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Abstract  

In cancer research, pathology report text is a largely un-tapped data source. 
Pathology reports are routinely generated, more nuanced than structured data, and 
contain added insight from pathologists. However, there are no publicly-available 
datasets for benchmarking report-based models. Two recent advances suggest the 
urgent need for a benchmark dataset. First, improved optical character recognition 
(OCR) techniques will make it possible to access older pathology reports in an 
automated way, increasing data available for analysis. Second, recent improvements in 
natural language processing (NLP) techniques using AI allow more accurate prediction 
of clinical targets from text. We apply state-of-the-art OCR and customized post-
processing to publicly available report PDFs from The Cancer Genome Atlas, 
generating a machine-readable corpus of 9,523 reports. We perform a proof-of-principle 
cancer-type classification across 32 tissues, achieving 0.992 average AU-ROC. This 
dataset will be useful to researchers across specialties, including research clinicians, 
clinical trial investigators, and clinical NLP researchers. 

Keywords: TCGA, resource, cancer pathology, pathology reports, cancer type, 
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Introduction  
 

Patient data derived from structured electronic health records or molecular 
sequencing are frequently used as input for clinical models across cancer types. 
However, unstructured free text, such as pathology reports or clinical notes, is less 
frequently used in biomedical data analysis, despite being regularly generated as part of 
the EHR. Tumor pathology reports in particular are an essential source of clinical data, 
often containing nuanced information that is not always captured within structured 
datasets. Report text generally includes a macroscopic description of tumor 
appearance, location, and size; microscopic description of tissue structure and cell 
differentiation; evaluation of margins; and sometimes genetic or immunohistochemistry 
results. Reports can also contain the patient’s stage and grade, which help inform 
treatment, clinical care management, and prognosis.  

 
Despite the potential utility of pathology report data in clinical research efforts, 

there currently does not exist a large, de-identified public dataset of pathology report 
text. However, The Cancer Genome Atlas (TCGA) has made available over 11,000 de-
identified PDF reports associated with patient samples in their repository.1 TCGA is a 
particularly rich data source, containing clinical metadata, tumor genomic data, 
histopathology slide images, and follow-up patient tracking for survival outcomes. 
Although available for download, pathology reports from TCGA have not been 
extensively utilized for research purposes due to their PDF-formatting, highly varied 
structure, and the presence of image-artifacts, making automated analysis difficult.  
 
 Numerous recent studies have utilized information derived from pathology 
reports, both in general2-13 and using subsets of the TCGA pathology report dataset.14-20 
Previous studies incorporating TCGA pathology report data have largely relied on 
manual curation and limited term-set extraction across smaller subsets of the dataset. 
More recently, one study21 used OCR and NLP techniques on a TCGA subset of breast 
cancer patients for an information retrieval task. Another study combined OCR and 
traditional machine learning techniques to classify tumor grade using a TCGA subset of 
approximately 500 prostate cancer patients.22 Additionally, Allada et al. compared 
different NLP classification methods for the prediction of seven disease classes within a 
TCGA subset consisting of roughly 2,000 patients.23 The accelerated increase in recent 
research efforts using pathology report text as a basis for a variety of clinical prediction 
tasks demonstrates the utility of this type of data and the need for a benchmark dataset. 
 

Here, we describe the curation of a text corpus derived from the set of all TCGA 
pathology reports. To convert pathology reports from PDF to machine-readable text, we 
employ OCR as well as significant OCR post-processing. After processing, translating 
from image to text, and cleaning, we leverage recent advances in NLP24 and its 
application to clinical text25-27 to demonstrate the utility of this dataset by training a 
cancer-type prediction model. We make the final corpus of 9,523 patient reports publicly 
available for researchers to use for data mining or machine learning applications. The 
corpus will be particularly useful for researchers who may not have access to institution-
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specific or otherwise controlled-access corpora and can potentially provide a 
benchmark in this field going forward. 
 
