- 1 The Therapy Intensity Level scale for traumatic brain injury:
- 2 clinimetric assessment on neuro-monitored patients across
- 52 European intensive care units
- 5 Shubhayu Bhattacharyay^{1,2,*}, Erta Beqiri³, Patrick Zuercher⁴, Lindsay Wilson⁵,
- 6 Ewout W Steyerberg⁶, David W Nelson⁷, Andrew I R Maas^{8,9}, David K Menon¹, Ari
- 7 Ercole^{1,10}, and the CENTER-TBI investigators and participants[†]
- ¹Division of Anaesthesia, University of Cambridge, Cambridge, United Kingdom.
- ²Department of Clinical Neurosciences, University of Cambridge, Cambridge, United
- 11 Kingdom.

4

8

25

- ³Brain Physics Laboratory, Division of Neurosurgery, University of Cambridge,
- 13 Cambridge, United Kingdom.
- ⁴Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University
- of Bern, Switzerland.
- ⁵Division of Psychology, University of Stirling, Stirling, United Kingdom.
- ⁶Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden,
- 18 The Netherlands.
- ⁷Department of Physiology and Pharmacology, Section for Perioperative Medicine and
- 20 Intensive Care, Karolinska Institutet, Stockholm, Sweden.
- ⁸Department of Neurosurgery, Antwerp University Hospital, Edegem, Belgium.
- ⁹Department of Translational Neuroscience, Faculty of Medicine and Health Science,
- 23 University of Antwerp, Antwerp, Belgium.
- ¹⁰Cambridge Centre for Artificial Intelligence in Medicine, Cambridge, United Kingdom.
- 26 *Corresponding author: sb2406@cam.ac.uk (SB)
- [†]A full list of the CENTER-TBI investigators and participants are listed after the
- 28 acknowledgements.

ABSTRACT

29 30

31

32

33

34

35

36 37

38

39

40

41

42 43

44

45

46

47

48

49 50

51

52

53

54

55 56

57 58

59

60

61

62

63

64 65

The Therapy Intensity Level (TIL) scale and its abridged version (TIL(Basic)) are used to record the intensity of daily management for raised intracranial pressure (ICP) after traumatic brain injury (TBI). However, it is uncertain: (1) whether TIL is valid across the wide variation in modern ICP treatment strategies, (2) if TIL performs better than its predecessors. (3) how TIL's component therapies contribute to the overall score, and (4) whether TIL^(Basic) may capture sufficient information. We aimed to answer these questions by assessing TIL on a contemporary population of ICP-monitored TBI patients (n=873) in 52 intensive care units (ICUs) across 18 European countries and Israel. From the observational, prospective Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI) study, we extracted first-week daily TIL scores (TIL₂₄), ICP values, physician-based impressions of aberrant ICP, clinical markers of injury severity, and six-month functional outcome scores. We evaluated the construct and criterion validity of TIL against that of its predecessors, an unweighted version of TIL, and TIL (Basic). We calculated the median score of each TIL component therapy for each total score as well as associations between each component score and markers of injury severity. Moreover, we calculated the information coverage of TIL by TIL (Basic), defined by the mutual information of TIL and TIL (Basic) divided by the entropy of TIL. The statistical validity measures of TIL were significantly greater or similar to those of alternative scales, and TIL integrated the widest range of modern ICP treatments. First-week median TIL₂₄ (TIL_{median}) outperformed first-week maximum TIL₂₄ (TIL_{max}) in discriminating refractory intracranial hypertension (RIC) during ICU stay, and the thresholds which maximised the sum of sensitivity and specificity for RIC detection were TIL_{median}≥7.5 (sensitivity: 81% [95% CI: 77-87%], specificity: 72% [95% CI: 70-75%]) and TIL_{max}≥14 (sensitivity: 68% [95% CI: 62-74%], specificity: 79% [95% CI: 77-81%]). The sensitivity-specificityoptimising TIL₂₄ threshold for detecting surgical ICP control was TIL₂₄≥9 (sensitivity: 87% [95% CI: 83–91%], specificity: 74% [95% CI: 72–76%]). The median component scores for each TIL₂₄ reflected a credible staircase approach to treatment intensity escalation. from head positioning to surgical ICP control, as well as considerable variability in the use of cerebrospinal fluid drainage and decompressive craniectomy. First-week maximum TIL^(Basic) (TIL^(Basic)_{max}) suffered from a strong ceiling effect and could not replace TIL_{max}. TIL^(Basic)₂₄ and first-week median TIL^(Basic) (TIL^(Basic)_{median}) could be a suitable replacement for TIL₂₄ and TIL_{median}, respectively (up to 33% [95% CI: 31–35%] information coverage). Numerical ranges were derived for categorising TIL₂₄ scores into TIL^(Basic)₂₄ scores. Our results validate the TIL scale across a spectrum of ICP management and monitoring approaches and support its use as an intermediate outcome after TBI.

MAIN TEXT

Introduction

Elevated intracranial pressure (ICP) following traumatic brain injury (TBI) may impede the potential recovery of injured brain tissue and damage initially unaffected brain regions. Therefore, for TBI patients admitted to the intensive care unit (ICU), clinicians often monitor ICP and may apply a wide range of ICP-reducing treatments. The selective use of these treatments typically follows a staircase approach, in which therapeutic intensity – defined by the risk and complexity of each treatment – is incrementally escalated until adequate ICP control is achieved. Thus, therapeutic intensity must be considered when interpreting ICP. Even if two TBI patients have comparable ICP readings, a difference in the intensity of their ICP-directed therapies likely indicates a difference in pathophysiological severity.

Several versions of the Therapy Intensity Level (TIL) scale have been developed to rate and compare the overall intensity of ICP management amongst TBI patients. TIL scales assign a relative intensity score to each ICP-targeting therapy and return either the sum or the maximum value of the scores of simultaneously applied therapies. In 1987, Maset et al. produced the original, 15-point TIL scale (TIL⁽¹⁹⁸⁷⁾) to be assessed once every four hours. 6 In 2006, Shore et al. published the 38-point Paediatric Intensity Level of Therapy (PILOT) scale, revising TIL⁽¹⁹⁸⁷⁾ to: (1) represent updated paediatric TBI management practices, (2) have a more practical, daily assessment frequency, and (3) resolve a statistical ceiling effect. In 2011, the interagency TBI Common Data Elements (CDE) scheme developed the most recent, 38-point TIL scale as well as a condensed, four-point TIL (Basic) scale through expert consensus.8 The TIL scale revised PILOT to integrate additional ICP-directed therapies and to be applicable to adult TBI management. Moreover, TIL(Basic) was proposed as a simple, categorical measure to use when full TIL assessment would be infeasible. Since Zuercher et al. reported the validity and reliability of TIL in a two-centre cohort (n=31) in 2016, the scale has become a popular research metric for quantifying ICP treatment intensity. 10-13

However, several critical questions regarding TIL remain unanswered. It is uncertain whether the validity of TIL, reported in a relatively small population, can be generalised across the wide variation of ICP management, monitoring, and data acquisition (i.e., intermittent chart recording or high-resolution storage¹⁴) strategies practised in contemporary intensive care. Moreover, the scoring configuration of TIL has never been tested against alternatives (e.g., TIL (1987) and PILOT), and the relative contribution of TIL's component therapies towards the total score is unknown. It is unclear how TIL (Basic) numerically relates to TIL and if the former captures the essential information of the latter. In this work, we aimed to answer these questions by performing a comprehensive assessment of TIL on a large, contemporary population of ICP-monitored TBI patients across European ICUs.

Materials and Methods

Therapy intensity level (TIL) and alternative scales

TIL refers to the 38-point scale developed by the CDE scheme for TBI.⁸ The domain or construct (i.e., targeted concept of a scale) of TIL is the therapeutic intensity of ICP management. The TIL scale has twelve items, each representing a distinct ICP-targeting treatment from one of eight modalities, as defined in Table 1. TIL was developed by an international expert panel which discussed: (1) the relevant ICP-treatment modalities of modern intensive care, (2) the relative risk and efficacy of individual therapies to derive scores, and (3) practical and statistical limitations of previous TIL scores.⁸ In this way, TIL is a formative measurement model, in which the construct (i.e., ICP treatment intensity) is not unidimensional but rather defined by the combination of items (i.e., ICP-targeting treatments).¹⁷ TIL was shown to have high interrater and intrarater reliability by Zuercher *et al.*⁹ If a decompressive craniectomy was performed as a last resort for refractory intracranial hypertension, its score was included in the day of the operation and in every subsequent day of ICU stay. TIL scores can be calculated as frequently as clinically desired. For our analysis, we calculated the following TIL scores from the first seven days of ICU stay:

- TIL₂₄, the daily TIL score based on the sum of the highest scores per item per calendar day,
- TIL_{max}, the maximum TIL₂₄ over the first week of a patient's ICU stay,
- TIL_{median}, the median TIL₂₄ over the first week of a patient's ICU stay.

We also calculated scores from four other therapeutic intensity scales to compare with TIL scores. The 21-point, unweighted TIL (uwTIL) scale replaces each sub-item score in TIL with its ascending rank index (i.e., 1, 2, 3, ...) within each item (Table 1). The four-point TIL^(Basic) was also developed by the CDE scheme for TBI and takes the maximum score, from one to four, amongst all included sub-items over the calendar day.⁸ We adapted the 38-point PILOT⁷ and 15-point TIL⁽¹⁹⁸⁷⁾ scales⁶ with minor adjustments to fit the items of TIL with a daily assessment frequency. PILOT was also shown to have high interrater and intrarater reliability by Shore *et al.*⁷ For the four alternative scales, daily (i.e., uwTIL₂₄, TIL^(Basic)₂₄, PILOT₂₄, and TIL⁽¹⁹⁸⁷⁾₂₄), maximum (i.e., uwTIL_{max}, TIL^(Basic)_{median}, PILOT_{median}, and TIL⁽¹⁹⁸⁷⁾_{median}) scores were calculated the same way as were TIL₂₄, TIL_{max}, and TIL_{median}, respectively.

Study design and populations

Our study population was prospectively recruited for the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) core and high-resolution studies. CENTER-TBI is a longitudinal, observational cohort study (NCT02210221) involving 65 medical centres across 18 European countries and Israel. Patients were recruited between 19 December 2014 and 17 December 2017 if they met the following criteria: (1) presentation within 24 hours of a TBI, (2) clinical indication for a CT scan, and (3) no severe pre-existing neurological disorder. In accordance with

relevant laws of the European Union and the local country, ethical approval was obtained for each site, and written informed consent by the patient or legal representative was documented electronically. The list of sites, ethical committees, approval numbers, and approval dates can be found online: https://www.center-tbi.eu/project/ethical-approval. The project objectives and design of CENTER-TBI have been described in detail previously. 18,19

In this work, we applied the following inclusion criteria in addition to those of CENTER-TBI (Figure 1): (1) primary admission to the ICU, (2) at least 16 years old at ICU admission, (3) invasive ICP monitoring, (4) no decision to withdraw life-sustaining therapies (WLST) on the first day of ICU stay, and (5) daily assessment of TIL.

For our sub-studies evaluating the association between TIL and ICP-derived values, we created two sub-populations based on the type of ICP values available. Patients with end-hour ICP (ICP_{EH}) values, which were recorded by clinicians at the end of every other hour, constituted the TIL-ICP_{EH} sub-population. Patients with high-resolution ICP values (ICP_{HR}), which were automatically stored with monitoring software, constituted the TIL-ICP_{HR} sub-population. All patients in the TIL-ICP_{HR} sub-population were also members of the TIL-ICP_{EH} sub-population (Figure 1).

Data collection

Data for the CENTER-TBI study was collected through the QuesGen electronic case report form system (QuesGen Systems Inc, Burlingame, CA, USA) hosted on the International Neuroinformatics Coordinating Facility (INCF) platform (INCF, Stockholm, Sweden). All data for the validation populations, except high-resolution signals, were extracted from the CENTER-TBI core study¹⁹ (v3.0, ICU stratum) using Opal database software.²⁰

ICP management data for TIL calculation

Since TIL₂₄ was found to be a reliable summary of hourly TIL,⁹ clinical data pertinent to the component items of TIL (i.e., ICP-guided treatments, Table 1) were recorded daily through the first week of ICU stay. We extracted all daily TIL item values for our population, and calculated TIL₂₄, uwTIL₂₄, TIL^(Basic)₂₄, PILOT₂₄, and TIL⁽¹⁹⁸⁷⁾₂₄ as defined in Table 1. For patients who underwent WLST, we only extracted TIL item information from before the documented date of WLST decision.

