In the field of genetic infectious disease epidemiology,
there are two perennial questions: “how many people
are infected?” (i.e., what is the prevalence?) and “how
transmissible is this pathogen?” (i.e., what is the repro-
duction number?) Prevalence of infection is the number
of individuals currently infected and the reproduction
number is the expected number of secondary infections
per infectious individual.
Birth-death processes are a popular family of meth-

ods for modelling the transmission of infectious dis-
eases, because they capture the mechanism of the pro-

cess and are amenable to analysis. In the birth-death
process, births represent new infections and deaths the
end of an infectious period. In Bayesian phylogenetics,
the birth-death process enters the analysis as a prior
model for the reconstructed phylogeny (the so-called
tree prior.) Kendall, 1948 demonstrated how to use
generating functions to describe birth-death processes
when modelling infectious disease. Later, Nee et al.,
1994 connected the process to the number of observed
species in a phylogeny, and Stadler, 2010; Stadler et
al., 2012 demonstrated how this can be applied when
analysing pathogen genomes.
Coalescent-based models offer a computationally

convenient alternative to birth-death models and are
also used to analyse viral genomes (Volz et al., 2013).
However, the assumptions required to justify their use
may be questionable in this setting, and the lack of
an explicit sampling model can complicate matters (al-
though there are exceptions, e.g., Parag et al., 2020).
It is challenging to estimate absolute population sizes
with either birth-death or coalescent based models
(again, there are exceptions, e.g., Kühnert et al., 2014).
To address the lack of an explicit finite susceptible pop-
ulation, parameters — particularly the birth rate —
are modelled as piece-wise constant functions (Stadler
et al., 2013). I.e., to adjust for the depletion of the sus-
ceptible pool, the model allows the birth rate to decline
over time. While mathematically and computationally
convenient, these nonparametric estimates make it dif-
ficult to distinguish if a decline in apparent birth rate
is due to depletion of the susceptible pool or changes
in behaviour, e.g., due to non-pharmaceutical interven-
tions.
Efficiently incorporating unsequenced case data into

phylodynamic analyses is a long-standing challenge in
the field (Vaughan et al., 2019). Typically, only a
small number of cases are sequenced1 and phylody-

1No country with a sizeable COVID-19 outbreak sequenced >
20% of reported cases and most sequenced < 5%. Among
low and middle income countries this number is often < 1%.
Note that these numbers are for reported cases and not the
true number of infections (Brito et al., 2022).
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namic methods rely on this small subset of cases to
estimate epidemiological dynamics, taking the stance
that genomic sequences are often more informative
than case reports alone and facilitate reconstructing
the transmission between cases. Nevertheless, the vast
amount of unsequenced case data is also informative
and can help to refine estimates. The calculations
needed to simultaneously analyse both sources of data
in an integrated framework are well known (see for ex-
ample Manceau et al., 2020), however existing ways to
compute them are computationally intractable for all
but the smallest outbreaks (Andréoletti et al., 2022).

In Zarebski et al., 2022, we described an efficient
and accurate way to approximate the likelihood of a
point process of viral genomes and a time series of case
counts, which we call Timtam. While this resolved a
long-standing challenge for the field, i.e., how to effi-
ciently reconcile genetic and classical epidemiological
data, there were substantial limitations: a.) while ef-
ficient, it is a complicated algorithm lacking a conve-
nient implementation, limiting reuse and making it in-
accessible to most potential users; and b.) it only esti-
mated the present-time prevalence, not changes in the
prevalence through time. We resolve these outstand-
ing questions in this manuscript. We resolve the first
limitation with a BEAST2 package (Bouckaert et al.,
2019), called Timtam which is available on CBAN and
can be installed via BEAUti. We resolve the second
limitation with an extension to the algorithm, which
enables conditioning on historical prevalence.

We carried out a simulation study to demonstrate
that the methodology leads to well-calibrated esti-
mates, i.e., that approximately 95% of the 95% credi-
ble intervals contain the true parameter value from the
simulation. We demonstrate the “real-world” use of
this package by recreating an analysis by Andréoletti
et al., 2022 of SARS-CoV-2 data from an outbreak on
the Diamond Princess cruise ship.