Results  
 
TCGA Pathology Report Pre-Processing and Data Selection  
 
 11,108 pathology reports, corresponding to 11,010 patients, were downloaded 
from the TCGA data portal. The dataset was pre-processed as follows: First, we 
removed 82 patients with multiple reports and 399 patients with non-primary tumors. 
Then, to ensure that the final dataset is fully complete with respect to associated 
outcome data, we removed 72 patients who did not have survival data in the TCGA 
Clinical Data Resource.28 This resulted in a selection of 10,457 patients, with each 
patient having one corresponding report, and all reports descriptive of primary tumors. 
Next, we removed 381 “Missing Pathology” reports, which were placeholder forms 
indicating a lack of pathology report for specific patients, as well as 14 reports of poor 
scan quality (see Methods). We additionally removed 212 “TCGA Pathologic Diagnosis 
Discrepancy Form” reports, which consisted mostly of diagnosis discrepancies 
indicative of inaccurate pathology reporting. After these filters were applied, 9,850 
reports were processed through text extraction.  
 
Text Extraction and OCR Post-Processing  

 
We used Optical Character Recognition (OCR) to transform reports from PDF 

into text. We qualitatively evaluated several different OCR programs, with Textract29 
producing the most accurate results and being the best able to remove report artifacts 
(see Methods). We processed 9,850 reports (25,478 pages) through Textract, and then 
parsed and post-processed the resultant output files. Redaction bars and TCGA 
barcodes, artifacts of the TCGA quality control process, were removed by Textract (Fig 
S1A-B).  
 
 We removed reports that consisted partially or entirely of multiple-choice forms 
(see Methods). We identified and removed 210 “Consolidated Diagnostic Pathology 
Form” reports using a combination of keyword and selection element (check-box) filters. 
We also manually reviewed and removed any “Synoptic Translated” forms as well as 
any reports with a large amount of multiple-choice selection elements. After removal, 
9,547 reports (24,214 pages) remained. 

 
We additionally removed within-report TCGA metadata insertions, which occur at 

inconsistent coordinates and at varying angles. These insertions can interrupt 
sentences in the OCR translation and need to be removed for clean final text (Fig S1C). 
We removed quality control (QC) tables added to the reports by the TCGA, which 
contain information about sample quality but are irrelevant for diagnosis and not 
included in standard pathology reports. See Methods for full details on this process, but 
briefly, we used Textract to identify the QC table’s section headers and drew a custom 
bounding box around each detected term. We validated this approach on a prototype 
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set of 50 randomly-selected reports, and found 100% concordance between manual 
and automatic identification of QC tables using our bounding box technique. We 
additionally utilized Textract’s word-level text-type annotation, removing lines that 
contain only hand-written words. These lines were added by TCGA during QC and were 
typically mis-translated by OCR; their removal improves the overall quality of the 
dataset. 24,099 pages remained.   
 
 Finally, to finish cleaning the dataset, we sought to remove clinically irrelevant 
and potentially confounding clinic-specific section headers from the remaining reports. 
To maintain the general utility of this dataset, we employed a conservative approach, 
only removing content that is clearly irrelevant to pathological description and patient 
diagnosis. We manually reviewed 500 randomly-selected report pages to compile a list 
of 312 regular expressions which were used to remove report lines (see Methods). More 
than 100,000 lines were removed in this step (Fig 1B).  

 
In total, 9,523 reports (23,909 pages, or 842,134 lines) remain in the final dataset 

(Fig 1A, 2A-D). The frequency of cancer type within the dataset varies: Breast invasive 
carcinoma is the most prevalent, with 1,034 patients, and Cholangiocarcinoma is the 
least prevalent, with 43 patients (Fig 2A). We compiled the demographic characteristics 
of the patient population in the final pathology report dataset overall (Table 1) and 
plotted distribution of demographics by cancer type (Fig S5).  
 