ICP_{EH} and related values

End-hour ICP (ICP_{EH}), systolic blood pressure (SBP_{EH}), and diastolic blood pressure (DBP_{EH}) were recorded by clinicians every two hours for the TIL-ICP_{EH} sub-population. Mean arterial pressure (MAP_{EH}) was calculated as MAP_{EH} = (SBP_{EH} + 2DBP_{EH})/3, and cerebral perfusion pressure (CPP_{EH}) was calculated as CPP_{EH} = MAP_{EH} – ICP_{EH}. From ICP_{EH} and CPP_{EH}, we calculated the following values:

- ICP₂₄ or CPP₂₄, the mean ICP or CPP value over a calendar day of ICU stay,
- ICP_{max} or CPP_{min}, the maximum ICP₂₄ or minimum CPP₂₄ value over the first week of a patient's ICU stay,
- ICP_{median} or CPP_{median}, the median ICP₂₄ or CPP₂₄ value over the first week of a patient's ICU stay.

ICP_{HR} and related values

High-resolution signals were collected using either ICM+ software (Cambridge Enterprise Ltd, Cambridge, UK; https://icmplus.neurosurg.cam.ac.uk), Moberg CNS monitor (Moberg Research Inc, Ambler, PA, USA; https://www.moberg.com), or both. Blood pressure was obtained through arterial lines connected to pressure transducers. High-resolution ICP (ICPHR) was acquired from either an intraparenchymal strain gauge probe (Codman ICP MicroSensor, Codman & Shurtleff Inc, Raynham, MA, USA), a parenchymal fibre optic pressure sensor (Camino ICP Monitor, Integra Life Sciences, Plainsboro, NJ, USA; https://www.integralife.com/), or an external ventricular drain. Detailed data collection and pre-processing methods (i.e., artefact cleaning and down-sampling to ten-second averaged time series) applied to high resolution signals in our study have been described previously. Ten-second mean ICP (ICPHR_10sec) and CPP (CPPHR_10sec) time-series were retrieved for this analysis, and, from ICPHR_10sec and CPPHR_10se, we calculated ICP24/CPP24, ICPmax/CPPmin, and ICPmedian/CPPmedian as described above.

Physician impressions

Attending ICU physicians were asked to record their daily concerns with the patient's ICP and CPP, separately, on a scale from one (not concerned) to ten (most concerned). Moreover, on each patient's ICU discharge summary, physicians were asked to record whether the patient experienced refractory intracranial hypertension during his or her ICU stay. Refractory intracranial hypertension was defined as recurrent, sustained (i.e., of at least ten minutes) increases of ICP above 20 mmHg despite medical ICP management. We extracted the daily ICP/CPP concern ratings and refractory intracranial hypertension impressions which coincided with the ICU stays of our population.

Baseline characteristics, prognosis, and outcome

We extracted baseline demographic characteristics, Marshall CT classifications,²² and Glasgow Coma Scale (GCS)²³ scores from ICU admission.²⁴ We also extracted Glasgow Outcome Scale – Extended (GOSE) functional outcome scores at six months post-injury,²⁵ with imputation of missing values as previously described.²⁶ Finally, we extracted ordinal functional outcome prognosis scores, calculated from a tokenised embedding of all available clinical information in the first 24 hours of ICU stay, as described previously.²⁷

Validation

We appraised the validity of TIL according to recommendations of best practice from clinimetric literature.²⁸ Based on the identified domain of TIL, we evaluated the construct and criterion validities of TIL. Our qualitative and quantitative assessments of TIL were performed against those of alternative scoring configurations (Table 1) for comparison.

Construct validity

 Construct validity is the extent to which a clinical scale matches expectations of associations with parameters within or outside the identified domain. Construct validity is further broken down into convergent validity (i.e., associations with similar constructs), discriminant validity (i.e., associations with divergent constructs), and differentiation by known groups. In this work, statistical associations between study variables were measured with:

- Spearman's correlation coefficients (ρ) for static (i.e., measured once) variables,
- repeated measures correlation coefficients $(r_{rm})^{29}$ interpreted as within-individual strength of association for longitudinal (i.e., measured over time) variables,
- linear mixed effects regression (LMER) coefficients (β_{LMER}) of daily scale scores (e.g., TIL₂₄) when regressing ICP₂₄ or CPP₂₄ on daily scale scores and the day of ICU stay (Day_{ICU}), accounting for inter-patient variability with random intercepts. Therefore, β_{LMER} were interpreted as the expected difference in ICP₂₄ or CPP₂₄ per unit increase of daily scale score, independent of time since ICU admission or inter-patient variation.

For convergent validity, we expected therapeutic intensity to correlate at least mildly (i.e., $|\rho| \ge 0.2$, $|r_{rm}| \ge 0.2$, $|\beta_{LMER}| > 0$) with markers of injury severity (i.e., baseline GCS and baseline outcome prognoses), functional outcome (i.e., six-month GOSE), clinical concerns of ICP status, and ICP itself. Accordingly, we calculated: (1) ρ values between TIL_{max} and GCS, ordinal prognosis scores, GOSE, and ICP_{max}, (2) ρ values between TIL_{median} and GCS, ordinal prognosis scores, GOSE, and ICP_{median}, (3) r_{rm} values between TIL₂₄ and physician concern of ICP and ICP₂₄, and (4) β_{LMER} of TIL₂₄ when regressing ICP₂₄ on Day_{ICU} and TIL₂₄ (i.e., ICP₂₄~Day_{ICU}+TIL₂₄), accounting for inter-patient variability with random intercepts.

For discriminant validity, we expected therapeutic intensity to be more strongly correlated with ICP and physician concerns of ICP than with CPP and physician concerns of CPP, respectively. Even though CPP control through fluid loading or vasopressor therapy is a component modality of TIL (Table 1), we expected TIL to capture ICP management (i.e., the construct) more accurately than CPP management. We compared: (1) ρ values of TIL_{max} vs. CPP_{min} to those of TIL_{max} vs. ICP_{max}, (2) ρ values of TIL_{median} vs. CPP_{median} to those of TIL_{median} vs. ICP_{median}, (3) r_{rm} values of TIL₂₄ vs. CPP₂₄ to those of TIL₂₄ vs. ICP₂₄, and (4) the β_{LMER} of TIL₂₄ when regressing ICP₂₄~Day_{ICU}+TIL₂₄ to the β_{LMER} of TIL₂₄ when regressing ICP₂₄~Day_{ICU}+TIL₂₄.

For differentiation by known groups, we expected TIL_{max} and TIL_{median} to effectively discriminate patients who experienced refractory intracranial hypertension during ICU stay from those who did not. We calculated the area under the receiver operating

characteristic curve (AUC), which, in our case, was interpreted as the probability of a randomly selected patient with refractory intracranial hypertension having a higher TIL_{max} or TIL_{median} score than one without it. We also compared the AUCs of TIL_{max} and TIL_{median} to ICP_{max} and ICP_{median} and determined the sensitivity and specificity of refractory intracranial hypertension detection at each threshold of TIL_{max} and TIL_{median} .

Criterion validity

 Criterion (or concurrent) validity is the degree to which there is an association between a clinical scale and other scales measuring the same construct, particularly a gold standard assessment. Since there is no extant "gold standard" for assessing ICP management intensity, we tested the concurrent criterion validity of TIL by calculating its associations with its predecessors (i.e., PILOT and TIL⁽¹⁹⁸⁷⁾), mindful of their limitations as described above. More specifically, we calculated: (1) ρ values between TIL_{max} and prior scale maximum scores (i.e., PILOT_{max} and TIL⁽¹⁹⁸⁷⁾_{max}), (2) ρ values between TIL_{median} and prior scale median scores (i.e., PILOT_{median} and TIL⁽¹⁹⁸⁷⁾_{median}), and (3) r_{rm} between TIL₂₄ and prior scale daily scores (i.e., PILOT₂₄ and TIL⁽¹⁹⁸⁷⁾₂₄).

Component item analysis

We evaluated inter-item (i.e., inter-treatment) and adjusted item-total associations of TIL₂₄, uwTIL₂₄, PILOT₂₄, and TIL⁽¹⁹⁸⁷⁾₂₄ by calculating r_m values. Item-total correlations were adjusted by subtracting the tested item score from the total score prior to calculating the correlation. We measured Cronbach's alpha (α) to assess internal reliability amongst scale items at each day of ICU stay. Moreover, we calculated the median score contribution of each item per total TIL₂₄ score. The association between each TIL₂₄ item score and ICP₂₄, CPP₂₄, physician concern of ICP, and physician concern of CPP was calculated with r_m values. Finally, we trained LMER models regressing ICP₂₄ and CPP₂₄ on all TIL items (with categorical dummy encoding) and Day_{ICU} concurrently. The β_{LMER} values from these models were interpreted as the average change in ICP₂₄ or CPP₂₄ associated with each treatment when accounting for all other ICP-guided treatments, time since ICU admission, and inter-patient variability with random intercepts.

TIL(Basic) information coverage

We examined the distributions of $TIL^{(Basic)}_{24}$ per TIL_{24} and TIL_{24} per $TIL^{(Basic)}_{24}$ to derive thresholds for categorising TIL_{24} into $TIL^{(Basic)}_{24}$. Moreover, we calculated the information coverage (IC) of $TIL^{(Basic)}$ by dividing the mutual information (MI) of $TIL^{(Basic)}$ and TIL by the entropy of TIL. IC was calculated with $TIL^{(Basic)}_{24}$ and TIL_{24} for days one through seven of ICU stay, with $TIL^{(Basic)}_{max}$ and TIL_{max} , and with $TIL^{(Basic)}_{median}$ and TIL_{median} .

Statistical analysis

Multiple imputation of missing values

Five of the static study variables had missing values for some of the patients in our study: GCS, GOSE, baseline prognosis scores, Marshall CT classifications, and refractory intracranial hypertension status. We assessed the patterns of missingness (Supplementary Figure S1) and multiply imputed (m=100) these variables with independent, stochastic predictive mean matching functions using the mice package³⁰ (v3.9.0). We assumed these variables to be missing-at-random (MAR) (as previously reported on CENTER-TBI data³¹) and supported this assumption by training imputation models on all study measures as well as correlated auxiliary variables (e.g., raised ICP during ICU stay).

For daily longitudinal study variables, we considered a value to be missing if the patient was still in the ICU and WLST had not been decided on or before that day. We assessed the longitudinal patterns of missingness (Supplementary Figure S2) and multiply imputed (*m*=100) these variables with the multivariate, time-series algorithm from the *Amelia II* package³² (v1.7.6) over the first week of ICU stay. The algorithm exploits both between-variable and within-variable correlation structures over time to stochastically impute missing time series values in independently trained runs. We validated the MAR assumption by identifying characteristics significantly associated with longitudinal variable missingness (Supplementary Table S1) and included auxiliary information associated with value missingness (e.g., reasons for stopping ICP monitoring) in the imputation model.

Statistical inference

We calculated 95% confidence intervals (CI) for ρ , r_{rm} , β_{LMER} , AUC, sensitivity, specificity, α , and IC values using bootstrapping with 1,000 resamples of unique patients. For each resample, one of the 100 missing value imputations was randomly chosen. Therefore, confidence intervals represented the uncertainty due to patient resampling and missing value imputation.

Code

All statistical analyses were performed in Python (v3.8.2), and all visualisations were created in R (v4.2.3). All scripts used in this study are publicly available on GitHub: https://github.com/sbhattacharyay/CENTER-TBI_TIL.

Results

Study population

Of the 4,509 patients available for analysis in the CENTER-TBI core study, 873 patients from 52 ICUs met the additional inclusion criteria of this work. Amongst them, 837

constituted the TIL-ICP_{EH} sub-population and 259 constituted the TIL-ICP_{HR} sub-population (Figure 1). Summary characteristics of the overall population as well as those of the TIL-ICP_{EH} and TIL-ICP_{HR} sub-populations are detailed in Table 2. Apart from two of the prognosis scores pertaining to the probability of returning to pre-injury life roles (i.e., Pr(GOSE>5) and Pr(GOSE>6)), none of the tested characteristics were significantly different between patients in the TIL-ICP_{HR} sub-population and those outside of it (Table 2).

