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1. Abstract

Deep brain stimulation is a widely used therapy for Parkinson's disease (PD) but
currently lacks dynamic responsiveness to changing clinical and neural states.
Feedback control has the potential to improve therapeutic effectiveness, but optimal
control strategy and additional benefits of “adaptive” neurostimulation are unclear. We
implemented adaptive subthalamic nucleus stimulation, controlled by subthalamic or
cortical signals, in three PD patients (five hemispheres) during normal daily life. We
identified neurophysiological biomarkers of residual motor fluctuations using data-driven
analyses of field potentials over a wide frequency range and varying stimulation
amplitudes. Narrowband gamma oscillations (65-70 Hz) at either site emerged as the
best control signal for sensing during stimulation. A blinded, randomized trial
demonstrated improved motor symptoms and quality of life compared to clinically
optimized standard stimulation. Our approach highlights the promise of personalized
adaptive neurostimulation based on data-driven selection of control signals and may be
applied to other neurological disorders.
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2. Introduction

Deep brain stimulation (DBS) is a standard therapy for advanced movement disorders
and is under investigation for several neuropsychiatric conditions1. Conventional DBS
therapy is delivered with constant stimulation parameters (cDBS), unresponsive to
patient activities or to variations in severity of symptoms during daily life. Thus, there is
significant interest in adaptive DBS (aDBS) that uses real-time detection of neural
signals to automatically adjust stimulation amplitude or other parameters in response to
patients’ needs2,3. Fully implantable bidirectional neural interfaces, which can sense
neural activity during stimulation and have circuitry to implement feedback control, have
recently become available for investigational4,5 and commercial6 use. This development
has catalyzed work in chronic invasive brain sensing7 and now offers the technical
capability to provide chronic adaptive neurostimulation8,9. However, several barriers
have impeded its implementation10, including the limited understanding of neural
signatures of specific symptoms in brain disorders treatable by DBS, technical
complexity of sensing brain signals during ongoing electrical stimulation11, and lack of
standardized algorithms for optimizing feedback control in the setting of a large
parameter space.

Parkinson’s disease (PD) is a highly prevalent neurodegenerative disease and affects
~1% of people aged 60 years or older in high-income countries12. Stimulation of the
subthalamic nucleus (STN) via cDBS is widely used and supported by extensive class I
evidence13–16. However, even after optimization of stimulation parameters by an expert
clinician, cDBS can be associated with periods of under- and over-stimulation reflected
in residual fluctuations between hypo- and hyperkinetic motor signs, such as
bradykinesia and dyskinesia. This suggests individuals with PD could further benefit
from aDBS. STN local field potential oscillations in a predefined beta band (13-30 Hz)
are often proposed for adaptive (closed-loop) control in PD2,17,18 based on the
observation that resting subthalamic beta activity is elevated in the rigid/akinetic state
and reduced when motor signs are alleviated by dopaminergic medication19 or
neurostimulation20. However, previous studies identified STN beta oscillations as control
signals in the absence of stimulation. Motor cortical signals have also shown promise in
encoding motor state and controlling aDBS9,21,22, yet the effect of stimulation amplitude
on the proposed control signals was not systematically assessed. Since electrical
stimulation profoundly alters oscillatory activity in the motor network20,23, it is crucial to
define neural biomarkers that can still be measured and tracked during stimulation at
therapeutic amplitudes, a scenario which is to date under-explored.

Brief studies of invasive neurophysiological control signals, often using externalized
brain leads or distributed control through external computers, have demonstrated that
aDBS in PD can match or exceed the benefit provided by cDBS24–26. However, these
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results were derived from in-laboratory studies and group-level analyses, lacking
individualized, data-driven approaches. It remains unclear whether aDBS provides
improvement beyond that of clinically optimized cDBS in real-life naturalistic settings.
Here, we developed a data-driven analysis pipeline to identify individualized neural
biomarkers of PD symptoms and engineered personalized aDBS algorithms that did not
pre-select STN beta or other frequency bands. Our pipeline identified finely-tuned
gamma oscillations (65-70 Hz)27 either in STN or sensorimotor cortex as the optimal
biomarker of residual fluctuations in motor function that were still robust during varying
stimulation amplitudes. In a blinded, randomized study across one month per condition,
we demonstrate for the first time that adaptive stimulation reduces the time spent with
bothersome motor signs compared to clinically optimized continuous stimulation.

3. Results

We recruited three patients with PD from a population undergoing DBS implantation for
motor fluctuations. All patients underwent bilateral placement of quadripolar DBS leads
into the STN and quadripolar paddles into the subdural space over the sensorimotor
cortex (Fig. 1a-b, Extended Data Fig. 1). Cortical recordings were performed using
non-overlapping bipolar pairs with the anterior montage (montage 1) having at least one
electrode covering the precentral gyrus and the posterior montage (montage 2) having
at least one electrode on the postcentral gyrus (Extended Data Fig. 1a, c-g). Leads
were connected to an investigational bidirectional neural interface (Medtronic Summit
RC+S). This device is capable of chronically streaming high-resolution time domain data
in naturalistic settings while providing therapeutic stimulation and can perform aDBS
using fully embedded algorithms5,9. We developed adaptive algorithms tailored to the
specific clinical needs of each patient. Before patients began the aDBS trial, standard of
care cDBS was optimized by a movement disorder specialist over a range of 11-31
months (mean±standard deviation 22±10), including at-home self-optimization by the
patients. Patients identified their most bothersome motor symptom persisting on
clinically optimized cDBS, e.g., bradykinesia (Fig. 1c; Fig. 2). In addition, we defined the
most prominent symptom in the opposite motor state (e.g., the hyperkinetic symptom
dyskinesia if the hypokinetic symptom bradykinesia was the most bothersome motor
sign). This was done to ensure that aDBS did not improve hypokinetic symptoms at the
expense of hyperkinetic symptoms or vice versa. For one patient, bothersome residual
motor fluctuations were restricted to one side of the body (pat-1). The remaining two
patients perceived persisting bilateral symptoms (pat-2 and pat-3). To identify the
optimal stimulation limits for symptom control during aDBS treatment, we determined
the high and low stimulation amplitudes needed to address the patients’ hypo- and
hyperkinetic states, respectively (Fig. 2). As stimulation impacts neural activity within the
stimulated networks, we identified neural biomarkers during active stimulation.
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Motor network gamma oscillations identified as optimal control signals

We then developed a data-driven pipeline to identify electrophysiological field potentials
that correlated with patient symptoms and implemented them as feedback signals for
the adaptive algorithms. Our workflow consisted of seven formalized steps that included
streaming neural data in-clinic and at-home during active stimulation, leading to a
blinded, randomized comparison between cDBS and aDBS for several weeks in
patients’ naturalistic environments (Fig. 2). We utilized a combination of non-parametric
statistics and machine learning methods to search the frequency space in both STN and
sensorimotor cortex for the physiological signals that optimally predicted the occurrence
of patients’ most bothersome motor signs (see methods). Converging evidence from
in-clinic and at-home recordings demonstrated that finely-tuned gamma (FTG)
oscillations performed optimally as a predictor of medication related symptom state21. In
the setting of subthalamic stimulation above a certain amplitude, the frequency of FTG
oscillations within their typical 60-90 Hz range often shifts to a subharmonic of
stimulation frequency, behaving as a “driven oscillator” (Fig. 3a)28. Despite the potential
susceptibility to artifacts when sensing neural signals during active stimulation, we
demonstrated that FTG oscillations at half the stimulation frequency were not artifactual,
as they represented the entrainment of levodopa-induced narrowband gamma
oscillations that were observed off stimulation (Fig. 3a)21.