Methods

Figure 1A provides an example transmission tree, a
complete description of who-infected-whom along with
the timing of these events, and the surveillance of this
process. Sequenced cases appear as filled circles in the
figure, unobserved cases end the lineage without a cir-
cle, and empty circles indicate scheduled observation of
cases without sequencing which happen at three times
indicated with dashed lines. Figure 1B depicts the cor-
responding reconstructed tree and the time series of
case counts. The reconstructed tree is the subtree of
the transmission tree that results from pruning away
any leaves not corresponding to a sequenced sample.
Unlike the transmission tree, the reconstructed tree is

not oriented, consequently it does not specify which of
the two descendant lineages of an internal node corre-
sponds to the infector. The leaves of the transmission
tree corresponding to unsequenced samples form a sep-
arate, but not statistically independent, time series of
confirmed cases. Figure 1C depicts the corresponding
plots of the prevalence of infection through time (grey
line) and the lineages through time (LTT) plot for the
reconstructed tree (dashed line). The lineages through
time (LTT) plot describes the number of lineages in the
reconstructed tree as a function of time. Typically, the
value of the LTT plot will be less than the prevalence
of infection2. In Figure 1C, a single estimate of the
prevalence appears near the present as a star.

We refer to the lineages in the transmission tree that
are not in the reconstructed tree as the hidden lineages
because they are not visible in the raw data. The sum
of the number of hidden lineages and the LTT of the
reconstructed tree is equal to the total prevalence of
infection. We denote by kt the value of the LTT at
time t and by Ht the number of hidden lineages.

In the terminology used by Zarebski et al., 2022 the
reconstructed tree consists of sequenced unscheduled
data, and the time series of cases is representative of
unsequenced scheduled data. We may consider arbi-
trary combinations of un/sequenced and un/scheduled
data, but here we focus on datasets that consist of se-
quenced unscheduled data and unsequenced scheduled
data (i.e. time-stamped sequences and a time-series of
cases), since this aligns closest to typical epidemiologi-
cal datasets.

In an epidemiological setting, we are often interested
in the prevalence of infection and Re(t), because these
quantities are of critical importance when assessing
the threat posed by an outbreak of infectious disease.
Bayesian phylodynamic methods provide a coherent so-
lution with clear quantification of uncertainty; unfor-
tunately, this usually requires us to evaluate the joint
posterior distribution of the model parameters and the
reconstructed tree (up to an unknown normalisation
constant if we are using MCMC to generate posterior
samples), given time-stamped viral genomes and a time
series of confirmed cases. To do this, we need to eval-
uate the log-likelihood function in a computationally
efficient way. Alternative simulation based methods ex-
ist, but tend to be far more computationally expensive
which can reduce the utility of the resulting estimates.

The data of our model consists of DMSA and Dcases,
where DMSA is the multiple sequence alignment (MSA)
containing the pathogen genomic data, and Dcases is
the observation of confirmed cases which do not have
an associated pathogen genome.

2If every infected individual has their pathogen’s genome se-
quenced, or there is incomplete lineage sorting it is possible
for the value of the LTT to exceed the prevalence.

2

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 8, 2023. ; https://doi.org/10.1101/2023.08.03.23293620doi: medRxiv preprint 

https://github.com/CompEvol/CBAN
https://doi.org/10.1101/2023.08.03.23293620
http://creativecommons.org/licenses/by-nd/4.0/


Figure 1: Transmission is viewed as a sequence of events,
the observations are processed forward in time to approximate
the joint likelihood. Panel A demonstrates a transmission
tree with intervals of time an individual was infected indi-
cated by horizontal lines and the vertical grey arrows indi-
cating transmission. There are three scheduled unsequenced
samples. Panel B shows the corresponding reconstructed tree
and time series of confirmed cases at the scheduled observa-
tions, in the third sample, no cases where observed. Panel
C shows the prevalence of infection (grey line) and the LTT
(black dashed) along with a single estimate of the prevalence
(the star).