Cancer Type Classification  
  

As a proof-of-concept, we used the corpus to perform binary classification to 
predict cancer type (n=32). To utilize domain-relevant pretrained weights, we fine-tuned 
an existing model, ClinicalBERT.26 ClinicalBERT is a BERT-based model that had been 
trained on the clinical note set MIMIC-III30 and initialized with BioBERT25 weights. 
(BioBERT itself had been trained on PMC articles and Pubmed abstracts, and had been 
initialized with BERT-BASE.24) To prepare the text for input, we joined all lines and 
pages across each patient report. We partitioned the data into a train/validation/test 
split, stratifying by tissue type and holding out the test set until final evaluation. 
Train/validation and test patient sets were consistent across demographic strata (Table 
S2). We trained in parallel 32 ClinicalBERT models26 for 10 epochs, across 10 random 
seeds per tissue type (see Methods). We identified models with maximal validation set 
AU-ROC and evaluated the performance of these models on the held-out test set. We 
were able to achieve an average test-set AU-ROC of 0.992 and average test-set AU-
PRC of 0.903 (Fig. 3A-B).  
 
 
Discussion 
 

Pathology report text is generated routinely and ubiquitously across cancer care 
sites. In some medical centers, records can span decades, allowing for the research 
use of pathology reports in both retrospective and prospective analyses. Compared to 
whole slide image data, report text is substantially smaller in size and easier to work 
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with. Text files require far less storage and model training requires much less run-time, 
especially important as memory and computing power can be cost-prohibitive. Reports 
reflect the expertise of practicing pathologists, who are typically equipped with years of 
specialty training and the morphological features they describe may prove helpful in 
training models to predict clinical targets.  

 
The TCGA pathology report corpus can be utilized by researchers for a variety of 

analyses. For example, the text may be used as input for cancer subtype classification, 
survival prediction for increased prognostic accuracy, and information retrieval or 
named entity recognition (i.e., consistent extraction of specific information from report 
text). Directly, a clinical researcher could train and validate their model of interest on the 
TCGA corpus, and then apply that trained model to private patient data at their 
institution. This type of research could be performed for a specific cancer type or in a 
pan-cancer capacity. As models increase in capability, e.g. the recent advances in AI 
language models such as GPT4, the availability of relevant public text data will be 
essential for the benchmarking of relative model performance on pathology report text.     

 
One of the main strengths of this dataset is that it is derived from the notes of 

many different pathologists at a wide range of institutions (Fig. 2D). This diversity will 
result in greater generalizability of models trained, particularly compared to models 
trained at single institutions. An additional benefit of this dataset is that it is already de-
identified for public use and does not require specialized or controlled access, allowing 
its use as a convenient benchmark with which to compare different text-based models. 

 
The TCGA pathology report corpus is enriched by additional patient data 

gathered by TCGA and accessible through its portal. These include histopathology slide 
imaging, clinical metadata, survival data, among other information (Table 2). The 
availability of these data opens the possibility of performing multimodal analyses, which 
may increase performance of downstream tasks.31 A limitation, however, of the TCGA 
dataset is that it does not contain clinical notes or symptom timelines, and the length of 
survival follow-up varies depending on cancer type.  

 
The final text corpus presented here is moderately curated; data quality could be 

enhanced by applying additional cleaning steps for future analyses. For example, 
automated spelling correction could be applied in order to ensure that spelling mistakes 
made either in the original text or during OCR are corrected prior to model input 
tokenization. Depending on the model and tokenizer being applied, other pre-
processing steps could include automated editing of punctuation or uncasing of the 
input text.  

 
Finally, cancer-type classification was performed in this study as a proof-of-

concept to illustrate the trainability of and information content within the corpus. 
However, four cancer types (READ, KICH, UCS, CHOL) had relatively poor 
performance (low AU-PRC) for this classification task. Low AU-PRC may be a result of 
ClinicalBERT confusing one cancer type (e.g., UCS) with a similar cancer type (e.g., 
UCEC), particularly if the relative prevalence is severely imbalanced. Future work 
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involving pathology reports for these low-prevalence cancer types could consider 
balancing classification32 or testing different models and tokenizers to potentially 
improve performance.  
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Data and code availability:  
 
https://github.com/tatonetti-lab/tcga-path-reports  
 
Figure Titles and Legends: 
 
Figure 1. Patient and Line Distributions after Dataset Processing. (A) Distribution of 
patients remaining in the dataset after data selection, OCR, and post-processing, 
presented per cancer type. See also Table S1. (B) Distribution of number of lines 
removed per report during the final post-processing step of matched regular expression 
removal. 
 