The median ICU stay duration of our population was 14 days (IQR: 7.8–23 days), and 83% (n=726) stayed through at least seven calendar days. At each day of ICU stay, less than 2.4% of the expected TIL scores were missing (Supplementary Figure S2). Each TIL component item (Table 1) is represented by at least 17% (n=147, intracranial surgery) and each sub-item is represented by at least 4.9% (n=43, high-dose mannitol) of the population (Supplementary Table S2). The distributions of TIL $_{max}$, TIL $_{median}$, and TIL $_{24}$, juxtaposed against the scores of alternative scales (Table 1), are displayed in Figure 2. The distributions of TIL and PILOT were visually similar, and TIL $_{max}$ had a strong ceiling effect (i.e., 57% of the population had the maximum score). Whilst there was no significant difference in TIL $_{24}$ distribution over the first seven days, most patients had their highest TIL $_{24}$ (i.e., TIL $_{max}$) soon after ICU admission (median: day two, IQR: days one—three). The Spearman's rank correlation coefficient (ρ) between TIL $_{max}$ and TIL $_{median}$ was 0.80 (95% CI: 0.77–0.82), and the median TIL $_{median}$:TIL $_{max}$ ratio was 0.65 (IQR: 0.45–0.80).

Validation of TIL

The 95% CIs of ρ values, repeated measures correlation coefficients (r_m) , and linear mixed effect regression coefficients (β_{LMER}) of TIL with other study measures are visualised in Figure 3. Both TILmax and TILmedian had mildly negative correlations (- $0.26 < \rho_{\text{mean}} < -0.19$) with baseline GCS, six-month GOSE, and functional outcome prognoses (Figure 3A–B). The within-individual association of TIL₂₄ with physician concerns of ICP was moderately positive (r_m =0.35 [95% CI: 0.31–0.38]) and significantly higher than that of TIL^(Basic)₂₄ (Figure 3C). The association between ICP_{median} and TIL_{median} was moderately positive (0.35< $\rho_{mean}<$ 0.45) with both ICP_{EH} and ICP_{HR} values, and the association between ICP_{max} and TIL_{max} was moderately positive (ρ =0.41 [95% CI: 0.33– 0.46]) with ICP_{EH} values. The ICP_{max} vs. TIL_{max} correlation was not significant (ρ =0.01 [95% CI: -0.16-0.17]) with ICPHR values; however, without imputing missing ICPHR values, the ρ was 0.43 (95% CI: 0.35–0.50). This suggests that the longitudinal missingness of ICP_{HR} (Supplementary Figure S2) for our sample size made the ICP_{max} estimation significantly imprecise. Moreover, the within-individual association with ICP₂₄ was either weak or not significant for any daily scale score according to r_m (Figure 3C) and β_{LMER} (Figure 3D) values. On average, a single point increase in TIL₂₄ was associated with a 0.22 (95% CI: 0.15-0.30) mmHg increase in daily mean ICP_{EH} and a 0.19 (95% CI: -0.06-0.43) mmHg increase in daily mean ICPHR. These results mostly affirm the convergent validity of TIL but highlight the broad intra-patient variability between ICP and therapeutic intensity. From the distribution of ICP24 values at each TIL24 score (Figure 4A), we observed both considerable ICP₂₄ overlap across each TIL_{24} score and an overall positive relationship between TIL_{24} and ICP₂₄, particularly for $TIL_{24} \ge 8$.

The correlation between TIL and both prior scales (i.e., PILOT and TIL⁽¹⁹⁸⁷⁾) was positively strong for maximum, median, and daily scores (Supplementary Figure S3), establishing the criterion validity of TIL. According to 95% CIs, the association of TIL with prior scales was stronger than that of uwTIL or TIL^(Basic) (Supplementary Figure S3).

According to ρ , r_{rm} , and β_{LMER} values (Figure 3), the associations of TIL with CPP and of TIL with physician concerns of CPP were weaker than or not significantly different from the corresponding associations with ICP. Moreover, the trend of CPP₂₄ distributions over different TIL₂₄ scores is not as visually apparent as that of ICP₂₄ distributions over different TIL₂₄ scores (Figure 4B). These results support the discriminant validity of TIL.

In our population, 157 patients (18% of 864 assessed) were reported to experience refractory intracranial hypertension during ICU stay. TIL_{max} correctly discriminated these patients from the others 81% (95% CI: 78–84%) of the time (Figure 5A), and TIL_{median} did so 83% (95% CI: 80–86%) of the time (Figure 5B). This performance of TIL was significantly greater than or similar to that of all alternative scales (Figure 5A–B). Additionally, TIL_{median} had significantly greater discrimination performance than ICP_{max} (Figure 5C) and ICP_{median} (Figure 5D), respectively. The sensitivity and specificity of refractory intracranial hypertension detection at each threshold of TIL_{max}, TIL_{median}, TIL_{(Basic)_{max}}, and TIL_{(Basic)_{median}} are listed in Supplementary Table S3 and visualised in Figure 5C–D. The thresholds which maximised the sum of sensitivity and specificity were TIL_{max}≥14 (sensitivity: 68% [95% CI: 62–74%], specificity: 79% [95% CI: 77–81%]) and TIL_{median}≥7.5 (sensitivity: 81% [95% CI: 77–87%], specificity: 72% [95% CI: 70–75%]) (Table 3).

TIL component items

Whilst there was wide variation in item combinations per TIL₂₄ score (i.e., sum of median scores was often under diagonal line in Figure 6A), the average order of therapeutic escalation was fairly consistent: position, sedation, CPP management, ventilatory management, neuromuscular blockade, hyperosmolar therapy, temperature control, and then surgery for refractory ICP. Surgical control of ICP occurred in over 50% of reported cases at each TIL₂₄ above 18 (Figure 6A), but the threshold which maximised the sum of sensitivity and specificity in detecting surgical ICP control was TIL₂₄≥9 (Table 3, performance at each threshold is listed in Supplementary Table S4). The inter-item r_m values of TIL₂₄ (Supplementary Figure S4) were mostly positive except for cerebrospinal fluid (CSF) drainage, which did not correlate significantly with most other items, and decompressive craniectomy, which did not correlate significantly with CSF, ventilatory, or temperature control. Consistent with Figure 6A, this result suggested that CSF drainage and decompressive craniectomy were the most variably applied therapies across study ICUs. The Cronbach's alpha (α) value of TIL₂₄ was, at best, 0.65 (95% CI: 0.62–0.68) and lower (albeit, not significantly) than that of uwTIL24 at each day of ICU stay (Supplementary Figure S5). However, since TIL is a formative scale (i.e., the construct is

multidimensional and defined by the items), high inter-item correlation and α values are not necessary for item validation. Amongst all TIL24 items, sedation was most strongly correlated with adjusted TIL24 scores and physician concerns of ICP (Figure 6B). From $10 \le TIL24 \le 20$, a plateau effect of high-dose sedation combined with neuromuscular blockade was observed in most cases (Figure 6A). When accounting for all other TIL24 sub-items, time since ICU admission, as well as inter-patient variability, ventilation, mannitol administration, and hypertonic saline administration were most strongly associated with ICP24 and vasopressors were most strongly associated with CPP24 (Figure 6C).

TII (Basic)

Based on the median $TIL^{(Basic)}_{24}$ score at each TIL_{24} score (Figure 7A), we derived the ranges for mapping TIL_{24} onto $TIL^{(Basic)}_{24}$ in Table 3. There is, however, considerable overlap of TIL_{24} scores across $TIL^{(Basic)}_{24}$ scores (Figure 7B), particularly in the range of $6 \le TIL_{24} \le 10$, and at no TIL_{24} score was $TIL^{(Basic)}_{24} = 3$ the most represented score (Figure 7A). $TIL^{(Basic)}_{24}$ covered up to 33% (95% CI: 31–34%) of the information (i.e., entropy) in TIL_{24} , and $TIL^{(Basic)}_{median}$ covered up to 28% (95% CI: 27–30%) of the information in TIL_{median} (Figure 7C). $TIL^{(Basic)}_{max}$ only covered 17% (95% CI: 16–18%) of the information in TIL_{max} (Figure 7C).

Discussion

In this work, we performed a large-scale (*n*=873), multicentre (52 ICUs, 19 countries), and prospective validation study of TIL and TIL^(Basic) against alternative scales. The CENTER-TBI data not only reflect the modern variation in ICP-directed therapeutic intensity (Figures 2 and 6A) but also illustrate the practical feasibility of daily TIL assessment: out of 885 eligible patients, 873 (99%) had daily TIL scores (Figure 1) with less than 2.4% daily missingness (Supplementary Figure S2).

Our findings support the validity of TIL as a metric for scoring ICP-directed therapeutic intensity and for marking pathophysiological severity. The statistical construct and criterion validity measures of TIL were significantly greater or similar to those of alternative scales (Figures 3 and 5), and TIL integrated the widest range of modern ICP treatments (Table 1). Our analysis yielded empirical ranges for interpreting TIL in terms of refractory intracranial hypertension, surgical intervention, and the condensed, TIL (Basic) scores (Table 3). On a component level (Figure 6A), TIL₂₄ reflected a pattern of treatment intensity escalation consistent with clinical algorithms^{2,3,5} as well as a wide variation in treatment combinations, particularly in the use of CSF drainage and decompressive craniectomy. These results support the use of TIL as an intermediate outcome for treatment effect, as done in previous studies.^{33,34}

Due to a strong ceiling effect (Figures 2A and 5A), TIL^(Basic) should not be used instead of TIL for rating maximum treatment intensity. TIL^(Basic)₂₄ and TIL_{median} covered up to 33% of the information in TIL₂₄ (Figure 7C), but the TIL^(Basic)₂₄ associations with physician

concerns of ICP were significantly worse than those of TIL_{24} (Figure 3C). TIL should always be preferred to $TIL^{(Basic)}$, but we believe daily or median $TIL^{(Basic)}$ can be a suitable alternative when daily or median TIL assessment is infeasible.

514

515

516 517

518

519

520

521

522

523

524

525

526

527

528

529

530

531 532

533

534

535

536

537

538539

540

541

542

543

544

545 546

547

548

549

550 551

552

553

554 555

556

557 558

559

Moreover, we evaluated TIL with both end-hour (ICP_{EH}) and high-resolution (ICP_{HR}) ICP values. ICPHR is the gold standard, and neuromonitoring-related results from the ICPHR population should generally take precedence. 14 However, 67% of expected ICP_{HR} values were missing on day one of ICU stay (Supplementary Figure S2), likely due to the time required to arrange high-resolution data collection. Consequently, estimates of highresolution ICP_{max} were significantly affected by missing value imputation and became imprecise at our sample size (Figure 3A). In these cases, results from the ICPEH population served as a valuable reference on a substantially larger sample size (Table 2) since ICP_{FH} and CPP_{FH} have been shown to be fair end-hour representations of ICP_{HR} and CPP_{HR}, respectively, in CENTER-TBI.¹⁴ The considerable overlap of ICP₂₄ values across TIL₂₄ scores (Figure 4A) and the insignificant-to-weak, within-individual association between ICP₂₄ and TIL₂₄ (Figure 3C-D) highlight the need to account for therapeutic intensity when interpreting ICP. Additionally, the higher median ICP₂₄ values for TIL₂₄≥8 (Figure 4A) may suggest that clinicians accept a slightly higher ICP when balancing the risks of elevating therapeutic intensity against those of intracranial hypertension.

We see three main opportunities to improve TIL. First, the item scores of TIL and its predecessors (i.e., PILOT and TIL(1987)) were not derived empirically. Data-driven techniques, such as confirmatory factor analysis, 28 can be used to derive scoring configurations which optimise a defined objective (e.g., maximal separation of patients). However, data-driven scores do not necessarily reflect the intended construct (i.e., treatment risk and complexity),35 and, in general, item scoring does not have an appreciable impact on overall scale performance.²⁸ Second, the items of TIL must evolve as therapeutic approaches to ICP management evolve. TIL discriminated refractory intracranial hypertension status significantly better than TIL⁽¹⁹⁸⁷⁾ (Figure 5A–B) because TIL updated TIL⁽¹⁹⁸⁷⁾ with six additional items (Table 1). We recommend updating and reevaluating TIL each time ICP-treatment modalities or their perceived risks change. Finally, the development of TIL was largely informed by the perspective of ICU practices in high-income countries.8 Likewise, this assessment was performed in a cohort of patients across Europe and Israel. Especially given the disproportionately higher burden of TBI in low- and middle-income countries, 36 it is imperative to test and, if necessary, adapt TIL to a more inclusive, global population of TBI.