The parameters of this process partition into four
groups:

• H, the number of hidden lineages at specified
points in time (which we use to estimate the preva-
lence of infection),

• T , the reconstructed tree describing the ancestral
relationships between the sequences in DMSA,

• θevo the parameters of the evolutionary model, de-
scribing how genome sequences change over time
(e.g., the clock rate and relative nucleotide substi-
tution rates),

• and θepi, the parameters of the epidemiologi-
cal model describing how the outbreak/epidemic
spreads over time and how we observe it.

Using the terminology of birth-death processes, θepi
contains the birth rate λ and the death rate µ along
with the sequenced sampling rate ψ, the unsequenced
sampling rate ω, probability of observation in a sched-
uled sequenced sample ρ and the probability of observa-
tion in a scheduled unsequenced sample ν. Examples
of these events are shown in Figure 1A. Throughout
this manuscript, we treat these parameters as piece-
wise constant functions with known change times.
We target the posterior distribution,

f(H, T , θepi, θevo | DMSA,Dcases), which we express
in terms of simpler components with the factorisation
in Equation (1) below.
The likelihood of the sequence data given the re-

constructed tree and genomic parameters f(DMSA |
T , θevo), which appears in Equation (1), is sometimes
called the phylogenetic likelihood. This function is well-
known and can be efficiently calculated with Felsen-
stein’s pruning algorithm (Felsenstein, 1981). The like-
lihood of the time series of cases, reconstructed tree
and prevalence, given the epidemiological parameters
f(Dcases, T ,H | θepi), which previously has been called
the tree prior, might now more accurately be called
the time series likelihood. Here we make the standard
simplifying assumption that the genomic sequences are
evolving neutrally, i.e. there is no dependence between
the tree structure and the evolutionary process. This
means that the phylogenetic likelihood is independent
of Dcases,H and θepi and that θepi and θevo have inde-
pendent prior distributions.
We summarise the LTT and the time series of unse-

quenced observations as a sequence of labelled events,
each with an associated time in order to evaluate the
time series likelihood f(Dcases, T ,H | θepi). There are
four types of events we consider:

1. births, corresponding to the internal nodes of the
reconstructed tree;
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f(H, T ,θepi, θevo | DMSA,Dcases)

=
f(H, T , θepi, θevo,DMSA,Dcases)

f(DMSA,Dcases)

=
f(DMSA | H, T , θepi, θevo,Dcases)f(H, T , θepi, θevo,Dcases)

f(DMSA,Dcases)

=
f(DMSA | T , θevo)f(H, T , θepi, θevo,Dcases)

f(DMSA,Dcases)

=
f(DMSA | T , θevo)f(Dcases, T ,H | θepi, θevo)f(θepi, θevo)

f(DMSA,Dcases)

=
f(DMSA | T , θevo)f(Dcases, T ,H | θepi)f(θepi, θevo)

f(DMSA,Dcases)

=

f(DMSA | T , θevo)︸ ︷︷ ︸
phylogenetic likelihood

f(Dcases, T ,H | θepi)︸ ︷︷ ︸
tree prior/time series likelihood

f(θepi)f(θevo)

f(DMSA,Dcases)

(1)

2. unscheduled sequenced samples, corresponding to
the leaves of the reconstructed tree;

3. scheduled unsequenced samples, corresponding to
the elements of the time series of cases;

4. and pseudo-observations of the number of hidden
lineages at specified times.

These events are not the same as the data; events 1 and
4 are parameters. Events 3 and 4 have a value associ-
ated with them: for a scheduled unsequenced datum
this is the value of the time series, and for the pseudo-
observations this is the number of hidden lineages. We
denote the event observed at time tj by Etj , and the se-
quence of events that occur up until time t (inclusive)
by E≥t. We use Kj to indicate the value of the LTT of
T at time tj. In the following we order events using a
backward time formulation, with t0 = 0 corresponding
to the present (or the most recent sequenced sample in
our data) and events further in the past having a larger
time: t0 > t1 > · · · > tN . A consequence of specifying
time in this way is that events occurring after the time
of the last sequenced sample have negative times.
Expressions of the form f