Figure 2. Final Dataset Characteristics. (A) Cancer type distribution, ordered by 
prevalence. (B) Distribution of number of pages per report (left) and lines per report 
(right). (C) Distribution of number of pages per report, segmented by tissue. Darker hue 
indicates greater prevalence of cancer type within this dataset. (D) Distribution of report-
generating institutions (tissue source sites) and average number of reports per 
institution, presented separately by cancer type.  
 
Figure 3. Model Performance for Proof-of-Concept Classification Task.  
Horizontal bar chart for (A) AU-ROC and (B) AU-PRC for test set performance of 
models trained across 10 random seeds, with 95% confidence interval. (A) and (B) are 
ordered by tissue prevalence, with higher-prevalence cancer types toward the top of 
each figure. See also Figure S4.  
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Tables  
 
Table 1. Demographic distribution of final pathology report dataset. See also 
Figure S5.  
 
 Number of 

Patients 
% of Total 
Patients 

Age   
<18 13 0.1 
18-29 279 2.9 
30-39 631 6.6 
40-49 1226 12.9 
50-59 2230 23.4 
60-69 2671 28 
70-79 1850 19.4 
80+ 600 6.3 
Not Reported 23 0.2 
Gender     
Female 5035 52.9 
Male 4488 47.1 
Ethnicity     
Hispanic or Latino 343 3.6 
Not Hispanic or Latino 6995 73.5 
Not Reported 2185 22.9 
Race     
American Indian or Alaska Native 27 0.3 
Asian 423 4.4 
Black or African American 925 9.7 
Native Hawaiian or Other Pacific Islander 13 0.1 
Not Reported 933 9.8 
White 7202 75.6 
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Table 2. Selected Available Data for Patients in Final Pathology Report Set. 
Percent of patients with data availability, per cancer type. N = Number of patients, Eth. 
= Ethnicity, Prior Malig. = Prior Malignancy, OS = Overall Survival, PFI = Progression-
Free Interval, DFI = Disease-Free Interval, derived from TCGA-CDR.28 All other 
columns derived from TCGA clinical and biospecimen metadata.33 Additional patient 
data, such as ICD-10 codes, sequencing data, transcriptomic data, and epigenetic data, 
are available through the TCGA portal.33  
 
 

Cance
r Type 

N Age Race Eth. Prior 
Malig. 

Tumo
r 
Slides 

Norm
al 
Slides 

OS 
Event
s 

PFI 
Event
s 

DFI 
Event
s 

BRCA 
103
4 

100.0
0 90.81 83.17 99.90 

100.0
0 15.18 14.02 13.54 7.93 

UCEC 546 99.63 94.14 71.43 
100.0
0 

100.0
0 7.33 16.48 22.53 10.44 

KIRC 525 
100.0
0 98.67 71.05 

100.0
0 

100.0
0 82.29 33.52 29.71 2.29 

HNSC 520 
100.0
0 97.31 93.27 

100.0
0 

100.0
0 15.00 42.50 37.88 5.38 

LUAD 488 97.95 88.93 77.46 
100.0
0 

100.0
0 42.01 36.68 41.19 17.83 

THCA 487 
100.0
0 81.72 79.88 

100.0
0 

100.0
0 19.92 3.29 10.06 5.13 

LGG 469 
100.0
0 97.87 93.18 

100.0
0 

100.0
0 0.00 23.67 34.33 3.41 

LUSC 468 98.72 76.50 66.24 99.79 
100.0
0 49.36 43.59 29.70 13.25 

PRAD 446 
100.0
0 97.09 80.72 

100.0
0 

100.0
0 26.01 1.79 16.14 4.93 

COAD 418 
100.0
0 58.61 56.46 

100.0
0 99.76 21.05 19.86 27.03 5.50 

GBM 399 
100.0
0 96.99 82.21 7.77 

100.0
0 1.25 75.69 79.95 0.50 

BLCA 379 
100.0
0 95.51 92.88 

100.0
0 

100.0
0 9.23 45.38 44.59 7.39 

OV 371 
100.0
0 93.26 47.17 2.70 

100.0
0 19.95 52.02 65.77 30.73 

STAD 361 99.17 84.21 70.36 
100.0
0 

100.0
0 25.76 40.44 31.58 8.86 

LIHC 341 
100.0
0 97.07 94.43 

100.0
0 

100.0
0 26.10 32.26 47.51 38.12 

CESC 289 
100.0
0 88.24 64.36 

100.0
0 

100.0
0 2.42 22.84 22.84 8.65 

KIRP 280 99.29 95.00 87.50 
100.0
0 

100.0
0 30.00 13.93 19.29 8.93 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 8, 2023. ; https://doi.org/10.1101/2023.08.03.23293618doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.03.23293618
http://creativecommons.org/licenses/by-nc/4.0/