FTG oscillations were prominent during hyperkinetic states (Fig. 3-4, Extended Data
Fig. 2a, Extended Data Fig. 3a-b), were reduced by 33-96% (median±standard
deviation 90±28%) when these states ended, and could track symptom changes over
the full range of patient-specific stimulation amplitudes to be applied during aDBS
(Extended Data Fig. 2a, Extended Data Fig. 3a-b). Similar to levodopa-induced FTG,
entrained gamma power fluctuated with medication state in-clinic (Fig. 3b-c, Fig. 4a-b,
Extended Data Fig. 2a) and at-home while stimulation remained unchanged (Fig. 3d-e),
and predicted hyperkinetic symptoms (Fig. 4c-d, Extended Data Fig. 3a-b). Subthalamic
beta activity is often proposed as an optimal control signal for aDBS, and consistent
with the literature, we observed beta power peaks off stimulation and off medication in
four of five hemispheres (Extended Data Fig. 2c). However, medication effects
diminished with active stimulation (Extended Data Fig. 2d) and were only significant in
one patient (Fig. 4a, Extended Data Fig. 2b). Further, beta power did not reliably track
symptom fluctuations during chronic stimulation in the home environment with the
exception of one hemisphere (Fig. 4c-d, Extended Data Fig. 3c-d). Using STN beta
power in conjunction with subthalamic or cortical FTG resulted in only a minimal change
in symptom prediction accuracy (Fig. 4e, AUC increased from 0.75±0.07 to 0.76±0.07,
mean across subjects ± standard deviation) and we were not able to show a significant
difference between adding STN beta versus alternative random frequency bands for
any subject (range of p-values: 0.055-0.75).
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Adaptive stimulation algorithm tracked residual motor fluctuations

During aDBS, we used STN or cortical FTG at half stimulation frequency as the control
signal for all patients (Fig. 5a). FTG oscillations represented hyperkinetic states;
therefore, we designed aDBS algorithms that reduced stimulation amplitude when the
control signal was high to either avoid hyperkinetic symptoms such as dyskinesia (pat-1
and pat-3) or relieve stimulation-induced side effects such as dysarthria (pat-2) (Fig.
5b-c). In total, patients spent 74.9±12.1% of their awake time (mean±standard
deviation) in the high amplitude state, nearly three times longer than in the low
amplitude state (25.1±12.2%, Fig. 5d). This is congruent with patients’ self-reported
symptoms during blinded at-home cDBS testing, where time spent with hypokinetic
symptoms was on average 3.7 times longer than with hyperkinetic symptoms. Our
algorithms acted on a timescale of minutes to hours, consistent with established
carbidopa-levodopa pharmacokinetics29. On average, high amplitude stimulation states
(responding to hypokinetic clinical states) lasted 1.5±0.27 consecutive hours and low
amplitude stimulation states (responding to hyperkinetic symptoms, Fig. 5e) lasted
0.65±0.48 hours. Patient 3 received recurring short epochs of low stimulation
amplitudes on aDBS due to brief but frequent bouts of dyskinesia on cDBS (Fig. 5d,e).
Across waking hours, all patients received greater total electrical energy delivered
(TEED) while on aDBS compared to cDBS (15.1±20.4% increase from cDBS; Fig. 5f).
The majority of nighttime was spent at the high stimulation amplitude (96.2±1.4%),
which reflected suppression of FTG during sleep and thereby resulted in greater
nighttime TEED compared to cDBS (35.5±33.9% increase from cDBS; Extended Data
Fig. 7a-b). In contrast to our biomarker for hyperkinetic states (i.e., FTG), use of a
biomarker representing hypokinetic states (e.g., STN beta oscillations), for which
stimulation amplitude is high when the biomarker is high, would likely result in lower
stimulation amplitude during sleep since it is suppressed.

Adaptive stimulation improved motor symptoms that persisted on clinically
optimized continuous stimulation

We compared aDBS to clinically optimized cDBS for a cumulative period of one month
per condition. Stimulation conditions were applied blindly in randomized brief blocks of
several days and assessed using patient ratings of daily symptoms via digitalized
questionnaire. We further tracked motor fluctuations with validated wearables30. We
found aDBS reduced the time spent with bothersome motor symptoms compared to
optimized cDBS in all three patients (Fig. 6a, each patient: p<0.001). Further, this
improvement did not occur at the expense of the opposite symptom, which was
unaffected or improved (Fig. 6b, pat-1: p=0.56, pat-2: p=1, pat-3, p=0.02). Patients also
self-assessed symptom severity. Symptoms were less or equally severe during aDBS
(Extended Data Fig. 8b-c, bothersome symptoms: pat-1: p<0.001, pat-2: p=0.18, pat-3:
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p=0.93; opposite symptoms: pat-1: p=0.18, pat-2: p=1, pat-3: p=0.93). For the two
patients with upper limb symptoms, for whom bothersome symptoms could be tracked
with wrist-watch style wearable monitors, objective metrics confirmed the reduction in
motor fluctuations (Fig. 6d-e). Adaptive DBS decreased the degree of motor fluctuations
throughout the day as measured by the difference between symptom severity during
hypo- versus hyperkinetic states (bradykinesia: pat-1: p<0.001, pat-3 left body:
p=0.005, pat-3 right body: p=0.046; dyskinesia: pat-1: p=0.04, pat-3 right body: p=0.03).
This was a result of a significant reduction of bradykinesia severity during hypokinetic
states (pat-1: p=0.004) and dyskinesia severity during hyperkinetic states (pat-3 right
body: p=0.04).

Additionally, aDBS was associated with improved quality of life reports in two patients
(Fig. 6c, pat-1: p<0.001, pat-2: p<0.001, pat-3: p=0.34). Quality of life metrics for patient
3 may have exhibited a ceiling effect, as they reported high baseline quality of life
metrics (EQ-5D, overall health: ~90%) and low variability despite reporting bothersome
levels of residual bradykinesia on cDBS. Adaptive DBS did not adversely affect any
additionally monitored motor symptoms, and instead improved gait disturbance for
patient 2 (Extended Data Fig. 8d-i, pat-1 all symptoms p>0.08, pat-2 gait p<0.001, pat-2
symptoms besides gait p>0.11, pat-3 all symptoms p>0.85). Adaptive DBS also did not
adversely affect any monitored non-motor symptoms (depression, anxiety, apathy,
impulsivity, pat-1: p>0.62, pat-2: p=1, pat-3: p=1). None of the patients reported
perceiving unusual sensations or changes in stimulation while on adaptive stimulation.