(
Etj | E≥tj−1

)
are simpler,

so we will consider the following factorisation:

f (E≥tN ) =
N∏
j=1

f
(
Etj | E≤tj−1

)︸ ︷︷ ︸
=cj lj

. (2)

The factors in the product in Equation (2) are fur-
ther divided into two parts: cj, which is the likelihood
of the interval of time between tj−1 and tj during which
we observed nothing, and lj the likelihood of the event
that we observed at time tj. We start by considering

cj. For tj−1 > t > tj let M
(i)
t = Pr

(
Ht = i | E≥tj−1

)
,

for i ≥ 0 i.e., the joint distribution of the num-
ber of hidden lineages and not having observed any

events since tj−1. Evaluated at t = tj this becomes

M
(i)
t = Pr

(
Ht = i, Etj | E≥tj−1

)
, i.e., the joint distribu-

tion of the number of hidden lineages and the event
observed at time tj.
We are considering the time during which we know

there are no observed events, i.e., over an infinitesimal
time step, δt, inside the interval tj−1 > t > tj. In this

case,M
(i)
t satisfies the following equation (up to leading

order):

M
(i)
t−δt =(1− γ(Kj−1 + i)δt)︸ ︷︷ ︸

no event

M
(i)
t +

λ(2Kj−1 + i− 1)δt︸ ︷︷ ︸
unobserved birth

Ii>0M
(i−1)
t +

µ(i+ 1)δt︸ ︷︷ ︸
death

M
(i+1)
t ,

where Ix is the indicator random variable for event x.
The factor of 2 in the term corresponding to births
appears because the birth event creates two lineages
(moving forward) and there are two ways to select one
of them to be a hidden lineage and the other to continue
the reconstructed tree.
Re-arranging the terms of these equations and tak-

ing the limit as the time step vanishes, we retrieve the
master equations for this distribution, i.e., the system
of differential equations that describe how it changes
across the interval tj−1 > t > tj:

dM
(i)
t

dt
=− γ(Kj−1 + i)M

(i)
t +

λ(2Kj−1 + i− 1)Ii>0M
(i−1)
t +

µ(i+ 1)M
(i+1)
t .

(3)

Let Mt(z) be the generating function for this system

of differential equations: Mt(z) =
∑∞

i=0M
(i)
t zi. We can
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write the system in Equation (3) as the following PDE
which has the generating functionMt(z) as its solution.

∂zMt(z) = (µ−γz+λz2)∂tMt(z)+Kj−1(2λz−γ)Mt(z).
(4)

Manceau et al., 2020 solved Equation (4) in terms of
results from Stadler, 2010. This partial differential
equation allows us to update Mt(z) across the inter-
vals where there were no observed events: (tj−1, tj).
Given the generating function across each interval

we can evaluate the cj used in Equation (2). These
come from the observation that cj = Mt+j

(1−). Note

that we have to take the limit as time decreases to tj
because we are working with backwards time and there
is a discontinuity.
The form of Mtj(z) depends on the limit Mt+j

(z) and

the event observed at tj. To simplify the description be-
low, let M+

tj (z) := limx→t+j
Mx(z) which is the limiting

value of the generating function before the observation.
How we transform the generating function depends on
Etj . The expressions for lj and Mtj(z) are as follows:

• for λ events lj := λ andMtj(z) =M+
tj (z)/M

+
tj (1

−),

• for ψ events lj := ψ andMtj(z) =M+
tj (z)/M

+
tj (1

−),

• for ω events, lj := ω d
dz
[M+

tj (z)]
∣∣∣
z=1

and Mtj(z) =
ω
lj

d
dz
[M+

tj (z)],

• for ρ events when ∆Kj individuals were sampled
and Kj lineages in the reconstructed tree just af-

ter the event, lj := ρ∆Kj(1− ρ)KjM+
tj (1 − ρ) and

Mtj(z) =
ρ∆Kj (1−ρ)Kj

lj
M+

tj ((1− ρ)z),

• and for ν events when ∆Hj cases were ob-

served, lj := (1−ν)Kjν∆Hj d∆Hj

dz∆Hj
[M+

tj (z)]
∣∣∣
z=1−ν

and

Mtj(z) =
(1−ν)Kj ν∆Hj

lj

d∆Hj

dz′∆Hj
[M+

tj (z
′)]
∣∣∣
z′=(1−ν)z

.