 9

SARC 249 
100.0
0 96.39 87.55 

100.0
0 

100.0
0 8.43 37.75 53.01 24.90 

PAAD 176 
100.0
0 97.73 76.70 

100.0
0 

100.0
0 22.16 52.27 58.52 13.07 

PCPG 174 
100.0
0 97.70 80.46 

100.0
0 

100.0
0 2.87 2.87 10.92 2.30 

READ 162 
100.0
0 50.00 46.91 

100.0
0 

100.0
0 11.11 12.35 22.22 4.32 

ESCA 146 
100.0
0 86.30 38.36 

100.0
0 

100.0
0 44.52 48.63 45.89 3.42 

THYM 114 
100.0
0 98.25 87.72 

100.0
0 

100.0
0 7.02 5.26 16.67 0.00 

KICH 112 
100.0
0 98.21 66.07 

100.0
0 

100.0
0 62.50 10.71 14.29 5.36 

SKCM 102 
100.0
0 98.04 95.10 

100.0
0 

100.0
0 0.00 27.45 35.29 0.00 

ACC 90 
100.0
0 87.78 52.22 

100.0
0 

100.0
0 4.44 37.78 54.44 15.56 

TGCT 87 
100.0
0 94.25 88.51 

100.0
0 

100.0
0 0.00 2.30 18.39 13.79 

MESO 79 
100.0
0 

100.0
0 87.34 

100.0
0 

100.0
0 1.27 83.54 72.15 8.86 

UVM 65 
100.0
0 61.54 60.00 

100.0
0 

100.0
0 0.00 26.15 33.85 0.00 

UCS 56 
100.0
0 98.21 76.79 

100.0
0 

100.0
0 10.71 62.50 66.07 17.86 

DLBC 47 
100.0
0 

100.0
0 

100.0
0 

100.0
0 

100.0
0 0.00 17.02 23.40 6.38 

CHOL 43 
100.0
0 97.67 93.02 

100.0
0 

100.0
0 39.53 48.84 51.16 20.93 

 
 
Methods 
 
TCGA Pathology Report Pre-Processing and Data Selection 
 

We downloaded pathology reports, clinical metadata, and biospecimen metadata 
for all TCGA patients from the GDC portal.33 Each tumor sample has at most one 
associated pathology report (pathology_report_uuid), and each patient can have 
multiple samples. For case-based selection, we used sample.tsv (biospecimen 
directory). We removed patients with empty pathology_report_uuid values, removed 
patients with multiple pathology_report_uuid’s, and selected patients with “Primary 
Tumor” in the sample_type column. Next, we checked which patients matched with the 
TCGA Clinical Data Resource28 (a curated, comprehensive resource for TCGA 
outcomes data). We removed 72 patients either not found or found but lacking survival 
time within the TCGA-CDR. 
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For report-based filtering, we used OCR to identify reports for removal. We 

converted the reports from PDF-to-image and then image-to-text using pdf2image and 
pytesseract.34-35 We scanned the resultant text for key phrases for report exclusion. We 
removed 381 reports that contained the phrase “TCGA Missing Pathology Report Form” 
within any page (Fig S2A), 212 reports that contained the phrase “TCGA Pathologic 
Diagnosis Discrepancy Form” within any page (Fig S2B), and 14 reports of poor scan 
quality. Ultimately, 9,850 reports were selected for full text extraction and post-
processing.  
 