4. Discussion

We developed a data-driven pipeline for the implementation of adaptive DBS that
utilized subthalamic or cortical field potentials to auto-adjust stimulation amplitudes in
order to alleviate residual motor fluctuations in three individuals with Parkinson’s
disease. Patients were previously clinically optimized on standard continuous DBS over
several months. Our pipeline was naïve to the frequency components and detection
sites of neural signal biomarkers and revealed that in all patients finely-tuned gamma
oscillations performed optimally for detecting bothersome residual motor signs. In a
blinded, randomized study, we demonstrate for the first time that aDBS improved motor
signs and quality of life in PD during normal daily activities at home compared to
standard-of-care cDBS.

Adaptive versus contingent stimulation

In our protocol, a nonzero level of stimulation was always present, but stimulation
amplitude was continuously adjusted in response to neural feedback. This form of
adaptive DBS should be distinguished from “contingent” neurostimulation, where
sensed neural signals can trigger a brief, pre-programmed epoch of stimulation, but
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sensing and stimulation are not simultaneous. Contingent neurostimulation was first
introduced clinically for epilepsy31, is under investigational study for other
neuropsychiatric disorders32, and is more applicable to paroxysmal disorders that do not
require uninterrupted therapy. Sensing during stimulation is technically challenging,
since the amplitude of the stimulus artifact is several fold higher than that of the neural
signals used for adaptive control, and thus requires a different device design33. The
successful implementation of our methodology for PD provides a framework for
configuring adaptive neurostimulation that may be extended to several other
neuropsychiatric disorders, many of which are currently under investigation but have not
yet shown superior benefit compared to cDBS at home during normal daily activities34.

Varying time scales for adaptive DBS

Adaptive neurostimulation could operate on a variety of timescales depending on the
desired effects on neural circuits35. The original description of aDBS in PD, based on
perioperative testing using externalized leads, operated on a very fast, subsecond
timescale with the goal of shortening pathologically prolonged bursts of subthalamic
beta activity24,36. Alternatively, prolonged time scales spanning weeks to months may be
appropriate in some neurological or psychiatric conditions where fluctuations in network
activity underlying symptoms are slow. Here, the aDBS algorithms operated on an
intermediate timescale of minutes to hours, consistent with the time course of ongoing
fluctuations in Parkinson’s patients’ motor signs during cDBS (Fig. 5e).

Though DBS successfully reduces the motor fluctuations of advanced PD, patients
typically still require a combination of antiparkinsonian medications (albeit reduced) and
stimulation for best function37. Because the effective brain concentration of levodopa
has peaks and valleys, under constant stimulation patients may continue to experience
periods of hyperkinetic and/or hypokinetic function. While less severe than before
device implantation, these residual fluctuations were bothersome in our study patients.
aDBS allowed seamless integration of medication and stimulation therapy by providing
less stimulation when medication is active (“on”), associated with hyperkinetic states,
and more when medications wore off, i.e., during hypokinetic states.

Optimal frequency bands for adaptive control

We identified FTG oscillations in the STN and cortex as optimal markers of residual
motor signs in all three patients. FTG was first identified in the basal ganglia as a
marker of the levodopa “on” state38, and much later found in the motor cortex in rodent
models of parkinsonism39 and in humans21, where it is especially prominent during
on-period dyskinesia. A remarkable aspect of FTG as an aDBS control signal is that,
when stimulation is turned on, FTG peak frequency shifts slightly away from its “natural”
frequency to become entrained to the nearest subharmonic of stimulation frequency,
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typically in a 1:2 entrainment pattern21 (Fig. 3a). Thus, the peak frequency is highly
predictable—a useful property when choosing the frequency band to be utilized for
adaptive control. While a signal appearing at an exact subharmonic of stimulation
frequency may at first glance appear to be an electrical artifact, there are now multiple
comprehensive arguments against an artifactual origin. Entrained FTG amplitude is
strongly modulated by the physiological state of the brain, including on/off medication
cycles (Fig. 3b-e) and sleep-wake cycles, is often more prominent at a site distant from
the stimulating contact (cortex) than adjacent to it (STN), has a very specific topography
(greater in precentral than postcentral gyrus), and, when stimulation is turned off, can
require additional time to “wash out”40. These findings indicate a physiological origin.

Most previous in-laboratory studies of aDBS in PD employed the spectral power of
subthalamic beta oscillations as a feedback signal24,25,41. The choice of STN beta band
activity as a feedback signal was driven by physiology studies performed in the absence
of stimulation42. However, in our cohort, spectral power of STN beta oscillations did not
track residual motor fluctuations in the home environment in four of five hemispheres
(Extended Data Fig. 3c-d). Therapeutic stimulation did reduce beta activity, similar to
previous reports20,43,44, even at low-therapeutic stimulation levels (Extended Data Fig.
2d). Thus, beta band activity may no longer adequately track residual motor signs within
the range of stimulation amplitudes relevant for adaptive control. A critical element of
our aDBS development pipeline was to evaluate the relation of oscillatory activity to
bothersome motor signs over the full range of stimulation amplitudes to be used in
adaptive control, rather than in the off-stimulation state. In the hyperkinetic state,
reliable entrainment of FTG occurred within the range of therapeutic amplitudes used
during adaptive implementation, and the amplitude of entrained FTG demonstrated low
variance between our defined low and high-therapeutic stimulation limits. Of note, a
beta band controller may well be optimal for aDBS algorithms in PD patients designed
for different time scales, such as for modification of bursts of oscillatory activity24,36.
Here, our subthalamic beta band detection was limited to a specific bipolar montage in
which recording contacts were immediately adjacent to the active contact, whereas
other bidirectional neural interface systems that allow for additional montage
configurations may be more optimized for beta detection18.

Cortical versus subcortical signals for adaptive DBS

Our results highlight the utility of multi-site brain recordings for aDBS algorithms.
Cortical recordings did prove invaluable for two of the three patients who did not have
adequate neural biomarkers in the STN. Subcortical signals may be insufficient for
aDBS in certain scenarios, such as when the signal is excessively contaminated by
stimulation artifacts. However, we have not proven that cortical recordings are critical for
aDBS in PD. To achieve high signal-to-noise recordings, we placed cortical leads in the
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subdural space directly on the brain surface. This has disadvantages of adding
invasiveness to the surgery and committing the patient to hardware that is not easy to
remove. In future studies, cortical control signals might be obtained less invasively from
electrodes placed under the scalp45.