We recognise several limitations of our analysis. Whilst numerous investigators assessed TIL across the study ICUs, each TIL score was only assessed once. Therefore, we could not evaluate the interrater reliability of TIL. Similarly, data needed to calculate the full TIL score was only recorded once a day, so we could not determine if a daily assessment frequency was sufficient. Since the prior TIL validation study reported a high interrater reliability and recommended a daily assessment frequency,⁹ we assumed both to be true. The results from the Randomised Evaluation of Surgery with Craniectomy for Uncontrollable Elevation of Intracranial Pressure (RESCUEicp) trial³⁷ – published amidst

CENTER-TBI patient recruitment in 2016 – have likely changed the global frequency and perceived intensity of decompressive craniectomy for TBI. Therefore, we recognise the potentially confounding effect of the trial results on treatment decision making for some patients in the CENTER-TBI population and encourage a potential reappraisal of the therapeutic intensity of decompressive craniectomy through expert discussion and statistical validation. The physician impressions (i.e., physician concerns of ICP and CPP and refractory intracranial hypertension status) were subjective, and we did not have enough information to account for interrater variability. Therefore, these scores and labels should be considered unrefined. Finally, because of limited dosage data for numerical treatments (i.e., CSF drainage, ventilation, hyperosmolar therapy, and temperature control), we did not test alternative sub-item categorisations.

Conclusion

TIL is a valid, generalisable measurement of ICP management amongst neuro-monitored TBI patients in the ICU. On all validation metrics, TIL performs at least as well as its alternatives and considers the widest range of modern treatment strategies. TIL's component scores over increasing TIL reflect a clinically credible order of treatment escalation, from head positioning to ICP-directed surgery. TIL^(Basic) is not suitable for evaluating maximum treatment intensity, but daily TIL^(Basic) and median TIL^(Basic) can cover up to a third of the information in TIL. In the setting of clinical ICP management, TIL is a more sensitive marker of pathophysiological severity than ICP and can be considered an intermediate outcome after TBI.

Transparency, Rigor and Reproducibility Summary

The CENTER-TBI study was pre-registered at clinicaltrials.gov (NCT02210221, https://clinicaltrials.gov/ct2/show/NCT02210221). The analysis plan was registered after beginning data collection but before data analysis at https://www.centertbi.eu/data/approved-proposals (#491), and the lead author with primary responsibility for the analysis certifies that the analysis plan was pre-specified. A sample size of 903 patients was planned based on availability of critically ill, ICP-monitored, adult TBI patients recruited for CENTER-TBI. Actual sample size was 873, as 18 patients had a documented decision to WLST on the first day of ICU stay and 12 additional patients did not have daily TIL scores assessed. A patient inclusion diagram is provided (Figure 1). TIL scoring and clinical data entry was performed by investigators who were aware of relevant characteristics of the participants. Participants were recruited between 19 December 2014 and 17 December 2017, and data (including follow-up results) were collected until 31 March 2021. High-resolution waveforms were stored directly from bedside monitoring software, as described in the Methods and Materials. Variability amongst different TIL assessors is not expected to be significant based on the established high interrater reliability of TIL.9 All equipment and software used to perform imaging and preprocessing are widely available from commercial sources or open source repositories. The clinimetric validation procedure and the primary clinical metric (TIL) are established standards in the field, based on previously published results^{9,28} and this study. The

assumption of bootstrapping-derived confidence intervals is that the sample is representative of the population. This study is, itself, an external validation, and internal replication by the study group was performed. Individual participant data are available online, conditional to approved online study proposal, with no end date at https://www.center-tbi.eu/data. Signed confirmation of a data access agreement is required, and all access must comply with regulatory restrictions imposed on the original study. All analytic code used to perform the statistical analyses are publicly available online at: https://github.com/sbhattacharyay/CENTER-TBI_TIL. This paper will be published under a Creative Commons Open Access license, and upon publication, will be freely available at https://www.liebertpub.com/loi/neu.

Acknowledgments

This research was supported by the National Institute for Health Research (NIHR) Brain Injury MedTech Co-operative. CENTER-TBI was supported by the European Union 7th Framework programme (EC grant 602150). Additional funding was obtained from the Hannelore Kohl Stiftung (Germany), from OneMind (USA), from Integra LifeSciences Corporation (USA), and from NeuroTrauma Sciences (USA). CENTER-TBI also acknowledges interactions and support from the International Initiative for TBI Research (InTBIR) investigators. S.B. is funded by a Gates Cambridge Scholarship. E.B. is funded by the Medical Research Council (MR N013433-1) and by a Gates Cambridge Scholarship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

We are grateful to the patients and families of our study for making our efforts to improve TBI care possible. S.B. would like to thank Kathleen Mitchell-Fox (Princeton University) for offering comments on the manuscript.

The CENTER-TBI investigators and participants

The co-lead investigators of CENTER-TBI are designated with an asterisk (*), and their contact email addresses are listed below.

Cecilia Åkerlund¹, Krisztina Amrein², Nada Andelic³, Lasse Andreassen⁴, Audny Anke⁵, Anna Antoni⁶, Gérard Audibert⁷, Philippe Azouvi⁸, Maria Luisa Azzolini⁹, Ronald Bartels¹⁰, Pál Barzó¹¹, Romuald Beauvais¹², Ronny Beer¹³, Bo-Michael Bellander¹⁴, Antonio Belli¹⁵, Habib Benali¹⁶, Maurizio Berardino¹⁷, Luigi Beretta⁹, Morten Blaabjerg¹⁸, Peter Bragge¹⁹, Alexandra Brazinova²⁰, Vibeke Brinck²¹, Joanne Brooker²², Camilla Brorsson²³, Andras Buki²⁴, Monika Bullinger²⁵, Manuel Cabeleira²⁶, Alessio Caccioppola²⁷, Emiliana Calappi²⁷, Maria Rosa Calvi⁹, Peter Cameron²⁸, Guillermo Carbayo Lozano²⁹, Marco Carbonara²⁷, Simona Cavallo¹⁷, Giorgio Chevallard³⁰, Arturo Chieregato³⁰, Giuseppe Citerio^{31,32}, Hans Clusmann³³, Mark Coburn³⁴, Jonathan Coles³⁵, Jamie D. Cooper³⁶, Marta Correia³⁷, Amra Čović ³⁸, Nicola Curry³⁹, Endre Czeiter²⁴, Marek Czosnyka²⁶, Claire Dahyot-Fizelier⁴⁰, Paul Dark⁴¹, Helen Dawes⁴², Véronique De Keyser⁴³, Vincent Degos¹⁶, Francesco Della Corte⁴⁴, Hugo den Boogert¹⁰, Bart Depreitere⁴⁵, Đula Đilvesi⁴⁶, Abhishek

Dixit⁴⁷, Emma Donoghue²², Jens Dreier⁴⁸, Guy-Loup Dulière⁴⁹, Ari Ercole⁴⁷, Patrick 650 Esser⁴², Erzsébet Ezer⁵⁰, Martin Fabricius⁵¹, Valery L. Feigin⁵², Kelly Foks⁵³, Shirin 651 Frisvold⁵⁴, Alex Furmanov⁵⁵, Pablo Gagliardo⁵⁶, Damien Galanaud¹⁶, Dashiell Gantner²⁸, 652 653 Guoyi Gao⁵⁷, Pradeep George⁵⁸, Alexandre Ghuysen⁵⁹, Lelde Giga⁶⁰, Ben Glocker⁶¹, Jagoš Golubovic⁴⁶, Pedro A. Gomez⁶², Johannes Gratz⁶³, Benjamin Gravesteijn⁶⁴, 654 Francesca Grossi⁴⁴, Russell L. Gruen⁶⁵, Deepak Gupta⁶⁶, Juanita A. Haagsma⁶⁴, Iain 655 Haitsma⁶⁷, Raimund Helbok¹³, Eirik Helseth⁶⁸, Lindsay Horton⁶⁹, Jilske Huijben⁶⁴, Peter 656 J. Hutchinson⁷⁰, Bram Jacobs⁷¹, Stefan Jankowski⁷², Mike Jarrett²¹, Ji-yao Jiang⁵⁸, Faye 657 Johnson⁷³, Kelly Jones⁵², Mladen Karan⁴⁶, Angelos G. Kolias⁷⁰, Erwin Kompanje⁷⁴, Daniel 658 Kondziella⁵¹, Evgenios Kornaropoulos⁴⁷, Lars-Owe Koskinen⁷⁵, Noémi Kovács⁷⁶, Ana 659 Kowark⁷⁷, Alfonso Lagares⁶², Linda Lanyon⁵⁸, Steven Laureys⁷⁸, Fiona Lecky^{79,80}, Didier 660 Ledoux⁷⁸, Rolf Lefering⁸¹, Valerie Legrand⁸², Aurelie Lejeune⁸³, Leon Levi⁸⁴, Roger 661 Lightfoot⁸⁵, Hester Lingsma⁶⁴, Andrew I.R. Maas^{43,*}, Ana M. Castaño-León⁶², Marc 662 Maegele⁸⁶, Marek Majdan²⁰, Alex Manara⁸⁷, Geoffrey Manley⁸⁸, Costanza Martino⁸⁹, 663 Hugues Maréchal⁴⁹, Julia Mattern⁹⁰, Catherine McMahon⁹¹, Béla Melegh⁹², David 664 Menon^{47,*}, Tomas Menovsky⁴³, Ana Mikolic⁶⁴, Benoit Misset⁷⁸, Visakh Muraleedharan⁵⁸, 665 Lynnette Murray²⁸, Ancuta Negru⁹³, David Nelson¹, Virginia Newcombe⁴⁷, Daan 666 Nieboer⁶⁴, József Nyirádi², Otesile Olubukola⁷⁹, Matej Oresic⁹⁴, Fabrizio Ortolano²⁷, 667 Aarno Palotie^{95,96,97}, Paul M. Parizel⁹⁸, Jean-François Payen⁹⁹, Natascha Perera¹², 668 Vincent Perlbarg¹⁶, Paolo Persona¹⁰⁰, Wilco Peul¹⁰¹, Anna Piippo-Karjalainen¹⁰², Matti 669 Pirinen⁹⁵, Dana Pisica⁶⁴, Horia Ples⁹³, Suzanne Polinder⁶⁴, Inigo Pomposo²⁹, Jussi P. 670 Posti¹⁰³, Louis Puybasset¹⁰⁴, Andreea Radoi¹⁰⁵, Arminas Ragauskas¹⁰⁶, Rahul Raj¹⁰², 671 Malinka Rambadagalla¹⁰⁷, Isabel Retel Helmrich⁶⁴, Jonathan Rhodes¹⁰⁸, Sylvia 672 Richardson¹⁰⁹, Sophie Richter⁴⁷, Samuli Ripatti⁹⁵, Saulius Rocka¹⁰⁶, Cecilie Roe¹¹⁰, Olav 673 Roise^{111,112}, Jonathan Rosand¹¹³, Jeffrey V. Rosenfeld¹¹⁴, Christina Rosenlund¹¹⁵, Guy 674 Rosenthal⁵⁵, Rolf Rossaint⁷⁷, Sandra Rossi¹⁰⁰, Daniel Rueckert⁶¹ Martin Rusnák¹¹⁶, Juan 675 Sahuquillo¹⁰⁵, Oliver Sakowitz^{90,117}, Renan Sanchez-Porras¹¹⁷, Janos Sandor¹¹⁸, Nadine 676 Schäfer⁸¹, Silke Schmidt¹¹⁹, Herbert Schoechl¹²⁰, Guus Schoonman¹²¹, Rico Frederik 677 Schou¹²², Elisabeth Schwendenwein⁶, Charlie Sewalt⁶⁴, Ranjit D. Singh¹⁰¹, Toril 678 Skandsen^{123,124}, Peter Smielewski²⁶, Abayomi Sorinola¹²⁵, Emmanuel Stamatakis⁴⁷, 679 Simon Stanworth³⁹, Robert Stevens¹²⁶, William Stewart¹²⁷, Ewout W. Steyerberg^{64,128}, 680 Nino Stocchetti¹²⁹, Nina Sundström¹³⁰, Riikka Takala¹³¹, Viktória Tamás¹²⁵, Tomas 681 Tamosuitis¹³², Mark Steven Taylor²⁰, Braden Te Ao⁵², Olli Tenovuo¹⁰³, Alice Theadom⁵², 682 Matt Thomas⁸⁷, Dick Tibboel¹³³, Marjolein Timmers⁷⁴, Christos Tolias¹³⁴, Tony Trapani²⁸, 683 Cristina Maria Tudora⁹³, Andreas Unterberg⁹⁰, Peter Vajkoczy ¹³⁵, Shirley Vallance²⁸, 684 Egils Valeinis⁶⁰, Zoltán Vámos⁵⁰, Mathieu van der Jagt¹³⁶, Gregory Van der Steen⁴³, 685 Joukje van der Naalt⁷¹, Jeroen T.J.M. van Dijck¹⁰¹, Inge A. M. van Erp¹⁰¹, Thomas A. van 686 Essen¹⁰¹, Wim Van Hecke¹³⁷, Caroline van Heugten¹³⁸, Dominique Van Praag¹³⁹, Ernest 687 van Veen⁶⁴, Thijs Vande Vyvere¹³⁷, Roel P. J. van Wijk¹⁰¹, Alessia Vargiolu³², Emmanuel 688 Vega⁸³, Kimberley Velt⁶⁴, Jan Verheyden¹³⁷, Paul M. Vespa¹⁴⁰, Anne Vik^{123,141}, Rimantas 689 Vilcinis¹³², Victor Volovici⁶⁷, Nicole von Steinbüchel³⁸, Daphne Voormolen⁶⁴, Petar 690 Vulekovic⁴⁶, Kevin K.W. Wang¹⁴², Daniel Whitehouse⁴⁷, Eveline Wiegers⁶⁴, Guy 691 Williams⁴⁷, Lindsay Wilson⁶⁹, Stefan Winzeck⁴⁷, Stefan Wolf¹⁴³, Zhihui Yang¹¹³, Peter 692 Ylén¹⁴⁴, Alexander Younsi⁹⁰, Frederick A. Zeiler^{47,145}, Veronika Zelinkova²⁰, Agate 693 Ziverte^{60,} Tommaso Zoerle²⁷ 694