Text Extraction and OCR Post-Processing 
 
Text Extraction  
 

Multiple OCR packages were tested for translation accuracy and output 
formatting consistency. A set of 50 randomly-chosen reports was used as a basis for 
comparison. First, we evaluated PyPDF2,36 a python package that converts PDF files 
directly to text. Although text translation performed reasonably well on the prototype set, 
there were a number of issues with the output files, including poorly translated TCGA 
quality control (QC) tables, incorrectly spaced words, and redaction bar artifacts in 
various sections of text. These factors made it infeasible to parse the output and 
achieve clean report text. Next, we evaluated the performance of pytesseract35 and 
Textract29 on the pathology report dataset. In order to use these packages, we 
performed a high-fidelity conversion of each page of the PDF prototype set to JPG 
image files using pdf2image.34 The python package pytesseract produced better quality 
text files in comparison with PyPDF2. The output text was largely structured the same 
as the input files, with no major word spacing issues. Barcodes and redaction bars were 
not translated at all, resulting in much cleaner output. However, pytesseract failed at 
handwriting translation, leading to mis-translated text in variable sections of each report 
that would be difficult to parse out in post-OCR processing.  

 
Finally, we tested Textract, a software created by Amazon Web Services (AWS) 

that uses OCR and machine learning to convert images into text alongside structural 
annotation.29 In contrast to pytesseract and PyPDF2, output files include structural 
annotation in addition to text. For example, tables, selection elements, and hand-written 
lines are identified and annotated with bounding box coordinates within each report 
page. This feature is particularly helpful for parsing out mis-translated handwriting 
during post-processing and for filtering reports using table- or selection element-based 
filters (see Form Detection and Removal). In addition, we found that Textract produced 
cleaner output and consistently performed with higher translation accuracy on the 
prototype set (although, as with pytesseract, handwriting was not well-translated). 
Based on these considerations, we selected Textract for use on the entire pathology 
report dataset.  

 
For each report, page images were converted into byte arrays and processed on 

the AWS server. Due to AWS hard limits (<10k pixels/edge and <5MB total), we 
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lowered the resolution slightly for 58 pages to conform. We converted 9,850 reports 
(25,478 pages) using the AnalyzeDocument function of Textract, with the table 
annotation option selected. We manually reviewed outlier short reports consisting of 
less than or equal to 5 lines of text (n=24 reports); we found that they contained 
clinically-relevant information and were therefore kept in the dataset.  
 
Form Detection and Removal 
 

Multiple-choice forms, consisting of questions with multiple-choice answer 
options were identified and removed from the dataset (Fig S2C). The multiple-choice 
selection elements were most frequently check-boxes, but the exact format varied. The 
forms themselves were variable in content (with disease-specific questions and 
answers), overall format, and number of selection elements per question. Because the 
selected option for each multiple-choice question is not detected by OCR, the resultant 
output text contains all multiple-choice options for each question. Some reports 
consisted entirely of multiple-choice forms and were fully removed, while others 
contained a mix of page types, in which case only form-containing pages were 
removed.  

 
We first searched for reports that potentially contained multiple-choice content. 

As an initial filter, we selected reports based on structural elements, including the total 
number of tables per report, the total number of selection elements per report, and the 
average and maximum number of selection elements per page. All structural elements 
considered in this section were annotated by Textract, with annotation data represented 
by the BlockType attribute of each page response block. We employed various 
empirically-derived thresholds for this initial filter, starting with the clearest outliers and 
then including medium outliers, finding additional form reports in the medium outlier set 
upon manual review. However, we found that this first-level filter was not specific 
enough, including many non-forms in the selected report sets. We also observed that 
only a few cancer types had form-style pathology reports in this dataset. 