Adaptive DBS outperforms continuous DBS in real life

Most prior studies comparing cDBS and aDBS for the treatment of PD motor symptoms
have been limited to highly-controlled in-clinic or laboratory settings22,24–26,46. Many were
performed peri-operatively with externalized leads24,26,46, which differs greatly from the
home environment with a fully implanted stimulator and decoder. Perioperative
experimentation also precludes the optimization of cDBS parameters by an expert
neurologist, which usually takes several months47, and therefore does not represent a
rigorous comparison to actual standard of care. We recently described a case report
suggesting benefit of home-based embedded aDBS in one patient9, but the study was
restricted to four days in an unblinded subject.

Here, we addressed these limitations and implemented aDBS algorithms in naturalistic
settings for multiple weeks during patients' routine daily activities, including work, travel,
and sleep. The algorithm was tested repeatedly in short blocks of several days to
minimize systematic confounds from situational influences on patient ratings. We
personalized each algorithm to the patients’ specific clinical needs and compared aDBS
to standard of care cDBS that had been optimized by a movement disorders neurologist
over several months. This study is the first to systematically assess real-life adaptive
stimulation for PD in a naturalistic context.

The additional improvement in PD motor signs using aDBS was achieved by delivering
more total electrical energy compared to cDBS in all patients. These systems therefore
delivered greater stimulation during hypokinetic periods (e.g., with bradykinesia) than
would be tolerated during cDBS. These results differ from most laboratory-based
studies of aDBS whose goal has been reducing total electrical energy24,26. The recent
commercialization of rechargeable pulse generator batteries diminishes the clinical
importance of conserving electrical energy.

Limitations

The sample size was five brain hemispheres within three patients. While the group
included a variety of residual motor signs and robust individualized N-of-1 statistics, the
generalizability of the results may be limited. The aDBS algorithms here operated on an
intermediate time scale35; we did not implement very fast time scale “burst trimming”
algorithms that have shown benefit during in-laboratory tests24,36. While this study
represents the longest assessment of aDBS to date, its application was limited to a
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duration of one month. It is likely that with progression of PD, changes in medications or
lifestyle, updates to the adaptive algorithm might be needed. While having a
standardized pipeline for setting many aDBS parameters mitigates the challenge of a
large parameter space, configuring personalized aDBS was nevertheless
labor-intensive, required physiological expertise and may not be ready for widespread
dissemination. Machine learning techniques to further automate aDBS algorithm design,
and indeed to periodically update algorithms based on scores from wearables or patient
reported problems, may be important for translating this technique to neurology clinics
outside of specialized centers48.

Summary

We demonstrate for the first time the benefit of aDBS to improve residual motor signs
that persist in the setting of clinically optimized standard-of-care cDBS. aDBS improved
the duration of patients’ most bothersome motor signs without aggravating other motor
and non-motor symptoms, and improved patients’ quality of life. For aDBS algorithms
designed to reduce residual motor fluctuations, we identified STN and cortical
finely-tuned gamma oscillations, entrained at half stimulation frequency, as optimal
control signals. The results were achieved by employing data–driven neural biomarker
identification, controlling for independent effects of stimulation amplitude. Our findings
highlight the benefit of multi-site brain recordings and at-home neural recordings with
wearable monitors for configuring aDBS algorithms and have potential to inform the
development of aDBS for other neuropsychiatric conditions.
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5. Methods

Patient evaluation and DBS device

Patients

We recruited three patients with PD from a population undergoing DBS implantation for
motor fluctuations (male, age range: 57-68 years, disease duration: 7-12 years,
pre-surgery off-medication Movement Disorder Society Unified Parkinson's Disease
Rating Scale [MDS-UPDRS]-III scores: 30-49). A movement disorders neurologist
evaluated and confirmed the diagnosis of PD based on established diagnostic criteria
and a neuropsychologist excluded significant cognitive impairment or untreated mood
disorders. The inclusion criteria comprised motor fluctuations characterized by
prominent rigidity and bradykinesia in the off-medication state, baseline off-medication
MDS-UPDRS-III scores between 20 and 80, a greater than 30% improvement in
MDS-UPDRS-III scores with medication compared to the off-medication state, and the
absence of significant cognitive impairment (Montreal Cognitive Assessment score of 20
or above). Patients provided written consent in accordance with the Declaration of
Helsinki. The Institutional Review Board of the University of California San Francisco
gave ethical approval for this work. The study was registered on ClinicalTrials.gov
(NCT03582891). The study protocol and the IDE application (G180097) are available
through the Open Mind initiative (https://openmind-consortium.github.io).

Surgical procedure and DBS device

All patients underwent bilateral placement of cylindrical quadripolar deep brain
stimulator leads (Medtronic model 3389) into the STN and bilateral quadripolar paddles
(Medtronic model 0913025) into the subdural space over the sensorimotor cortex (Fig.
1a-b, Extended Data Fig. 1). The leads were connected to an investigational
sensing-enabled implantable pulse generator (Medtronic Summit RC+S model
B35300R) that was placed in a pocket over the pectoralis muscle bilaterally so that each
pulse generator was connected only to ipsilateral leads. STN leads were initialized as
contacts 0 to 3 (0 was the deepest contact), and cortical leads were initialized as
contacts 8 to 11 (8 was the most posterior contact). Two months after surgery, the
locations of the leads were verified using postoperative computed tomography (CT)
scans. A more detailed account of the surgical implantation can be found in a previous
publication9.

Summit RC+S is an investigational rechargeable bidirectional neural interface. It is
capable of streaming four bipolar time domain channels simultaneously while providing
standard therapeutic stimulation on up to two quadripolar leads. It can also perform
aDBS using fully-embedded algorithms. The applications for sensing and aDBS were
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written in our laboratory in the device’s application programming interface, comply with
FDA regulations for medical device software (CFR 820.30) and are available at
https://openmind-consortium.github.io. Each RC+S system employs radiofrequency
telemetry to establish wireless communication with an external compact relay device,
which in turn transmits data to a Windows-based tablet using Bluetooth technology
within a range of up to 12 m. This setup facilitates the capture of local field potentials
and electrocorticography from a maximum of four bipolar electrode pairs, enabling
continuous sensing during stimulation for up to 30 hours before requiring a recharge.
The tablet is situated at patients’ homes and hosts custom software that allows for
remote adjustment of streaming parameters and embedded adaptive DBS algorithms
via an interface only accessible to researchers. Patients are able to initiate and stop
streaming and report both medication intake and motor symptoms using a separate
patient user interface. Further details on device characteristics are outlined in previous
publications5,9,33.

Lead Reconstruction

Electrode positions were reconstructed by linearly coregistering postoperative CT
images to preoperative T1-weighted 3T magnetic resonance imaging (MRI) scans
through rigid Euclidean transformation (Extended Data Fig. 1 a-d). The LeGUI toolbox
(Version 1.2)49 was used to perform automated correction for brain shifts50 and to
localize electrodes to the MRI-rendered pial surfaces (Extended Data Fig. 1 e-g). Depth
lead positions were reconstructed using the Lead-DBS toolbox (Version 2.6)51 and,
when necessary, the PACER method52 was used to correct for brain shifts. For group
analysis, electrode locations were normalized into Montreal Neurological Institute (MNI)
space and STN leads were visualized using the DISTAL atlas53 (Fig. 1b).