695

- ¹Department of Physiology and Pharmacology, Section of Perioperative Medicine and
- 697 Intensive Care, Karolinska Institutet, Stockholm, Sweden
- ²János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- ³Division of Surgery and Clinical Neuroscience, Department of Physical Medicine and
- Rehabilitation, Oslo University Hospital and University of Oslo, Oslo, Norway
- ⁴Department of Neurosurgery, University Hospital Northern Norway, Tromso, Norway
- ⁵Department of Physical Medicine and Rehabilitation, University Hospital Northern
- Norway, Tromso, Norway
- ⁶Trauma Surgery, Medical University Vienna, Vienna, Austria
- ⁷Department of Anesthesiology & Intensive Care, University Hospital Nancy, Nancy,
- 706 France
- ⁸Raymond Poincare hospital, Assistance Publique Hopitaux de Paris, Paris, France
- ⁹Department of Anesthesiology & Intensive Care, S Raffaele University Hospital, Milan,
- 709 Italy
- 710 ¹⁰Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The
- 711 Netherlands
- 712 ¹¹Department of Neurosurgery, University of Szeged, Szeged, Hungary
- 713 ¹²International Projects Management, ARTTIC, Munchen, Germany
- 714 ¹³Department of Neurology, Neurological Intensive Care Unit, Medical University of
- 715 Innsbruck, Innsbruck, Austria
- 716 ¹⁴Department of Neurosurgery & Anesthesia & intensive care medicine, Karolinska
- 717 University Hospital, Stockholm, Sweden
- 718 ¹⁵NIHR Surgical Reconstruction and Microbiology Research Centre, Birmingham, UK
- 719 ¹⁶Anesthesie-Réanimation, Assistance Publique Hopitaux de Paris, Paris, France
- 720 ¹⁷Department of Anesthesia & ICU, AOU Città della Salute e della Scienza di Torino -
- 721 Orthopedic and Trauma Center, Torino, Italy
- ¹⁸Department of Neurology, Odense University Hospital, Odense, Denmark
- ¹⁹BehaviourWorks Australia, Monash Sustainability Institute, Monash University, Victoria,
- 724 Australia
- 725 ²⁰Department of Public Health, Faculty of Health Sciences and Social Work, Trnava
- 726 University, Trnava, Slovakia
- 727 ²¹Quesgen Systems Inc., Burlingame, California, USA
- 728 ²²Australian & New Zealand Intensive Care Research Centre, Department of
- 729 Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine,
- 730 Monash University, Melbourne, Australia
- 731 ²³Department of Surgery and Perioperative Science, Umeå University, Umeå, Sweden
- 732 ²⁴Department of Neurosurgery, Medical School, University of Pécs, Hungary and
- Neurotrauma Research Group, János Szentágothai Research Centre, University of Pécs,
- 734 Hungary
- 735 ²⁵Department of Medical Psychology, Universitätsklinikum Hamburg-Eppendorf,
- 736 Hamburg, Germany
- 737 ²⁶Brain Physics Lab, Division of Neurosurgery, Dept of Clinical Neurosciences, University
- of Cambridge, Addenbrooke's Hospital, Cambridge, UK
- 739 ²⁷Neuro ICU, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- 740 ²⁸ANZIC Research Centre, Monash University, Department of Epidemiology and
- 741 Preventive Medicine, Melbourne, Victoria, Australia

- 742 ²⁹Department of Neurosurgery, Hospital of Cruces, Bilbao, Spain
- 743 ³⁰NeuroIntensive Care, Niguarda Hospital, Milan, Italy
- ³¹School of Medicine and Surgery, Università Milano Bicocca, Milano, Italy
- 745 ³²NeuroIntensive Care, ASST di Monza, Monza, Italy
- 746 ³³Department of Neurosurgery, Medical Faculty RWTH Aachen University, Aachen,
- 747 Germany
- ³⁴Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn,
- 749 Bonn, Germany
- 750 ³⁵Department of Anesthesia & Neurointensive Care, Cambridge University Hospital NHS
- 751 Foundation Trust, Cambridge, UK
- 752 ³⁶School of Public Health & PM, Monash University and The Alfred Hospital, Melbourne,
- 753 Victoria, Australia
- ³⁷Radiology/MRI department, MRC Cognition and Brain Sciences Unit, Cambridge, UK
- ³⁸Institute of Medical Psychology and Medical Sociology, Universitätsmedizin Göttingen,
- 756 Göttingen, Germany
- 757 ³⁹Oxford University Hospitals NHS Trust, Oxford, UK
- ⁴⁰Intensive Care Unit, CHU Poitiers, Potiers, France
- ⁴¹University of Manchester NIHR Biomedical Research Centre, Critical Care Directorate,
- 760 Salford Royal Hospital NHS Foundation Trust, Salford, UK
- 761 ⁴²Movement Science Group, Faculty of Health and Life Sciences, Oxford Brookes
- 762 University, Oxford, UK
- ⁴³Department of Neurosurgery, Antwerp University Hospital and University of Antwerp,
- 764 Edegem, Belgium
- ⁴⁴Department of Anesthesia & Intensive Care, Maggiore Della Carità Hospital, Novara,
- 766 Italy
- ⁴⁵Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
- ⁴⁶Department of Neurosurgery, Clinical centre of Vojvodina, Faculty of Medicine,
- 769 University of Novi Sad, Novi Sad, Serbia
- ⁴⁷Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge,
- 771 UK
- ⁴⁸Center for Stroke Research Berlin, Charité Universitätsmedizin Berlin, corporate
- 773 member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of
- Health, Berlin, Germany
- ⁴⁹Intensive Care Unit, CHR Citadelle, Liège, Belgium
- 776 ⁵⁰Department of Anaesthesiology and Intensive Therapy, University of Pécs, Pécs,
- 777 Hungary
- ⁵¹Departments of Neurology, Clinical Neurophysiology and Neuroanesthesiology, Region
- Hovedstaden Rigshospitalet, Copenhagen, Denmark
- 780 ⁵²National Institute for Stroke and Applied Neurosciences, Faculty of Health and
- 781 Environmental Studies, Auckland University of Technology, Auckland, New Zealand
- ⁵³Department of Neurology, Erasmus MC, Rotterdam, the Netherlands
- ⁵⁴Department of Anesthesiology and Intensive care, University Hospital Northern Norway,
- 784 Tromso, Norway
- ⁵⁵Department of Neurosurgery, Hadassah-hebrew University Medical center, Jerusalem,
- 786 Israel
- 787 ⁵⁶Fundación Instituto Valenciano de Neurorrehabilitación (FIVAN), Valencia, Spain

- 788 ⁵⁷Department of Neurosurgery, Shanghai Renji hospital, Shanghai Jiaotong
- 789 University/school of medicine, Shanghai, China
- 790 ⁵⁸Karolinska Institutet, INCF International Neuroinformatics Coordinating Facility,
- 791 Stockholm, Sweden
- ⁵⁹Emergency Department, CHU, Liège, Belgium
- 793 ⁶⁰Neurosurgery clinic, Pauls Stradins Clinical University Hospital, Riga, Latvia
- 794 ⁶¹Department of Computing, Imperial College London, London, UK
- 795 ⁶²Department of Neurosurgery, Hospital Universitario 12 de Octubre, Madrid, Spain
- 796 63Department of Anesthesia, Critical Care and Pain Medicine, Medical University of Vienna, Austria
- 798 ⁶⁴Department of Public Health, Erasmus Medical Center-University Medical Center,
- 799 Rotterdam, The Netherlands
- 800 ⁶⁵College of Health and Medicine, Australian National University, Canberra, Australia
- 801 ⁶⁶Department of Neurosurgery, Neurosciences Centre & JPN Apex trauma centre, All
- India Institute of Medical Sciences, New Delhi-110029, India
- 803 ⁶⁷Department of Neurosurgery, Erasmus MC, Rotterdam, the Netherlands
- 804 ⁶⁸Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
- 805 ⁶⁹Division of Psychology, University of Stirling, Stirling, UK
- 806 ⁷⁰Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's
- 807 Hospital & University of Cambridge, Cambridge, UK
- 808 ⁷¹Department of Neurology, University of Groningen, University Medical Center
- 809 Groningen, Groningen, Netherlands
- 810 ⁷²Neurointensive Care, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield,
- 811 UK
- 812 ⁷³Salford Royal Hospital NHS Foundation Trust Acute Research Delivery Team, Salford,
- 813 UK
- ⁷⁴Department of Intensive Care and Department of Ethics and Philosophy of Medicine,
- 815 Erasmus Medical Center, Rotterdam, The Netherlands
- 816 ⁷⁵Department of Clinical Neuroscience, Neurosurgery, Umeå University, Umeå, Sweden
- 817 ⁷⁶Hungarian Brain Research Program Grant No. KTIA 13 Not ApplicableP-A-II/8,
- 818 University of Pécs, Pécs, Hungary
- 819 ⁷⁷Department of Anaesthesiology, University Hospital of Aachen, Aachen, Germany
- 820 ⁷⁸Cyclotron Research Center, University of Liège, Liège, Belgium
- 821 ⁷⁹Centre for Urgent and Emergency Care Research (CURE), Health Services Research
- 822 Section, School of Health and Related Research (ScHARR), University of Sheffield,
- 823 Sheffield, UK
- 824 80 Emergency Department, Salford Royal Hospital, Salford UK
- 825 81 Institute of Research in Operative Medicine (IFOM), Witten/Herdecke University,
- 826 Cologne, Germany
- 827 82VP Global Project Management CNS, ICON, Paris, France
- 828 83Department of Anesthesiology-Intensive Care, Lille University Hospital, Lille, France
- 829 ⁸⁴Department of Neurosurgery, Rambam Medical Center, Haifa, Israel
- 830 85 Department of Anesthesiology & Intensive Care, University Hospitals Southhampton
- NHS Trust, Southhampton, UK
- 832 ⁸⁶Cologne-Merheim Medical Center (CMMC), Department of Traumatology, Orthopedic
- 833 Surgery and Sportmedicine, Witten/Herdecke University, Cologne, Germany