 
We therefore added a second filter consisting of custom disease-specific 

keywords, based on manual review of a subset of reports selected from the structural 
elements filter. Keywords were drawn from both question and answer text, with a 
preference for unique phrases that were unlikely to appear elsewhere in standard report 
text. The number of matched keywords required for report selection was adjusted 
depending on the results for each disease filter. For example, colon cancer pathology 
reports were identified as likely forms if they contained at least 2 of the following 
keywords: “Signet Ring Feature:”, “Histologic Heterogeneity:” , “Crohn's like reaction”, 
“Plasma cell rich stroma”, “Angiolymphatic Invasion:”, “Garland Necrosis present:”, “TIL 
Cells / HPF”, “Pathologist Comment:”. As another example, liver-related forms were 
identified by 14 keywords, including “Hepatitis (specify type)”, and “(check all that 
apply)”, and cervix-related forms were identified using 21 keywords across multiple 
pages. We additionally incorporated fuzzy-matching to the keyword filter to account for 
misspelled text (either misspelled via OCR translation error or within the original 
pathology report text).  
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Although the keyword filter greatly increased specificity, enriching report sets for 

form content, the final filtered report sets were not perfectly specific. We therefore 
manually reviewed all reports that passed the structural element and keyword-matching 
filters to ensure we ultimately removed only form-reports from the overall dataset. After 
form removal, 9,547 reports (24,214 pages) remained. 
 
Table Detection and Removal 
 
 We used 9 section-header keywords to identify TCGA QC tables within each 
report (Fig S3). The section headers were largely typed text, free of handwriting 
annotation, and Textract transcribed these keywords sufficiently for fuzzy detection. 
Fuzzy-matching error allowance varied according to the observed frequency of mis-
translation for each keyword. The relative location of the section headers within each 
table was consistent across reports. As such, we drew a custom bounding box for each 
keyword detected, and then merged the keyword-based bounding boxes to form a 
“maximum bounding box” around the entire detected table.  
 

To check that this table detection method performs accurately across the overall 
dataset, we probed the results in a number of ways. First, we manually scored a 
prototype set of 50 randomly-selected reports, finding that all detected tables were true 
tables, and all true tables were detected (no false negatives or false positives). Next, we 
tested whether a single matched keyword was sufficient to distinguish table content 
from main text. Checking for false-positives, we manually reviewed all reports for which 
only one keyword was fuzzy-matched. Upon reviewing 115 pages that met this criterion, 
we found that all detected bounding boxes were true QC tables. This aligns with our 
observation that the terms used in QC table section headers are distinct from the 
general vocabulary used in the main text. We also examined large max bounding box 
outliers to confirm that main report text was not fuzzy-matched by our table detection 
method. We found that these reports (n=39) had reasonably-sized max bounding boxes, 
and the bounding boxes did not overlap with any clinically-relevant, non-QC-table lines.  
 Once the tables had been detected, we removed them by removing any lines 
overlapping with the max bounding box. We set an overlap threshold, or the minimum 
area overlap between the bounding box of a given line and the max bounding box of a 
QC table for the line to be considered as part of the table. A smaller overlap threshold 
would include lines that were further from the table, as less overlap area would be 
required for the line to be considered part of the table. To determine the appropriate 
overlap threshold, we assembled a randomly-selected subset (n=4000 pages) and 
manually examined pages containing lines within specified overlap thresholds. Between 
thresholds .35-.25, no clinically-relevant, non-table-related lines were selected; however 
for lines with overlap <= .25, some clinically-relevant, non-table-related lines were 
captured. We therefore moved forward with a minimum .25 area overlap threshold, and 
removed all QC-table-related lines from the dataset.   
 
Handwriting and Keyword Removal  
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 We implemented additional filters to clean the text before dataset finalization. 
First, we sought to remove TCGA handwritten annotations; these were typically 
incorrectly OCR-translated, and not part of standard pathology report text (i.e., an 
artifact of the TCGA data collection process). We selected for lines that consisted 
entirely of Textract-annotated handwritten words, removing approximately 120,000 lines 
in this step. In addition, we sought to remove any clinically-irrelevant TCGA 
identification data or site-specific text (such as clinic-specific section headers), with the 
goal of reducing any potentially confounding elements within the text itself. We manually 
reviewed 500 randomly-selected report pages and compiled a list of 312 regular 
expressions. Approximately 100,000 additional lines were removed at this stage. After 
joining all lines with period delimiters and joining report pages, the final dataset 
consisted of 9,523 reports (23,909 pages) across 32 cancer types.  
 