Optimization of continuous DBS

For each patient, cDBS was optimized before initiating aDBS. Optimization was
performed by an independent movement disorder neurologist over a range of 11-31
(mean±standard deviation 22±10) months, with 5-10 (7.0±2.65) clinician visits. In
addition, patients were allowed to make adjustments within a range of 1.6-4.0 mA
(mean±standard deviation amplitude span: 2.9±0.9) at home (i.e., self-optimize
stimulation). Clinical optimization was attempted first with “sense friendly” contact
configurations (monopolar stimulation at contacts 1 and/or 2) but clinicians were allowed
to use non-sense friendly stimulation montages if those proved clinically superior.
Further, the clinical neurologist modified medications as needed (Fig. 1c). The patient's
participation in our study therefore did not constrain the clinical optimization of cDBS,
except for ensuring the DBS system was set to the same stimulation frequency on both
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sides (to avoid sensing artifacts generated by the presence of two systems providing
stimulation at different frequencies)54.

Seven-step pipeline to design and implement adaptive DBS: overview

We devised an individualized, seven step data-driven pipeline to implement aDBS to
treat residual motor fluctuations persisting after clinical optimization of cDBS (Fig. 2).
We first identified residual bothersome motor signs on optimized cDBS (step 1). We
established appropriate high and low limits for aDBS that were typically 0.5-1.0 mA
higher or lower (respectively) than the optimized cDBS amplitude (step 2). We
determined neural signals or “biomarkers” that best correlated with residual motor signs
(steps 3 and 4). To identify reliable biomarkers of motor state for real-world aDBS, it was
critical to study neural data collected across the range of medication effects and
stimulation amplitudes that would be used during aDBS, and to identify signals
modulated more by the patient’s underlying motor state than by the current stimulation
amplitude. This was accomplished using in-clinic (step 3) and at-home (step 4) neural
recordings in which both medication state and stimulation state varied. The at-home
data streaming step was important to ensure that biomarkers identified in idealized,
investigator-controlled conditions in the clinic could function in naturalistic settings. We
then established appropriate control parameters to adjust stimulation amplitude in
response to neural signals (steps 5 and 6). Finally, patients underwent a blinded,
randomized comparison between cDBS and aDBS over a month per condition,
conducted during patients' normal lives (including work and travel) on the schedule of
medications established during cDBS optimization (step 7).

Identification of patients’ residual motor signs on clinically optimized cDBS

Patients identified their most bothersome persistent motor problem while on clinically
optimized cDBS (e.g., bradykinesia) in collaboration with a movement disorder
neurologist (Fig. 1c and Fig. 2). Additionally, the most bothersome symptom in the
opposite medication state (e.g., dyskinesia) which limited the therapeutic window during
cDBS was identified. The goal of aDBS was to improve the most bothersome symptom
without exacerbating the opposite symptom. For one patient, residual bothersome motor
fluctuations on optimized cDBS were restricted to the right side of the body; therefore,
we developed a unilateral adaptive algorithm for the left hemisphere (pat-1). The
remaining two patients received bilateral, independent, adaptive stimulation algorithms
(pat-2 and pat-3).

Determining individualized stimulation amplitude limits

We calibrated stimulation amplitudes for each patient, both on- and off- dopaminergic
medication–in their hyper- and hypokinetic states, respectively–to determine the optimal

14

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 8, 2023. ; https://doi.org/10.1101/2023.08.03.23293450doi: medRxiv preprint 

https://www.zotero.org/google-docs/?Ova8tn
https://doi.org/10.1101/2023.08.03.23293450
http://creativecommons.org/licenses/by-nc-nd/4.0/


amplitude limits for symptom control to be used for aDBS (Fig. 5a). Specifically, a
movement disorders neurologist defined the low stimulation amplitude as the amplitude
that mitigates adverse effects in the hyperkinetic state without causing breakthrough
hypokinetic symptoms. Similarly, the high stimulation amplitude was identified as the
amplitude that effectively manages hypokinetic symptoms, such as bradykinesia, while
avoiding DBS adverse effects, such as dysarthria.

Monitoring motor signs

During in-clinic recordings (step 3), motor signs were assessed by a clinician using
standardized rating scales. For biomarker identification at-home (step 4) and symptom
monitoring during adaptive testing (step 6, step 7), we chronically monitored symptoms
using wristwatch-style wearable monitors on each wrist (Parkinson’s KinetiGraph®,
PKG®, Global Kinetics). These wearables employ a proprietary algorithm30 to provide
validated scores of bradykinesia and dyskinesia in two-minute intervals. By
synchronizing the neural data offline with these scores, we established brain-behavior
correlations with high temporal resolution. To validate wearable outcome measures in
our cohort and determine the correspondence between wearable scores and
troublesome symptoms in each individual, patients completed motor diaries every 30
minutes during at least two days while wearing the monitors. Because the completion of
motor diaries is effortful and difficult to maintain during normal daily activities, we
thereafter relied on wearable data when applicable for symptom analyses to reduce
patient burden.

Neural recordings

At multiple times during steps 3-7, patients streamed neural data and reported
medication intake and motor symptoms using the patient graphical user interface on the
streaming tablet. We sampled neural time series data from one subcortical and two
cortical leads in bipolar configuration. We used sampling rates of 250-500 Hz to
minimize data loss that may occur at higher sampling rates9. STN LFPs were recorded
in a bipolar configuration with contacts immediately adjacent to the stimulating cathode,
providing common mode rejection of the stimulus artifact during active stimulation.
Cortical recordings were performed in non-overlapping bipolar pairs with cortical
montage 1 referring to the anterior montage which has at least one or both electrode
contacts on precentral gyrus, and cortical montage 2 referring to the posterior montage
that has at least one or both electrode contacts on postcentral gyrus. Data were
encrypted and uploaded to a secure cloud environment.
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Biomarker identification: details of steps 3 and 4

Data collection procedure

In step 3, we recorded neural data off- and on-dopaminergic medication in-clinic, thus in
provoked hypo- and hyperkinetic states, during stimulation at the previously identified
low and high stimulation amplitudes. We performed off-medication recordings after at
least 12 hours of overnight medication withdrawal. For each of the four combinations of
medication state and stimulation amplitude, we obtained 26.5±5.84 (mean±standard
deviation) minutes of recordings while patients performed a standardized set of
activities including walking, resting, speaking, and eating and the MDS-UPDRS-III. We
then confirmed the applicability of the in-clinic biomarker in a real-life setting at patients'
homes (step 4). To that end, patients recorded neural data during their regular daily
activities while we monitored symptoms using wearable devices and motor diaries.
Patients recorded at least two levodopa medication cycles of neural data at both low
and high stimulation amplitudes. During streaming days, we recorded neural time-series
data and onboard power of the device in the frequency bands of interest defined based
on in-clinic recordings.