- 834 87 Intensive Care Unit, Southmead Hospital, Bristol, Bristol, UK
- 835 ⁸⁸Department of Neurological Surgery, University of California, San Francisco, California,
- 836 USA
- 837 ⁸⁹Department of Anesthesia & Intensive Care, M. Bufalini Hospital, Cesena, Italy
- 838 ⁹⁰Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
- 839 ⁹¹Department of Neurosurgery, The Walton centre NHS Foundation Trust, Liverpool, UK
- ⁹²Department of Medical Genetics, University of Pécs, Pécs, Hungary
- ⁹³Department of Neurosurgery, Emergency County Hospital Timisoara, Timisoara,
- 842 Romania
- ⁹⁴School of Medical Sciences, Örebro University, Örebro, Sweden
- ⁹⁵Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- 845 ⁹⁶Analytic and Translational Genetics Unit, Department of Medicine; Psychiatric &
- Neurodevelopmental Genetics Unit, Department of Psychiatry; Department of Neurology,
- 847 Massachusetts General Hospital, Boston, MA, USA
- 848 ⁹⁷Program in Medical and Population Genetics; The Stanley Center for Psychiatric
- Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- 850 ⁹⁸Department of Radiology, University of Antwerp, Edegem, Belgium
- 851 ⁹⁹Department of Anesthesiology & Intensive Care, University Hospital of Grenoble,
- 852 Grenoble, France
- 853 ¹⁰⁰Department of Anesthesia & Intensive Care, Azienda Ospedaliera Università di
- 854 Padova, Padova, Italy
- ¹⁰¹Dept. of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands and
- 856 Dept. of Neurosurgery, Medical Center Haaglanden, The Hague, The Netherlands
- 857 ¹⁰²Department of Neurosurgery, Helsinki University Central Hospital
- ¹⁰³Division of Clinical Neurosciences, Department of Neurosurgery and Turku Brain Injury
- 859 Centre, Turku University Hospital and University of Turku, Turku, Finland
- ¹⁰⁴Department of Anesthesiology and Critical Care, Pitié -Salpêtrière Teaching Hospital,
- Assistance Publique, Hôpitaux de Paris and University Pierre et Marie Curie, Paris,
- 862 France
- 863 ¹⁰⁵Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron
- 864 Research Institute, Barcelona, Spain
- ¹⁰⁶Department of Neurosurgery, Kaunas University of technology and Vilnius University,
- 866 Vilnius, Lithuania
- 867 ¹⁰⁷Department of Neurosurgery, Rezekne Hospital, Latvia
- ¹⁰⁸Department of Anaesthesia, Critical Care & Pain Medicine NHS Lothian & University
- of Edinburg, Edinburgh, UK
- 870 ¹⁰⁹Director, MRC Biostatistics Unit, Cambridge Institute of Public Health, Cambridge, UK
- 871 ¹¹⁰Department of Physical Medicine and Rehabilitation, Oslo University
- 872 Hospital/University of Oslo, Oslo, Norway
- 873 111 Division of Orthopedics, Oslo University Hospital, Oslo, Norway
- 874 112 Institue of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- 875 ¹¹³Broad Institute, Cambridge MA Harvard Medical School, Boston MA, Massachusetts
- 876 General Hospital, Boston MA, USA
- 877 ¹¹⁴National Trauma Research Institute, The Alfred Hospital, Monash University,
- 878 Melbourne, Victoria, Australia
- 879 ¹¹⁵Department of Neurosurgery, Odense University Hospital, Odense, Denmark

- 880 ¹¹⁶International Neurotrauma Research Organisation, Vienna, Austria
- 881 ¹¹⁷Klinik für Neurochirurgie, Klinikum Ludwigsburg, Ludwigsburg, Germany
- 882 ¹¹⁸Division of Biostatistics and Epidemiology, Department of Preventive Medicine,
- University of Debrecen, Debrecen, Hungary
- 884 ¹¹⁹Department Health and Prevention, University Greifswald, Greifswald, Germany
- 120 Department of Anaesthesiology and Intensive Care, AUVA Trauma Hospital, Salzburg,
 Austria
- ¹²¹Department of Neurology, Elisabeth-TweeSteden Ziekenhuis, Tilburg, the Netherlands
- ¹²²Department of Neuroanesthesia and Neurointensive Care, Odense University Hospital,
- 889 Odense, Denmark
- 890 ¹²³Department of Neuromedicine and Movement Science, Norwegian University of
- 891 Science and Technology, NTNU, Trondheim, Norway
- 892 ¹²⁴Department of Physical Medicine and Rehabilitation, St.Olavs Hospital, Trondheim
- 893 University Hospital, Trondheim, Norway
- 894 ¹²⁵Department of Neurosurgery, University of Pécs, Pécs, Hungary
- 895 ¹²⁶Division of Neuroscience Critical Care, Johns Hopkins University School of Medicine,
- 896 Baltimore, USA
- 897 ¹²⁷Department of Neuropathology, Queen Elizabeth University Hospital and University of
- 898 Glasgow, Glasgow, UK
- 899 ¹²⁸Dept. of Department of Biomedical Data Sciences, Leiden University Medical Center,
- 900 Leiden, The Netherlands
- 901 ¹²⁹Department of Pathophysiology and Transplantation, Milan University, and
- 902 Neuroscience ICU, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico,
- 903 Milano, Italy
- ¹³⁰Department of Radiation Sciences, Biomedical Engineering, Umeå University, Umeå,
- 905 Sweden
- 906 ¹³¹Perioperative Services, Intensive Care Medicine and Pain Management, Turku
- 907 University Hospital and University of Turku, Turku, Finland
- 908 ¹³²Department of Neurosurgery, Kaunas University of Health Sciences, Kaunas, Lithuania
- 909 ¹³³Intensive Care and Department of Pediatric Surgery, Erasmus Medical Center, Sophia
- 910 Children's Hospital, Rotterdam, The Netherlands
- 911 ¹³⁴Department of Neurosurgery, Kings college London, London, UK
- 912 ¹³⁵Neurologie, Neurochirurgie und Psychiatrie, Charité Universitätsmedizin Berlin,
- 913 Berlin, Germany
- 914 136Department of Intensive Care Adults, Erasmus MC- University Medical Center
- 915 Rotterdam, Rotterdam, the Netherlands
- 916 ¹³⁷icoMetrix NV, Leuven, Belgium
- 917 ¹³⁸Movement Science Group, Faculty of Health and Life Sciences, Oxford Brookes
- 918 University, Oxford, UK
- 919 ¹³⁹Psychology Department, Antwerp University Hospital, Edegem, Belgium
- 920 ¹⁴⁰Director of Neurocritical Care, University of California, Los Angeles, USA
- 921 ¹⁴¹Department of Neurosurgery, St.Olavs Hospital, Trondheim University Hospital,
- 922 Trondheim, Norway
- 923 ¹⁴²Department of Emergency Medicine, University of Florida, Gainesville, Florida, USA

- 924 ¹⁴³Department of Neurosurgery, Charité Universitätsmedizin Berlin, corporate member
- of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health,
- 926 Berlin, Germany

930

932

933 934

- 927 144VTT Technical Research Centre, Tampere, Finland
- 928 ¹⁴⁵Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences,
- 929 University of Manitoba, Winnipeg, MB, Canada
- *Co-lead investigators: andrew.maas@uza.be (AIRM) and dkm13@cam.ac.uk (DM)

References

- 1. Stocchetti N, Maas AIR. Traumatic Intracranial Hypertension. N Engl J Med 2014;370(22):2121–2130; doi: 10.1056/NEJMra1208708.
- 2. Meyfroidt G, Bouzat P, Casaer MP, et al. Management of moderate to severe traumatic brain injury: an update for the intensivist. Intensive Care Med 2022;48(6):649–666; doi: 10.1007/s00134-022-06702-4.
- 3. Menon DK, Ercole A. Chapter 14 Critical care management of traumatic brain injury. Wijdicks EFM, Kramer AH. eds. Handb Clin Neurol 2017;140(Journal Article):239–274; doi: 10.1016/B978-0-444-63600-3.00014-3.
- 4. Stocchetti N, Carbonara M, Citerio G, et al. Severe traumatic brain injury: targeted
 management in the intensive care unit. Lancet Neurol 2017;16(6):452–464; doi:
 10.1016/S1474-4422(17)30118-7.
- 5. Hawryluk GWJ, Aguilera S, Buki A, et al. A management algorithm for patients with intracranial pressure monitoring: the Seattle International Severe Traumatic Brain Injury Consensus Conference (SIBICC). Intensive Care Med 2019;45(12):1783–1794; doi: 10.1007/s00134-019-05805-9.
- 6. Maset AL, Marmarou A, Ward JD, et al. Pressure-volume index in head injury. J
 Neurosurg 1987;67(6):832–840; doi: 10.3171/jns.1987.67.6.0832.
- 7. Shore PM, Hand LL, Roy L, et al. Reliability and validity of the Pediatric Intensity Level of Therapy (PILOT) scale: A measure of the use of intracranial pressure directed therapies. Crit Care Med 2006;34(7):1981; doi: 10.1097/01.CCM.0000220765.22184.ED.
- 8. Maas AIR, Harrison-Felix CL, Menon D, et al. Standardizing Data Collection in Traumatic Brain Injury. J Neurotrauma 2011;28(2):177–187; doi: 10.1089/neu.2010.1617.
- 9. Zuercher P, Groen JL, Aries MJH, et al. Reliability and Validity of the Therapy
 Intensity Level Scale: Analysis of Clinimetric Properties of a Novel Approach to
 Assess Management of Intracranial Pressure in Traumatic Brain Injury. J
- 962 Neurotrauma 2016;33(19):1768–1774; doi: 10.1089/neu.2015.4266.

- 10. Robba C, Graziano F, Guglielmi A, et al. Treatments for intracranial hypertension in acute brain-injured patients: grading, timing, and association with outcome. Data from the SYNAPSE-ICU study. Intensive Care Med 2023;49(1):50–61; doi: 10.1007/s00134-022-06937-1.
- 11. Huijben JA, Wiegers EJA, Lingsma HF, et al. Changing care pathways and between-center practice variations in intensive care for traumatic brain injury across Europe: a CENTER-TBI analysis. Intensive Care Med 2020;46(5):995–1004; doi: 10.1007/s00134-020-05965-z.
- 12. Huijben JA, Dixit A, Stocchetti N, et al. Use and impact of high intensity treatments in patients with traumatic brain injury across Europe: a CENTER-TBI analysis. Crit Care 2021;25(1):78; doi: 10.1186/s13054-020-03370-y.
- 974 13. Bhattacharyay S, Caruso PF, Åkerlund C, et al. Contribution of Clinical Course to 975 Outcome after Traumatic Brain Injury: Mining Patient Trajectories from European 976 Intensive Care Unit Data. 2023; doi: 10.48550/arXiv.2303.04630.
- Yoerle T, Birg T, Carbonara M, et al. Accuracy of Manual Intracranial Pressure
 Recording Compared to a Computerized High-Resolution System: A CENTER-TBI
 Analysis. Neurocrit Care 2023; doi: 10.1007/s12028-023-01697-2.
- Maas AIR, Menon DK, Manley GT, et al. Traumatic brain injury: progress and challenges in prevention, clinical care, and research. Lancet Neurol
 2022;21(11):1004–1060; doi: 10.1016/S1474-4422(22)00309-X.
- 16. Cnossen MC, Huijben JA, van der Jagt M, et al. Variation in monitoring and treatment policies for intracranial hypertension in traumatic brain injury: a survey in 66 neurotrauma centers participating in the CENTER-TBI study. Crit Care 2017;21(1):233; doi: 10.1186/s13054-017-1816-9.
- 987 17. Avila ML, Stinson J, Kiss A, et al. A critical review of scoring options for clinical measurement tools. BMC Res Notes 2015;8(1):612; doi: 10.1186/s13104-015-1561-989 6.
- Maas AIR, Menon DK, Steyerberg EW, et al. Collaborative European
 NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI): A
 Prospective Longitudinal Observational Study. Neurosurgery 2015;76(1):67–80; doi: 10.1227/NEU.000000000000575.
- 994 19. Steyerberg EW, Wiegers E, Sewalt C, et al. Case-mix, care pathways, and 995 outcomes in patients with traumatic brain injury in CENTER-TBI: a European 996 prospective, multicentre, longitudinal, cohort study. Lancet Neurol 2019;18(10):923– 934; doi: 10.1016/S1474-4422(19)30232-7.
- 998 20. Doiron D, Marcon Y, Fortier I, et al. Software Application Profile: Opal and Mica: 999 open-source software solutions for epidemiological data management, harmonization 1000 and dissemination. Int J Epidemiol 2017;46(5):1372–1378; doi: 10.1093/ije/dyx180.