When co-estimating the prevalence, there is an addi-
tional event corresponding to a pseudo-observation of
the number of hidden lineages. When we condition on

Htj = Hj, then lj := M
(Hj)+
tj (1−) (which is the coef-

ficient of zHj in M+
tj (z) in the limit as z → 1−) and

Mtj(z) = zHj . Note that while the Hj are parame-
ters of this model, we still include the corresponding lj
because we are also evaluating their prior distribution
under the birth-death process.

Timtam

We can compute the cj analytically, however, lack a
closed form for the lj. In Zarebski et al., 2022, we de-
scribe the time-series integration method through ap-
proximation of moments (Timtam). Timtam matches

moments to approximates the relevant distribution
with a negative binomial distribution. The generating
function of the negative binomial distribution allows
us to efficiently and accurately approximate the lj and
hence the likelihood of the model.

The effective reproduction number

Keeling et al., 2011 describes it as “one of the most
critical epidemiological parameters”, the reproduction
number describes the average number of secondary in-
fections. There are multiple ways to make this def-
inition precise. We choose to define the effective re-
production number Re(t) as the expected number of
secondary infections generated by a newly infected in-
dividual from time t onward.
Without scheduled sampling, the value of Re is sim-

ple: λ/(µ+ψ+ω). Including scheduled sampling com-
plicates matters because it combines continuous and
discrete sampling. We derive a closed form expression
for Re in the Supplementary Information. However the
result is unwieldy so we will instead make use of a sim-
ple approximation.

An approximation to Re for scheduled data

Consider the case of unscheduled sequenced and sched-
uled unsequenced samples at regular intervals of dura-
tion ∆t. From the perspective of an infectious individ-
ual, given they are removed during a scheduled sam-
ple, the number of intervals until this occurs, which
we denote W , has a geometric distribution with prob-
ability ν. Given the scheduled samples occur at regu-
lar intervals of duration ∆t, the wait time is approxi-
mately ∆t(W +1/2). Provided ∆t and ν are small, this
distribution will be similar to an exponential distribu-
tion. The rate of an exponential distribution with the
same mean is 2ν/(2∆t− ν∆t). If we consider a process
which has unscheduled unsequenced sampling at rate
ω̃ = 2ν/(2∆t − ν∆t) and no scheduled unsequenced
sampling, Re = λ/(µ+ ψ + ω̃).
Figure 2 shows the effective reproduction number cal-

culated using both the recursive method described in
the Supplementary Information and the approximation
that results from expressing the scheduled sampling as
a rate ω̃. The values of Re are greater for longer inter-
vals between scheduled samples, ∆t, because there is a
longer duration during which the individual can infect
others.

Model parameterizations

There are multiple ways to parameterize this process.
We refer to the parameterization in terms of the rates
λ, ψ, ω, and probabilities ρ, and ν as the canonical pa-
rameterization. We derive the approximate likelihood
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Figure 2: The approximation smooths out the saw-tooth
value of the effective reproduction number in the case of
scheduled samples. The parameters used for this figure are
birth rate of 0.4, death rate of 0.1, sampling rate of 0.02
and a scheduled unsequenced sampling probability of 0.08 (at
varying intervals). The solid lines indicate the values obtained
with our approximation and the dashed lines indicate the true
values accounting for scheduled sampling.

in terms of these parameters. In an epidemiological
context, with a time series of confirmed cases and point
process sequence data, we prefer to parameterize this
in terms of the effective reproduction number, Re, the
net removal rate, σ = µ+ψ+ω̃ (where ω̃ is as described
above), and the observed proportion of infections cap-
tured by the time series, ω̃/σ, and the point process,
ψ/σ. Given the focus on the use of time series data,
we refer to this parameterization as the time series pa-
rameterization.