Neural data analysis

We performed all analyses using MATLAB 2021a (The Mathworks, Natick, MA, USA)
and the FieldTrip toolbox55. We first computed the power spectral density of
non-interrupted time segments of the neural signal using Welch’s method with 1 s
windows and 95% overlap mimicking RC+S embedded system capabilities. We
calculated power spectral density over 2-100 Hz in non-overlapping 2.5 s epochs of
time domain signals using a 1 Hz spectral resolution. The RC+S device streams data to
a laptop computer and time stamps the neural data using the computer clock, which we
used to synchronize neural data with wearable monitors.

Statistical analysis for identification of biomarkers: overview

We employed a data-driven approach integrating non-parametric statistics and machine
learning to identify patient-specific neural biomarkers (Extended Data Fig. 4). By
analyzing the entire available frequency range in both the STN and sensorimotor cortex
(2-100 Hz), we identified physiological signals that reliably predicted each patient's most
bothersome or opposite motor symptom. We ensured these physiological signals were
not independently influenced by stimulation changes (Extended Data Fig. 5) in a
direction that could lead to undesired cyclic behavior in the control system unrelated to
symptom fluctuations33. For the analysis of in-clinic data, we assessed the main effects
of medication and stimulation, as well as their interactions, using a 2x2 factorial design.
To this end, we employed a non-parametric cluster-based permutation analysis—a
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widely-used neuroscientific method that operates free of a priori assumptions regarding
the data distribution. It further allows exploration of the complete frequency spectrum
while effectively controlling for multiple comparisons56. At-home recordings provided a
rich dataset with long-term neural time series and continuous symptom monitoring in
patients’ naturalistic environment, therefore we did not have to rely on decoding
medication states. We instead used stepwise-linear regression to predict
bothersome/opposite symptoms for patients with continuous symptom monitoring (i.e,.
upper limb symptoms measurable by wrist-watch style wearables), and a linear
discriminant analysis (LDA) based method for binary-classified (rather than continuously
scaled) symptoms, i.e., presence or absence of lower limb dystonia. We also expanded
this LDA method to all patients by identifying data-driven mappings between continuous
wearable scores and self-reported symptom labels. Both the non-parametric
cluster-based analysis and the linear stepwise regression explicitly modeled the
contributions of stimulation effects, whereas this effect was implicitly addressed with the
LDA by using equal distribution of stimulation amplitudes within the training data sets.

Statistical analysis of in-clinic data: details

To implement non-parametric cluster-based permutation, we ranked the test statistic
(here sum of t-values) of the empirical in-clinic data within a permutation distribution
obtained by randomly assigning condition labels to each data segment. We matched the
amount of data for each condition (medication and stimulation state) by drawing equally
as many samples from each of the four conditions (1000 random draws), and thereafter
ranked clusters among 1000 surrogates and assessed the main effects of medication
(across stimulation conditions) and stimulation (across medication states), as well as
their interaction on power, using two-sided statistical tests57. We determined effect size
using Cohen’s d and selected the neural signal with the largest main effect of
medication as the optimal control signal. We ensured the neural signal for adaptive
control was unaffected by independent contributions of stimulation to prevent adverse
impact on the performance of the adaptive algorithm (Extended Data Fig. 5). This
involved confirming the stimulation amplitudes for adaptive control did not produce any
significant amplitude augmentation of on-state biomarkers (neural signals that increase
after medication intake or during hyperkinetic states), nor any significant amplitude
diminution of off-state biomarkers (neural signals that decrease after medication intake
and increase during hypokinetic states). Statistically this is expressed as positive or
negative effects of stimulation amplitude, respectively. We assessed effects in the STN
and the two cortical regions separately and Bonferroni-corrected p-values for multiple
comparisons. We used an alpha level of 0.05.
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Statistical analysis of at-home data: details

For at-home data, we used two analysis approaches. For patients 1 and 3, continuous
wearable data tracked their most bothersome/opposite symptoms. Thus, we calculated
a linear stepwise regression using data from all three brain regions and the frequency
spectrum from 2-100 Hz as predictors for the most bothersome symptom (pat-1:
bradykinesia), or the opposite symptom that limits the therapeutic window (pat-3:
dyskinesia). We z-scored predictors and modeled stimulation amplitude as an additional
feature in order to extract independent contributions of power bands to symptom
prediction. We excluded episodes in which the wearable score indicated an immobility
level predictive of sleep (bradykinesia score >8058) or the monitor was labeled as being
off-wrist. However, as we could not rule out neural data being recorded during daytime
naps completely, we excluded very low frequencies as predictors that can be
confounded by sleep (2-4 Hz)59. Using this method, we identified the strongest predictor
of patients’ symptom states. We Bonferroni-corrected p-values for multiple comparisons
(289 predictors) and used an alpha level of 0.05.

For patient 2, their most bothersome symptom, i.e., lower limb dystonia, could not be
measured with wearables. Instead, this patient completed motor diaries at least every
30 minutes indicating the presence or absence of lower limb dystonia during neural
streaming. We used an LDA based method to identify patient-specific neural signal
biomarkers that maximized discriminability between the presence and absence of the
most bothersome symptom. Initially, we identified the top five candidate 1 Hz power
bands from the neural signal spectra. These bands were selected based on their ability
to maximize the area under the receiver operating curve (AUC) through a
1000-repetition Monte Carlo cross-validation. The validation process involved randomly
drawing an equal number of data points at both stimulation amplitudes, with a 10%
subset used for testing. Within each fold of the Monte Carlo cross validation, the optimal
band widths for these potential biomarkers were optimized as a hyperparameter via a
nested 10-fold cross validation. The final power band width for each of the five potential
biomarkers was chosen as the aggregation of 1 Hz bands that were present in 99% of
the Monte Carlo folds.

Given the RC+S device’s embedded aDBS capabilities rely on discrete classification of
neural signal biomarkers, we additionally assessed patient 1 and 3’s at-home data using
the LDA method. To implement this for these patients, we used a nonlinear optimization
(MATLAB fminbnd function) to identify patient-specific dichotomizing boundaries that
best mapped the continuous wearable symptom scores into binary symptom labels (i.e.,
symptom present versus not). Data used for this optimization drew from days when
patients provided simultaneous motor diaries and wearable symptom metrics. The
optimization value function was the F1 score for predicting the motor diary symptom
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label from the contemporaneous wearable score’s relationship to the dichotomizing
boundary (whether above or below). Boundary values calculated for dyskinesia scores
ranged from 8.5-14.1 and bradykinesia scores ranged from 11.7-21.7.

Offline assessment of biomarker performance

Given the preponderance of literature highlighting STN beta power’s potential as a
neural signal biomarker for aDBS, we compared the offline prediction of medication
state/symptoms (Step 3: Cohen’s d, Step 4: regression statistics and LDA AUC) by our
identified biomarkers to that of subthalamic beta power bands. Beta bands used for this
comparison were identified by repeating the above analyses for Steps 3 and 4 while
constraining the search to subthalamic frequency bands within the beta range (13-30
Hz).