Cancer Type Classification 
 

We performed binary cancer type classification by fine-tuning Bio+Clinical 
BERT26 and using TCGA project_id as the prediction target. We trained each model in 
parallel, with 32 separate cancer type experiments. We split the data into 
train/validation/test sets, stratifying by cancer type. To establish confidence intervals for 
model performance, we ran 10 different random seeds for each experiment, resulting in 
320 models trained and evaluated. We trained the models with default parameters, 
except for the following: per_device_train_batch_size set to 16 (for smoother training 
curves and reduced run-time); AU-ROC was used for performance evaluation; models 
were saved and evaluated every 32 steps (more often than default). Model input was 
truncated at 512 tokens per patient report, which is the maximum number of input 
tokens that ClinicalBERT is able to utilize. For evaluation, we applied a softmax on raw 
model scores, and used the transformed values for ROC and PR curve construction. 

 
We trained all cancer-type models across 10 random seeds for 10 epochs. Each 

model used approximately 7,620 seconds of run-time, for a total training time of 11.3 
days. The best models, as determined by highest validation set AU-ROC, were then 
applied to the test set for evaluation. AU-ROC was consistently high across cancer 
types, with narrow confidence intervals (Fig 3A). AU-PRC was more variable across 
cancer types and exhibited wider confidence intervals (Fig 3B). Performance amongst 
tissues with lower prevalence was generally worse as compared with tissues of higher 
prevalence. This is to be expected, as models trained on limited sample size are 
presented with fewer examples with which to learn their intended classification target, 
and generally benefit from larger sample sizes with greater total information content. 
Individual per-tissue ROC and PR curves were plotted for comparison (Fig S4).  
 
Supplemental Titles and Legends  
 
Figure S1. Related to Figure 1 and Methods (“Text Extraction and OCR Post-
Processing”). Report Examples – TCGA-Inserted Within-Report Metadata 
Artifacts.  
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(A) Redaction Bars (B) TCGA Barcode (C) TCGA QC Table and Handwritten 
Annotation.  
 
Figure S2. Related to Methods (“Form Detection and Removal”). Report Examples 
– Removed Forms. (A) TCGA Missing Pathology Report Form (B) TCGA Pathologic 
Diagnosis Discrepancy Form (C) Additional Multiple-Choice Forms, demonstrating 
variability.  
 
Figure S3. Related to Figure 1 and Methods (“Table Detection and Removal”). 
TCGA QC Table – Automated Max Bounding Box Detection Example. 
 
Figure S4. Related to Figure 3. Average ROC (A) and PR (B) curves for all tissue 
models (10 epochs, 10 random seeds, test set performance). Plots are ordered 
according to descending prevalence within the final post-processed dataset.  
 
Figure S5. Related to Table 1. Additional Characteristics of Final Dataset. (A) 
Pages per Report, per-Tissue Distribution. (B) Tissue Sites (Institutions) per-Tissue 
Distribution. (C) Age Distribution. (D) Race Distribution. (E) Gender Distribution. 
 
Table S1. Patients per cancer type in final dataset. Related to Figure 1.  
 
Table S2. Demographic table across train and test sets. Related to Table 1 and 
Methods (“Cancer Type Classification”).  
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(A) (B)  

Figure 1. Patient and Line Distributions after Dataset Processing. (A) Distribution of patients remaining in the dataset after data 
selection, OCR, and post-processing, presented per cancer type. (B) Distribution of number of lines removed per report during the 
final post-processing step of matched regular expression removal.
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(A)             (B)

(C) (D)

Figure 2. Final Dataset Characteristics. (A) Cancer type distribution, ordered by prevalence. (B) Distribution of number of pages 
per report (left) and lines per report (right). (C) Distribution of number of pages per report, segmented by tissue. Darker hue indicates 
greater prevalence of cancer type within this dataset. (D) Distribution of report-generating institutions (tissue source sites) and 
average number of reports per institution, presented separately by cancer type. 
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(A)                    (B)

Figure 3. Model Performance for Proof-of-Concept Classification Task. 
Horizontal bar chart for (A) AU-ROC and (B) AU-PRC for test set performance of models trained across 10 random seeds, with 95% 
confidence interval. (A) and (B) are ordered by tissue prevalence, with higher-prevalence cancer types toward the top of each figure. 
See also Figure S4. 
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