Note that when we use the time series parameteriza-
tion in the SARS-CoV-2 analysis, we use the approxi-
mation of ω̃ to simplify the model specification. This
avoids the issue of having to adjust for future scheduled
sampling in Re(t).

Sampled ancestors

A natural extension to this model is the inclusion
of sampled ancestors (Gavryushkina et al., 2014),
which Manceau et al., 2020 and Andréoletti et al., 2022
have already considered. Including sampled ancestors
involves a probability r an infected individual is re-
moved upon (unscheduled) observation. Currently we
assume all individuals are removed upon observation.
We have not yet implemented this extension in Tim-

tam, however we include the relevant expressions and
the explanation of some additional details in the Sup-
plementary Information and leave the implementation
as an exercise for the reader.

Calibration study

To assess the calibration of Timtam and the validity
of our approximation of Re, we carried out a simula-
tion study. We simulated 100 epidemics for 56 days
using remaster3 with the birth rate changing on day
42, i.e., boom-bust dynamics. The prevalence of infec-
tion in each of the simulated epidemics is shown in Fig.
S1. There is a substantial amount of variability in the
prevalence across the simulations, but the boom-bust
dynamics can be seen in the average over the simula-
tions.
From each simulation we constructed two datasets:

one with unsequenced samples treated as a point pro-
cess, and a second with these samples aggregated into
a time series of daily case counts. The full parame-
ter list is given in Table 1. The parameters used are
similar to those used in Zarebski et al., 2022 with an
extension for the change in birth rate; we based them
on the early dynamics of SARS-CoV-2 in Australia.
The code implementing this simulation and the subse-
quent inference is available at https://github.com/

aezarebski/timtam-calibration-study.
We estimated the parameters of the model for each

simulated data set and compared the estimated values
to the true values used in the simulation. Figure 3 show
the estimates of prevalence and reproduction numbers
across the simulations ordered by the final prevalence
in the simulation in the case where the unsequenced
data is modelled as a point process. Figure 4 shows
the corresponding results when the unsequenced data
have been aggregated into a daily time series of counts.
Comparing the simulations with a small final preva-

lence to those with a large final prevalence we see that,
as expected, for simulations with a larger prevalence
the estimates of the reproduction number have less un-
certainty and are less biased. We attribute this to the
strong correlation between the final prevalence and the
total number of data points, (as shown in Fig. S2).
Table 1 contains a summary of the rate parameter

estimates from the first set of simulations (i.e. the ones
with point process data) and Table 2 contains the cor-
responding summary for the second set of simulations
(i.e. with unsequenced samples aggregated into a time
series). The credible intervals (CrIs) of both the repro-
duction number and the prevalence at the time of the
last sequenced sample have a coverage that is consis-

3remaster (https://github.com/tgvaughan/remaster) is a
re-write of the MASTER simulation package for BEAST2
from Vaughan et al., 2013
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tent with the desired value, suggesting the estimation
method is well-calibrated.
The CrI is distinct from the confidence interval

(a.k.a. CI). Due to the influence of the prior, we do not
necessarily expect 95% of the posterior distributions to
contain the true parameters, however, we would like it
to be close to this. We performed a hypothesis test of
the null hypothesis that 95% of the intervals contain
the true parameter. Of course, the truth of this null
depends upon the choice of prior distribution, nonethe-
less, we would like it to be difficult to falsify such a null
hypothesis for plausible prior distributions.
In our hypothesis test, we expect 91–99 of the CrIs

to contain the true parameter value (out of the total
100 replicates) under the null hypothesis that the CrIs
contain the true value 95% of the time. When inter-
preting the hypothesis test of whether the intervals are
well calibrated at 95%, we need to bear in mind that
the sampling of the limits of this interval are sparse (by
construction) so one would ideally want a far larger ef-
fective sample size (ESS) than the one we present. Kr-
uschke, 2014, p. 184 suggests for reliable 95% limits an
ESS ≥ 10000 is desirable. For each of our analyses the
ESS was ≥ 200 for all variables.