Because the RC+S system is capable of using up to four neural biomarkers as inputs
into its aDBS systems, we also assessed the potential additional benefit of using beta
band biomarkers in conjunction with our biomarkers. LDA identified the optimal linear
combination of the two subject-specific biomarkers (data-driven and STN
beta-constrained) to predict the presence/absence of bothersome symptoms. The
significance of AUC changes resulting from using STN beta power (identified from Step
3) in addition to the data-driven frequency band was assessed by comparing the
resulting AUC to a surrogate distribution of AUC values. The surrogate distribution was
produced by LDA classifiers using the data driven band and one of 1000 randomly
selected power bands of analogous width to the beta band, but unconstrained to
anatomic location or frequency range.

Optimization of adaptive parameters: details of steps 5 and 6

The stimulation contact, frequency, and pulse width remained consistent between aDBS
and cDBS, with only the stimulation amplitude varying in response to estimates of the
patient’s clinical state (i.e., presence of symptoms). During steps 5 and 6, we identified
and refined additional parameters that governed both how clinical state estimates were
predicted from data-driven biomarkers and the system’s temporal dynamics. To briefly
summarize these parameters: the embedded aDBS platform uses windows of time
domain data with frame shifts at specified intervals to compute the fast Fourier
transform (FFT). Thereafter, it calculates the input signal for the control algorithm, the
linear detector (LD), by averaging the signal across a researcher-specified number of
FFT windows, known as the update rate. The temporal resolution of the LD is therefore
determined by the sampling frequency, FFT window, FFT interval, and update rate. At
each update, the input signal is compared to researcher-identified thresholds in order to
predict the patient’s clinical state (i.e., whether they are having a symptom that requires
stimulation adjustment). The device allows up to two thresholds to be set per detector,
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corresponding to three states (Extended Data Fig. 6c-e). Changes in stimulation are
then governed by a look-up table for each clinical state. The temporal dynamics of the
final adaptive algorithm can also be influenced by the tolerated stimulation ramping time
(e.g., 0.1 mA/s ramp rate for 2.0 mA increase in stimulation amplitude=20 seconds) and
the onset and termination rate, which define the number of “updates” the LD is required
to be above or below the threshold to result in a change of stimulation amplitude.

In step 5, we performed supervised testing of an initial adaptive algorithm to find
individualized ramp rates and assure patient comfort with stimulation amplitudes (e.g.,
avoiding paresthesia). We used the predictive power bands identified in the previous
steps and chose thresholds to trigger state changes based on visual inspection of the
control signal. In this step of our workflow, we were interested in many state transitions
during the brief testing period in-clinic in order to test adaptive parameters during
stimulation changes for aDBS. We thus used an aDBS algorithm with relatively fast
temporal dynamics that differed from algorithms implemented at home (update rate=1.5
s, onset and termination period=0). After identifying optimal ramp rates during which
patients did not perceive stimulation changes, we moved on to unsupervised at-home
testing of adaptive algorithms in step 6, the aDBS optimization phase.

During step 6, patients first streamed the selected neural biomarker as an on-board
power band with the fastest temporal dynamics possible for several days on cDBS
alongside symptom monitoring to obtain an initial set of aDBS parameters. We
monitored symptoms using wearables and patient comments on symptom onset and
offset in the patient-facing app on the tablet. Thereafter, we conducted brief 24-hour
unblinded tests of aDBS algorithms, in which we refined thresholds, onset and
termination periods and, if necessary, stimulation amplitudes based on aDBS’ effects on
symptoms (see Mitigating noise and artifact effects). Subsequently, we performed
24-hour blinded testing and assessed aDBS performance on daytime symptoms and
sleep quality using a daily symptom application as an outcome measure (see Procedure
and outcomes measures). We assured that aDBS algorithms did not decrease sleep
quality, in which case we would consider developing a sleep-aware algorithm by adding
a second neural biomarker for sleep, e.g., cortical low delta power11. A detailed
summary of the final adaptive stimulation parameters can be found in Extended Data
Fig. 6b. A comprehensive set of starting parameters for algorithms on a similar time
scale of minutes to hours is summarized in Extended Data Fig. 6a.
Thresholds for state transitions

We identified LD thresholds separating times with and without the most bothersome
motor sign in step 6. Preliminary thresholds were calculated based on several days of
streamed LDs during cDBS and thereafter fine-tuned based on results from adaptive
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testing. We used a binary classification algorithm aimed at balancing sensitivity and
specificity while considering patient preference. We used a receiver operating
characteristic curve (ROC) to identify the threshold points on the ROC curve for optimal
trade-off between true and false positive rate60. Initially, we used a single threshold
algorithm for all patients and continuously monitored neural data and symptoms
(Extended Data Fig. 6c).

Mitigating noise and artifact effects

To mitigate noise that could lead to erroneous stimulation changes, we employed three
strategies. Firstly, we reduced inherent noise by decreasing temporal resolution, i.e.,
smoothing the LD by increasing the update rate. To ensure adequate responsiveness of
the algorithm, we enforced a maximal averaging of one minute. If the biomarker
signal-to-noise ratio still resulted in erroneous threshold crossings, we introduced a
middle state as a noise buffer zone, in which stimulation amplitude remained constant
(Fig. 5c, Extended Data Fig. 6e). Alternatively, if we observed brief and rare artifacts, we
increased the onset and termination duration. Each of these parameter changes was
guided by the patients’ symptoms and satisfaction as assessed by questionnaires and
wearable devices for several days. To mitigate the potential effects of artifact produced
by stimulation ramping33, a detector blanking period exceeding the update rate by one
second was implemented such that the algorithm ignored neural signal spectral content
calculated during a change in stimulation. To mitigate the potential for electrocardiogram
artifacts seen in other sensing DBS devices61,62, charge at the tissue-electrode interface
was actively redistributed after the stimulation impulse was delivered (“active
recharge”).

Blinded randomized comparisons of continuous and adaptive DBS

Procedure and outcome measures

In our final step 7, we conducted a blinded, randomized comparison between the effects
of aDBS and clinically optimized cDBS on motor signs. Both stimulation conditions were
applied for blocks of 2-4 days over the course of one month per condition at patients'
homes. To assess outcomes, we utilized patients' daily symptom diaries and wearable
data. We asked patients to complete the daily symptom diary implemented as a custom
electronic questionnaire every night before bedtime. The questionnaire focused on the
total number of hours spent with symptoms, symptom severity, and a quality of life
(QoL) score validated for daily assessment of health-related QoL (EQ-5D)63. Evaluated
symptoms included the most bothersome and opposite symptom as well as a range of
additional common motor symptoms (bradykinesia, dyskinesia, tremor, dystonia,
dysarthria, and gait disturbance; Extended Data Fig. 8). We included one question
asking patients to rate their quality of sleep. Symptom severity and sleep quality were
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rated on a scale from 1-10. We also assessed nonmotor symptoms (depression,
anxiety, apathy, and impulsivity) using the wording of the four-point scale modeled off
the MDS-UPDRS-I64. In addition, we inquired daily about patients’ perceived stimulation
condition (aDBS/cDBS) and the underlying rationale. They were given the choice to
attribute their experience to unusual sensations related to changes in stimulation, as
well as improvements or worsening of motor symptoms. One patient perceived
paresthesias during the beginning of the testing period. We therefore excluded these
data points and reduced the aDBS ramp rate for future testing.