- 1001 21. Zeiler FA, Ercole A, Cabeleira M, et al. Patient-specific ICP Epidemiologic
- 1002 Thresholds in Adult Traumatic Brain Injury: A CENTER-TBI Validation Study. J
- Neurosurg Anesthesiol 2021;33(1):28–38; doi: 10.1097/ANA.000000000000616.
- 1004 22. Marshall LF, Marshall SB, Klauber MR, et al. The diagnosis of head injury
- requires a classification based on computed axial tomography. J Neurotrauma 1992;9
- 1006 Suppl 1:S287-292.
- 1007 23. Teasdale G, Maas A, Lecky F, et al. The Glasgow Coma Scale at 40 years:
- standing the test of time. The LancetNeurology 2014;13(8):844–854; doi:
- 1009 10.1016/S1474-4422(14)70120-6.
- 1010 24. Ercole A, Dixit A, Nelson DW, et al. Imputation strategies for missing baseline
- neurological assessment covariates after traumatic brain injury: A CENTER-TBI
- study. PLoS ONE 2021;16(8):e0253425.
- 1013 25. McMillan T, Wilson L, Ponsford J, et al. The Glasgow Outcome Scale 40 years
- of application and refinement. Nat Rev Neurol 2016;12(8):477–485; doi:
- 10.1038/nrneurol.2016.89.
- 1016 26. Kunzmann K, Wernisch L, Richardson S, et al. Imputation of Ordinal Outcomes:
- A Comparison of Approaches in Traumatic Brain Injury. J Neurotrauma
- 1018 2021;38(4):455–463; doi: 10.1089/neu.2019.6858.
- 1019 27. Bhattacharyay S, Milosevic I, Wilson L, et al. The leap to ordinal: Detailed
- functional prognosis after traumatic brain injury with a flexible modelling approach.
- 1021 PLoS ONE 2022;17(7):e0270973; doi: 10.1371/journal.pone.0270973.
- 1022 28. Boateng GO, Neilands TB, Frongillo EA, et al. Best Practices for Developing and
- Validating Scales for Health, Social, and Behavioral Research: A Primer. Front Public
- Health 2018;6:149; doi: 10.3389/fpubh.2018.00149.
- 1025 29. Bakdash JZ, Marusich LR. Repeated Measures Correlation. Front Psychol
- 1026 2017;8:456; doi: 10.3389/fpsyg.2017.00456.
- 1027 30. van Buuren S, Groothuis-Oudshoorn CGM. mice: Multivariate Imputation by
- 1028 Chained Equations in R. J Stat Softw 2011;45(3):1–67; doi: 10.18637/jss.v045.i03.
- 1029 31. Gravesteijn BY, Sewalt CA, Venema E, et al. Missing Data in Prediction
- 1030 Research: A Five-Step Approach for Multiple Imputation, Illustrated in the CENTER-
- TBI Study. J Neurotrauma 2021;38(13):1842–1857; doi: 10.1089/neu.2020.7218.
- 1032 32. Honaker J King, G, Blackwell, M. Amelia II: A Program for Missing Data. J Stat
- 1033 Softw 2011;45(7); doi: 10.18637/jss.v045.i07.
- 1034 33. Begiri E, Smielewski P, Robba C, et al. Feasibility of individualised severe
- traumatic brain injury management using an automated assessment of optimal

- cerebral perfusion pressure: the COGiTATE phase II study protocol. BMJ Open 2019;9(9):e030727; doi: 10.1136/bmjopen-2019-030727.
- 1038 34. Tas J, Beqiri E, van Kaam RC, et al. Targeting Autoregulation-Guided Cerebral Perfusion Pressure after Traumatic Brain Injury (COGiTATE): A Feasibility
- Randomized Controlled Clinical Trial. J Neurotrauma 2021;38(20):2790–2800; doi:
- 1041 10.1089/neu.2021.0197.

1052

- 35. Schreiber JB. Issues and recommendations for exploratory factor analysis and principal component analysis. Res Soc Adm Pharm 2021;17(5):1004–1011; doi: 10.1016/j.sapharm.2020.07.027.
- 1045 36. Clark D, Joannides A, Adeleye AO, et al. Casemix, management, and mortality of patients receiving emergency neurosurgery for traumatic brain injury in the Global Neurotrauma Outcomes Study: a prospective observational cohort study. Lancet Neurol 2022;21(5):438–449; doi: 10.1016/S1474-4422(22)00037-0.
- 1049 37. Hutchinson PJ, Kolias AG, Timofeev IS, et al. Trial of Decompressive 1050 Craniectomy for Traumatic Intracranial Hypertension. N Engl J Med 1051 2016;375(12):1119–1130; doi: 10.1056/NEJMoa1605215.

Fig. 1. Flow diagram for patient enrolment and validation population assignment. Abbreviations: CENTER-TBI=Collaborative European NeuroTrauma Effectiveness Research in TBI, ICP=intracranial pressure, ICP_{EH}=end-hour ICP, ICP_{HR}=high-resolution ICP, ICU=intensive care unit, TBI=traumatic brain injury, TIL=Therapy Intensity Level scale, ^{8,9} WLST=withdrawal of life-sustaining therapies.

Fig. 2. Distributions of TIL and alternative scales. Abbreviations: ICU=intensive care unit, PILOT=Paediatric Intensity Level of Therapy scale, TIL=Therapy Intensity Level scale, ^{8,9} TIL⁽¹⁹⁸⁷⁾=original Therapy Intensity Level scale published in 1987, TIL^(Basic)=condensed TIL scale, uwTIL=unweighted TIL scale in which sub-item scores are replaced by the ascending rank index within the item. The numeric definition of each scale is listed in Table 1. (**A**) Distributions of maximum scores of TIL (i.e., TIL_{max}) and alternative scales (i.e., uwTIL_{max}, TIL^(Basic)_{max}, PILOT_{max}, and TIL⁽¹⁹⁸⁷⁾_{max}) over the first week of ICU stay. (**B**) Distribution of median scores of TIL (i.e., TIL_{median}) and alternative scales (i.e., uwTIL_{median}, TIL^(Basic)_{median}, PILOT_{median}, and TIL⁽¹⁹⁸⁷⁾_{median}) over the first week of ICU stay. (**C**) Distributions of daily scores of TIL (i.e., TIL₂₄) and alternative scales (i.e., uwTIL₂₄, TIL^(Basic)₂₄, PILOT₂₄, and TIL⁽¹⁹⁸⁷⁾₂₄) over the first week of ICU stay.

Fig. 3. Associations of TIL and alternative scales with other clinical measures. Abbreviations: Day_{ICU}=variable representing day (from 1 to 7) of ICU stay, EH=end-hour, CPP=cerebral perfusion pressure, GCS=Glasgow Coma Scale at ICU admission, GOSE=Glasgow Outcome Scale—Extended at six months post-injury, HR=high-resolution, ICP=intracranial pressure, ICU=intensive care unit, PILOT=Paediatric Intensity Level of Therapy scale, Pr(GOSE>•)="probability of GOSE greater than • at six months post-injury" as previously calculated from the first 24 hours of admission, TIL=Therapy Intensity Level scale, hours of admission, TIL=Therapy Intensity Level scale, uwTIL=unweighted TIL scale in which sub-item scores are replaced by the ascending rank index

within the item. The numeric definition of each scale is listed in Table 1, and the calculation of daily (e.g., TIL_{24}), maximum (e.g., TIL_{max}), and median (e.g., TIL_{median}) scores are described in the Methods. The bars represent 95% confidence intervals derived from bootstrapping with 1,000 resamples of unique patients over 100 missing value imputations. (**A**) Spearman's correlation coefficients (ρ) between maximum scale scores over first week of ICU stay (i.e., TIL_{max} , $uwTIL_{max}$, $TIL^{(Basic)}_{max}$, $PILOT_{max}$, and $TIL^{(1987)}_{max}$) and other clinical measures. (**B**) Spearman's correlation coefficients (ρ) between median scale scores over first week of ICU stay (i.e., TIL_{median} , $uwTIL_{median}$, $TIL^{(Basic)}_{median}$, $PILOT_{median}$, and $TIL^{(1987)}_{median}$) and other clinical measures. (**C**) Repeated measures correlation coefficients (r_{rm} , from -1 to 1) are interpreted as the strength and direction of association between two variables after accounting for inter-patient variation. (**D**) Linear mixed effects model coefficients (β_{LMER}) are interpreted as the expected difference in dependent variable (e.g., EH ICP₂₄) per unit increase of daily scale score (e.g., TIL_{24}) after accounting for time since ICU admission (i.e., Day_{ICU}) and inter-patient variation.

Fig 4. Distributions of daily intracranial pressure and cerebral perfusion pressure means per daily TIL score. Abbreviations: CPP=cerebral perfusion pressure, CPP₂₄=mean CPP over calendar day, Day_{ICU}=variable representing day (from 1 to 7) of ICU stay, EH=end-hour, HR=high-resolution, ICP=intracranial pressure, ICP₂₄=mean ICP over calendar day, TIL=Therapy Intensity Level scale, ^{8,9} TIL₂₄=TIL score of calendar day, TIL-ICP_{EH}=end-hour ICP sub-population, TIL-ICP_{HR}=high-resolution ICP sub-population. The values in each panel are the linear mixed effects model coefficients (β_{LMER}) of TIL₂₄ with 95% confidence intervals derived from bootstrapping with 1,000 resamples of unique patients over 100 missing value imputations. The width of violin plots is scaled for each population, but the width of the points inside them demonstrates relative frequency across the populations. The violin plots do not encompass outliers based on 1.5 times the interquartile range. (**A**) Distributions of ICP₂₄ vs. TIL₂₄ for both sub-populations. (**B**) Distributions of CPP₂₄ vs. TIL₂₄ for both sub-populations.

Fig 5. Discrimination of refractory intracranial hypertension status by TIL and alternative scale summary scores. Abbreviations: AUC=area under the receiver operating characteristic curve, EH=end-hour, HR=high-resolution, ICP=intracranial pressure, ICP_{max}=maximum calendar day mean of ICP over first week of ICU stay, ICP_{median}=median calendar day mean of ICP over first week of ICU stay, ICU=intensive care unit, PILOT=Paediatric Intensity Level of Therapy scale, TIL=Therapy Intensity Level scale, TIL(1987)=original Therapy Intensity Level scale published in 1987, ⁶ TIL (Basic) = condensed TIL scale, ⁸ uwTIL = unweighted TIL scale in which subitem scores are replaced by the ascending rank index within the item. The 95% confidence intervals of AUC were derived from bootstrapping with 1,000 resamples of unique patients over 100 missing value imputations. (A) Distributions of maximum scores of TIL (i.e., TILmax) and alternative scales (i.e., uwTILmax, TIL(Basic)max, PILOTmax, and TIL(1987)max) stratified by refractory intracranial hypertension status. The horizontal black line segments represent the thresholds which maximised the sum of sensitivity and specificity for each scale. (B) Distributions of median scores of TIL (i.e., TIL_{median}) and alternative scales (i.e., uwTIL_{median}, TIL^(Basic)_{median}, PILOT_{median}, and TIL⁽¹⁹⁸⁷⁾_{median}) stratified by refractory intracranial hypertension status. The horizontal black line segments represent the thresholds which maximised the sum of sensitivity and specificity for each scale. (C) Receiver operating characteristic curve of refractory intracranial hypertension detection with TILmax. The threshold which maximised the sum of sensitivity and specificity is highlighted with the dark red circle. (D) Receiver operating characteristic curve of refractory intracranial hypertension detection with TIL_{median}. The threshold which maximised the sum of sensitivity and specificity is highlighted with the dark red circle.

Fig 6. Association of TIL component items with TIL₂₄ and other study measures. Abbreviations: CPP=cerebral perfusion pressure, CPP₂₄=mean CPP over calendar day, CSF=cerebrospinal fluid, EH=end-hour, HR=high-resolution, ICP=intracranial pressure, ICP₂₄=mean ICP over calendar day, ICU=intensive care unit, TIL=Therapy Intensity Level scale, ^{8,9} TIL₂₄=TIL score of calendar day. The 95% confidence intervals of r_{rm} and β_{LMER} values were derived from bootstrapping with 1,000 resamples of unique patients over 100 missing value

imputations. (**A**) Median component score of each ICP-treatment modality (Table 1) per each TIL₂₄ score. The histogram under the *x*-axis represents the relative frequency and count of each TIL₂₄ score in the population, and diagonal dashed line represents the TIL₂₄ score on both axes. If the sum of median item scores does not equal the corresponding TIL₂₄ score, this can be interpreted as high variability in the combination of simultaneously applied therapies at that TIL₂₄ score. (**B**) The repeated measures correlation coefficients (r_m , from -1 to 1) are interpreted as the strength and direction of association between two variables after accounting for inter-patient variation. The component score of each item (Table 1, *x*-axis) was subtracted from the TIL₂₄ score (top row on *y*-axis) before calculating their r_m values. (**C**) Linear mixed effects model coefficients (β_{LMER}) are interpreted as the expected difference in the dependent variable (*y*-axis) associated with the given TIL₂₄ sub-item treatment (Table 1) after accounting for all other TIL₂₄ sub-items, time since ICU admission, and inter-patient variation.