Par True Median Error Bias Width Coverage
λ1 0.185 0.186 0.116 0.004 0.531 94
λ2 0.092 0.095 0.337 0.032 1.386 93
µ 0.0460 - - - - -
ψ 0.008 0.010 0.351 0.275 1.811 92
ω 0.046 0.052 0.248 0.140 1.209 96
R1

e 1.850 1.689 0.180 -0.087 0.677 94
R2

e 0.925 0.897 0.291 -0.030 1.151 95
H - - 0.360 -0.046 - 99

For each parameters (Par), the median over the 100 medians of
the estimate, relative error, relative bias and the percentage of
credible intervals containing the true value is provided.

Table 1: Posterior parameter estimates and accuracy in the
100 simulations. There are boom-bust dynamics, for the first
42 days of the simulation the birth rate is λ1 after which it
changes to λ2 for the subsequent 14 days. The death rate is
assumed known.

Par True Median Error Bias Width Coverage
λ1 0.185 0.186 0.121 0.003 0.540 95
λ2 0.092 0.094 0.337 0.018 1.399 93
µ 0.0460 - - - - -
ψ 0.008 0.010 0.344 0.267 1.852 90
ω̃ 0.046 0.053 0.265 0.143 1.211 97
R1

e 1.850 1.670 0.191 -0.097 0.678 89
R2

e 0.925 0.873 0.287 -0.057 1.158 97
H 0.000 - 0.367 -0.055 - 99

Table 2: Posterior parameter estimates and accuracy in the
100 simulations after we aggregated the unsequenced obser-
vations into daily counts and used the resulting time series as
data.

Figure 3: Parameter estimates converge to true values as
the data set gets larger. The solid black lines display the
credible intervals, and the filled or empty black points indicate
the point estimates. The green points and the green dashed
lines indicate the true values of the final prevalence and the
reproduction number in the boom and bust portions of the
simulation. We ordered the replicates by the final prevalence
in each simulation.
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Figure 4: The estimated quantities and their true values from
the simulation as shown in Figure 3 when the unsequenced
observations were aggregated into a time series of daily case
counts.

SARS-CoV-2 on the Diamond Princess
cruise ship

We replicated the analysis of a SARS-CoV-2 outbreak
onboard the Diamond Princess cruise ship reported
by Andréoletti et al., 2022. This outbreak is partic-
ularly well-suited to analysis because it occurred on an
isolated cruise ship (with 3711 people onboard) in a
carefully monitored population with detailed accounts
of isolation and testing measures. The outbreak ap-
pears to have originated from a single introduction of
the virus (Sekizuka et al., 2020). Figure 5 displays the
cases and sequencing effort across the duration of the
quarantine. We obtained a time series of daily con-
firmed cases from Dong et al., 2020 to use as Dcases

and an alignment of 70 pathogen genomes (Sekizuka
et al., 2020) was used as DMSA. The accession numbers
for the sequences are available in the Supplementary
Information.

Model

We made minor adjustments to the model to bet-
ter match standard epidemiological workflows for Re

estimation, as described in the Supplementary Infor-
mation. Importantly, we modelled daily case counts
of confirmed cases as scheduled samples (i.e., a time
series) instead of unscheduled samples (i.e., a point
process of occurrences.) Additionally, we put an
explicit prior on the reproduction number. Table
S1 lists the prior distributions used in the model.
The XML files specifying the full analysis and post-
processing are available from https://github.com/

azwaans/timtam-diamond-princess.

Results

Figure 6 shows the estimates of the reproduction num-
ber through time along with the 95% credible inter-
vals, calculated as the highest posterior density inter-
vals (HPI). The estimates of the effective reproduc-
tion number are consistent with those from previous
analyses of these data (Andréoletti et al., 2022, Fig-
ure 5). Our estimates differ from those of (Vaughan
et al., 2020, Fig. S3). The discrepancy between the
estimates from Vaughan et al., 2020 and ours may be
due to the different data sets used: our analysis used
both the time series of confirmed cases and pathogen
genomes, while Vaughan et al., 2020’s estimates are
based on genomic data alone.
Figure 7 shows the estimates of the prevalence of in-

fection and the 95% HPI credible intervals along with
the corresponding values from Andréoletti et al., 2022,
Figure 5. Our estimates suggest a larger prevalence
of infection than the estimates from Andréoletti et al.,
2022. Prevalence estimates from Vaughan et al., 2020
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are not included as they estimated the cumulative num-
ber of infections instead of the prevalence.

Figure 7: Estimates of the prevalence of infection and the
95% HPI credible intervals onboard the Diamond Princess. In
addition to our estimates (shown in green) there are estimates
from Andréoletti et al., 2022 (shown in purple).

Discussion

We implemented a tree prior that facilitates the co-
estimation of the prevalence and the effective repro-
duction number, the resulting model can draw on both
sequence data and a time series of confirmed cases
(where the pathogen genome may not have been se-
quenced). The algorithm used to compute the (ap-
proximate) log-likelihood is fast, requiring a number of
steps linear in the number of sequences and length of
the time series (Zarebski et al., 2022). The implemen-
tation is available as a BEAST2 package and tutorials
on the usage of the package are bundled with the source
code: https://github.com/aezarebski/timtam2.
We performed a simulation study to demonstrate the

method is well-calibrated, i.e., that approximately 95%
of the 95% credible intervals do contain the true value.
The simulation study also demonstrated the perfor-
mance of the method does not degrade substantially
when we aggregated the occurrence data into a time
series.
We used the validated method to replicate an analy-

sis carried out by Andréoletti et al., 2022 of an outbreak
of SARS-CoV-2 onboard the Diamond Princess. Our
estimates of the reproduction number (displayed in Fig-
ure 6) are consistent with the values from Andréoletti
et al., 2022 and are similar to those from Vaughan et
al., 2019. However, Vaughan et al., 2019 only used ge-
nomic data which may be the reason the Re estimates
differ slightly in this case.
Our prevalence estimates are greater than those

from Andréoletti et al., 2022 (Figure 7). We attribute

this difference to their algorithm having an upper limit
of 40 on the number of hidden lineages, which was ne-
cessitated by the computational complexity of the nu-
merical integration algorithm used to compute the like-
lihood. As such, their estimates should be interpreted
as lower bounds on the prevalence and not absolute es-
timates. Timtam overcomes this limitation by approx-
imating the number of hidden lineages with a negative
binomial, making it applicable to real-world epidemic
scenarios. Instead of estimating the prevalence through
time, Vaughan et al., 2019 estimated the cumulative
number of infections through time, which prevents us
from comparing their estimates to ours.
To estimate historical prevalence, we extended the

method previously developed in Zarebski et al., 2022.
We model the prevalence as a parameter to estimate,
this differs from several previous approaches where es-
timates of the prevalence come from intermediate steps
in the likelihood calculation or from post-hoc simula-
tion. Treating the prevalence as a bona fide parameter
also means we could incorporate additional data con-
cerning prevalence into the analysis. For example, if
survey data on infection in a random sample from the
population was available.
For the Diamond Princess data analysis we modelled

the sequenced cases as a point process, consistent with
previous analyses. Where multiple samples were avail-
able for a particular day, we uniformly spaced the se-
quenced samples across the day the samples were col-
lected. A more nuanced analysis would have modelled
these samples as scheduled sequenced samples, how-
ever this would make the resulting estimates harder to
compare to previous results and complicate the inter-
pretation.
Our implementation does not yet support the use

of sampled ancestors (Gavryushkina et al., 2014). Ex-
tending the approximation to handle this case seems
feasible, however there are substantial engineering chal-
lenges involved in implementing this on the BEAST2
platform. We include the expressions required for in-
cluding sampled ancestors in the Supplementary Infor-
mation.
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Figure 5: Sequences were collected across three days and testing varied throughout the quarantine. The stacked bar
chart shows the daily number of confirmed cases and sequenced samples. We indicate timing of changes to surveillance
and quarantine with lines at the top of the figure.

Figure 6: Estimates of the reproduction number and the 95% HPI credible intervals. In addition to our estimates
(shown in green) there are estimates from Andréoletti et al., 2022 (shown in purple) and Vaughan et al., 2020 (shown
in orange).
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