Fig 7. Relationship between TIL and TIL^(Basic). Abbreviations: AUC=area under the receiver operating characteristic curve, ICU=intensive care unit, TIL=Therapy Intensity Level scale, ^{8,9} TIL^(Basic)=condensed TIL scale. The numeric definition of each scale is listed in Table 1, and the calculation of daily (e.g., TIL₂₄), maximum (e.g., TIL_{max}), and median (e.g., TIL_{median}) scores are described in the Methods. The 95% confidence intervals of information coverage were derived from bootstrapping with 1,000 resamples of unique patients over 100 missing value imputations. (A) Distribution of corresponding TIL^(Basic)₂₄ scores per each TIL₂₄ score. The values in each cell represent the percent of assessments at a given TIL₂₄ score (i.e., column) corresponding to a TIL^(Basic)₂₄ score (i.e., row). The vertical, dark red lines represent cut-offs across which median corresponding TIL^(Basic)₂₄ score per TIL₂₄ score changes. (B) Distribution of corresponding TIL₂₄ scores per each TIL^(Basic)₂₄ score. The width of violin plots is scaled for each TIL^(Basic)₂₄ scores, but the width of the points inside them demonstrates relative frequency across the TIL^(Basic)₂₄ scores. The grey, shaded zones represent the range of TIL₂₄ scores with corresponding median TIL^(Basic)₂₄ scores on the *x*-axis, as determined in panel (A). (C) The information of TIL₂₄, TIL_{max}, and TIL_{median} covered by TIL^(Basic)₂₄, TIL^(Basic)_{max}, and TIL^(Basic)_{median}, respectively. Information coverage is defined as the mutual information of TIL₂₄ and TIL^(Basic)_{median}, or TIL_{median} or TIL_{median} and TIL^(Basic)_{median}) divided by the entropy of TIL₂₄ (or TIL_{max} or TIL_{median}).

Table 1. Scoring configurations for TIL and alternative scales

ICP-treatment	Item			TIL ^(Basic) *	c)* PILOT†		TIL ^{(1987)†}			
modality	Sub-item	Score	Max	Score	Max	Score*	Score	Max	Score	Max
Positioning	Head elevation for ICP control or nursed flat (180°) for CPP management	1	1	1	1	1	_	_	_	-
Sedation and	Sedation		5		3			5		4
neuromuscular blockade	Low dose sedation (as required for mechanical ventilation)	1		1		1	1		1	
	Higher dose sedation for ICP control (but not aiming for burst suppression)	2		2		2	1		1	
	High dose propofol or barbiturates for ICP control (metabolic suppression)	5		3		4	5		4	
	Neuromuscular blockade (paralysis)	3	3	1	1	_	2	2	1	1
CSF drainage	CSF drainage volume		3		2			5		2
	Low (<120 ml/24h)	2		1		2	4		1	
	High (≥120 ml/24h)	3		2		3	5		2	
CPP management	Fluid loading for maintenance of	1	1	1	1	2	_	_	-	_
	cerebral perfusion Vasopressor therapy required for management of cerebral perfusion	1	1	1	1	2	2	2	_	_
Ventilatory management	Hypocapnia for ICP control (P _a CO ₂		4		3			4		2
	[mmHg]) Mild $(35 \le P_aCO_2 < 40)$	1		1		2	1		1	
	Moderate (30≤P _a CO ₂ <35)	2		2		3	2		1	
	Intensive $(P_aCO_2 < 30)$	4		3		4	4		2	
Hyperosmolar	Mannitol		3		2			3		6
therapy	administration ≤2g/kg/24h	2		1		2	2		3	
	>2g/kg/24h	3		2		3	3		6	
	Hypertonic saline administration		3	_	2			3	_	_
	≤0.3g/kg/24h	2		1		2	3			
	>0.3g/kg/24h	3		2		3	3			
Temperature control	Temperature control (T [°C]) Fever control (>38	1	5	1	3		1	5	-	_
	or spontaneous <34.5)									
	Cooling for ICP control (≥35)	2		2		3	3			
	Hypothermia (<35)	5		3		4	5			

Surgery for intracranial hypertension	Intracranial operation for progressive mass lesion, NOT scheduled on admission Decompressive craniectomy	5	4 5	1	1	4	5	5	_	_
Maximum total possible score			38		21	4		38		15

Abbreviations: CPP=cerebral perfusion pressure, CSF=cerebrospinal fluid, ICP=intracranial pressure, P_aCO₂=partial pressure of carbon dioxide in arterial blood, PILOT=Paediatric Intensity Level of Therapy scale,⁷ T=body temperature in degrees Celsius, TIL=Therapy Intensity Level scale,^{8,9} TIL⁽¹⁹⁸⁷⁾=original Therapy Intensity Level scale published in 1987,⁶ TIL^(Basic)=condensed TIL scale,⁸ uwTIL=unweighted TIL scale in which sub-item scores are replaced by the ascending rank index within the item.

The TIL scale was developed by Maas *et al.*⁸ For each calendar day, the highest score for each item was summed to derive the TIL score.

*TIL^(Basic) is the maximum score (from 1 to 4) among all included sub-items over the calendar day. [†]PILOT scale⁷ and TIL⁽¹⁹⁸⁷⁾ scale⁶ scoring configurations have been adapted with minor adjustments to fit the items of TIL with a daily assessment frequency.

Table 2. Summary characteristics of study validation populations

Summary characteristic	TIL validation population								
	Overall	TIL-ICP _{EH}	TIL-ICP _{HR}	p-					
	(n=873, 52 centres)	(n=837, 51 centres)	(n=259, 21 centres)	value [‡]					
Age [years]	47 (29–62)	47 (29–62)	48 (30–62.5)	0.303					
Sex: Female	222 (25%)	213 (25%)	55 (21%)	0.078					
Baseline GCS (n*=822)				0.554					
Mild [13–15]	122 (15%)	115 (15%)	38 (16%)						
Moderate [9–12]	139 (17%)	133 (17%)	36 (15%)						
Severe [3–8]	561 (68%)	539 (68%)	170 (70%)						
Marshall CT (n*=710)				0.278					
No visible pathology (I)	17 (2%)	16 (2%)	6 (3%)						
Diffuse injury II	264 (37%)	248 (36%)	75 (35%)						
Diffuse injury III	93 (13%)	89 (13%)	22 (10%)						
Diffuse injury IV	16 (2%)	16 (2%)	3 (1%)						
Mass lesion (V & VI)	320 (45%)	312 (46%)	107 (50%)						
Six-month GOSE (n*=761)	· · · · · · · · · · · · · · · · · · ·	, ,	<u> </u>	0.329					
(1) Death	199 (26%)	195 (26%)	54 (23%)						
(2 or 3) Vegetative or lower SD	182 (24%)	181 (25%)	63 (27%)						
(4) Upper SD	70 (9%)	66 (9%)	22 (9%)						
(5) Lower MD	122 (16%)	117 (16%)	44 (19%)						
(6) Upper MD	74 (10%)	71 (10%)	23 (10%)						
(7) Lower GR	56 (7%)	52 (7%)	14 (6%)						
(8) Upper GR	58 (8%)	55 (7%)	13 (6%)						
Baseline functional prognosis [†] [%] (n	n*=749)								
Pr(GOSE>1)	84.7 (63.5-94.9)	84.1 (62.1–94.7)	83.8 (66.9-94.0)	0.664					
Pr(GOSE>3)	53.9 (29.9-76.0)	53.1 (29.2–75.0)	52.4 (33.9-71.1)	0.287					
Pr(GOSE>4)	39.6 (20.6–59.6)	38.9 (19.8–58.3)	38.1 (22.6–54.6)	0.154					
Pr(GOSE>5)	21.1 (10.2–36.8)	20.7 (10.0–36.0)	19.3 (10.5–30.1)	0.037					
Pr(GOSE>6)	12.4 (5.9–20.8)	12.0 (5.8–19.9)	10.9 (5.8–17.2)	0.009					
Pr(GOSE>7)	4.8 (2.2–9.2)	4.7 (2.2–9.1)	5.3 (2.2–8.5)	0.415					
TIL _{max}	10 (6–14)	10 (6–14)	10 (6–14)	0.577					
TIL _{median}	5 (3–10)	5 (3–10)	5 (4–10)	0.826					
TIL ₂₄ scores									
Day 1 (<i>n</i> *=852)	7 (4–11)	7 (4–11)	7 (5–10)	0.134					
Day 2 (n*=839)	6 (4–10)	6 (4–10)	6 (4–10)	0.860					
Day 3 (n*=819)	6 (3–9)	6 (3–9)	6 (4–9)	0.926					
Day 4 (n*=787)	6 (3–10)	6 (3–10)	5 (4–10)	0.372					
Day 5 (n*=761)	5 (3–10)	5 (3–10)	5 (3–10)	0.941					
Day 6 (n*=733)	5 (2–9)	5 (2.5–9)	5 (3–10)	0.337					
Day 7 (<i>n</i> *=709)	5 (2–9)	4 (2–9)	5 (2–9)	0.425					

Abbreviations: Baseline GCS=Glasgow Coma Scale at ICU admission, from 3 to 15, GOSE=GOS-Extended, GR=good recovery, ICP=intracranial pressure, ICP_{EH}=end-hour ICP, ICP_{HR}=high-resolution ICP, Marshall CT=Marshall computerised tomography classification, MD=moderate disability, Pr(GOSE>•)="probability of GOSE greater than • at six months postinjury" as previously calculated from the first 24 hours of admission, SD=severe disability, TIL=Therapy Intensity Level scale, TIL24=TIL score of calendar day in ICU, TILmax=maximum TIL24 over first week of ICU stay, TILmedian=median TIL24 over first week of ICU stay. Data are median (IQR) for numeric characteristics and n (% of column group) for categorical characteristics, unless

otherwise indicated. Units or numerical definitions of characteristics are provided in square brackets.

^{*}Limited sample size of non-missing values for characteristic.

[†]Ordinal functional outcome prognostic scores were calculated through tokenised embedding of all clinical information in the first 24 hours of ICU stay, as described previously.²⁷

 $^{^{\}ddagger}p$ -values, comparing patients in TIL-ICP_{HR} sub-population to those not in TIL-ICP_{HR} sub-population, are derived from with Welch's *t*-test for numeric variables and χ^2 contingency table test for categorical variables.

Table 3. Optimised ranges for TIL categorisation

Category	Derived	Performance (95	% confidence interva	Case counts [‡]		Previously		
	ranges	Sensitivity	Specificity	Accuracy	No	Yes	ranges [§]	
Refractory intracranial hypertension*	TIL _{max} ≥14	68% (62–74%)	79% (77–81%)	77% (75–79%)	707	157	TIL _{max} ≥11	
	TIL _{median} ≥7.5	81% (77–87%)	72% (70–75%)	74% (72–76%)			-	
Day of surgical ICP control [†]	TIL ₂₄ ≥9	87% (83–91%)	74% (72–76%)	76% (74–77%)	4916	585	-	
TIL ^(Basic) 24				72% (70–73%)				
(1) Basic ICU care	1≤TIL ₂₄ ≤2				4932	568	1≤TIL ₂₄ ≤3	
(2) Mild	3≤TIL ₂₄ ≤6				3294	2206	4≤TIL ₂₄ ≤7	
(3) Moderate	7≤TIL ₂₄ ≤8				4709	791	8≤TIL ₂₄ ≤10	
(4) Extreme	TIL ₂₄ ≥9				3919	1581	TIL ₂₄ ≥11	

Abbreviations: ICP=intracranial pressure, ICU=intensive care unit, TIL=Therapy Intensity Level scale, ^{8,9} TIL (Basic)=condensed TIL scale. The numeric definition of each scale is listed in Table 1, and the calculation of daily (e.g., TIL₂₄), maximum (e.g., TIL_{max}), and median (e.g., TIL_{median}) scores is described in the Methods. The 95% confidence intervals of performance metrics were derived from bootstrapping with 1,000 resamples of unique patients over 100 missing value imputations. *Refractory intracranial hypertension was defined as recurrent, sustained (i.e., of at least ten minutes) increases of ICP above 20 mmHg despite medical ICP management during ICU stay. This information was recorded by attending physicians in patient discharge summaries.

[†]If a decompressive craniectomy was performed as a last resort for refractory intracranial hypertension, each of the days following the operation were also considered days of surgical ICP control.

[‡]For refractory intracranial hypertension, case counts represent the number of patients (with non-missing values) without (i.e., No) and with (i.e., Yes) refractory intracranial hypertension. For day of surgical ICP control and TIL^(Basic)₂₄, case counts represent the number of non-missing TIL assessments not in (i.e., No) and in (i.e., Yes) the given category.

§Thresholds were previously proposed by the interagency panel which developed TIL based on expert opinion.8