Evaluation of the wearable monitor scores focused on quantifying changes in motor
fluctuations. Logs from the DBS device during both aDBS and cDBS days indicated the
time stamps at which the LD changed its estimate of clinical state , which allowed us to
label wearable scores as being present during hypokinetic or hyperkinetic periods.
Within each day, bradykinesia and dyskinesia scores were averaged for each clinical
state. Our primary metric for assessing effect on motor fluctuations between cDBS vs
aDBS (fluctuation score) was the within-day difference in symptom (both bradykinesia
and dyskinesia) magnitude between hypokinetic and hyperkinetic states. We also
assessed the difference in bradykinesia score magnitude during hypokinetic states
between cDBS and aDBS days, and the difference in dyskinesia score during
hyperkinetic states. Each brain hemisphere/contralateral hemibody pair were assessed
independently.

Furthermore, using logs from the DBS device, we calculated the percentage of each
aDBS day and night spent at the high and low stimulation amplitudes and the daily
average consecutive duration of each stimulation amplitude in hours. Finally, we
calculated the total electrical energy delivered (TEED) per second during both
stimulation conditions assuming an impedance of 1000 Ω for both day and night time65.

Statistics of adaptive versus continuous DBS effects

We performed within-subject statistics to compare the clinical effects of aDBS to cDBS.
Given smaller sample sizes, we used nonparametric statistical tests. For each subject,
we used the Wilcoxon rank sum test to assess planned comparisons of the nightly
questionnaire data for the percentage of awake hours with the patient’s bothersome
symptom, the percentage of awake hours with the patient’s opposite symptom, and
quality of life scores. Similar methods were used to evaluate within subject/hemisphere
differences in wearable monitor motor fluctuation metrics for the bothersome and
opposite symptom (in the two patients with upper limb symptoms). For questionnaire
data in addition to these planned comparisons (such as other motor symptoms and
non-motor symptoms) and other wearable metrics, we used the Wilcoxon rank sum test
adjusting for multiple comparisons using the false discovery rate procedure. For patient
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3, who had bilateral aDBS systems, the wearable metrics for the two hemibodies were
corrected separately for multiple comparisons.
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6. Figures

Figure 1. Configuration of implanted hardware, algorithmic model and patient
demographics. a, Illustration of the adaptive paradigm starting with real-life sensing of brain
activity (blue) that reflects changes in patient’s mobility–in this example slowness of movement
(bradykinesia). Neural activity is sensed continuously on-board the DBS device from either the
STN or sensorimotor cortex using depth or subdural electrodes, respectively. Here, we illustrate
an example of a cortical control signal for fully-embedded adaptive implementation. Once a
change in the brain signal across a predefined threshold is detected (green), the stimulation
amplitude increases or decreases automatically (red) at the target brain region (STN). This
adaptation of stimulation amplitude to the patient’s needs leads to improved symptoms–in this
example, increased stimulation amplitude results in faster movement. b, Localization of depth
leads in the STN with active contacts colored in red across patients in normalized Montreal
Neurological Institute space. STN is highlighted in orange and the red nucleus in red. c, Patient
characteristics including pre- and post-surgery levodopa equivalent daily dose (LEDD, mg) and
residual motor fluctuations on clinically optimized cDBS, including the body side, the most
bothersome symptom and the “opposite” symptom, referring to the opposite medication state,
such as hyperkinetic symptoms for hypokinetic bothersome symptoms, or effects of DBS that
limit the therapeutic window (e.g., effects on speech).
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Figure 2. Workflow for data-driven biomarker identification and aDBS implementation.We
employed a workflow consisting of seven steps. These steps involved identifying bothersome
symptoms and required stimulation amplitudes for symptom control for each patient (steps 1
and 2), in-clinic and at-home neural recordings with simultaneous symptom monitoring for
biomarker identification (steps 3-4) and refining parameters for patient-tailored adaptive
algorithms using supervised short-term (step 5) and long-term (step 6) at-home testing. The
workflow culminated in blinded, randomized comparisons between cDBS and aDBS in multiple
blocks of 2-4 days per condition (total of one month per condition) in patients’ real-life
environments (step 7).
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Figure 3. Examples of stimulation-entrained finely-tuned gamma oscillations in both
in-clinic and at-home recordings. a, Example spectrogram of cortical activity in the
on-medication state during systematic variations in stimulation amplitude (black dotted line),
illustrating the phenomenon of stimulation-induced entrainment of gamma oscillations at half of
the stimulation frequency (pat-1). Levodopa-induced finely-tuned gamma (FTG) oscillations
occur at 80-90 Hz when stimulation amplitudes are low but become entrained to half the
stimulation frequency (65 Hz) when stimulation exceeds a certain amplitude (1.5 mA in this
example). b-c, Examples of biomarker identification using standardized in-clinic neural
recordings (b, pat-2L, c, pat-1). Plots show power spectra during on- and off-levodopa states
(mean±standard error of the mean), i.e., periods during which hyper- and hypokinetic symptoms
would emerge, respectively. Recordings are collapsed across low and high stimulation
amplitude conditions, which were both amplitudes at which FTG entrained to half the stimulation
frequency. We found that medication yielded the largest effect on entrained finely-tuned gamma
power at half the stimulation frequency in the STN (b, pat-2L) and motor cortex (c, pat-1) when
controlling for effects of stimulation (Extended Data Fig. 2). Significant clusters are highlighted in
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gray. d-e, At-home recordings during constant stimulation amplitude and patients’ normal
medication schedule in the STN (d, pat-2L) and motor cortex (e, pat-1). Patients marked their
medication intake (red dashed line) and on- and off-set of their most bothersome symptom in
their motor diary (completed in 30-minute intervals) and the streaming application9. Both
patients had bothersome off-state symptoms, lower limb-dystonia (d, pat-2) and bradykinesia (e,
pat-1). For both, FTG oscillations occur ~45 minutes after medication intake (red arrows),
corresponding to a typical latency of onset for dopaminergic medication. When the patient
marked their most bothersome symptom (indicated by the black dashed line) in their motor
diary, FTG oscillations disappeared, indicating a transition to an off-medication state.
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Figure 4. Data-driven biomarker identification for all hemispheres. a-b, Results of the
within-subject nonparametric cluster-based permutation analysis for in-clinic recordings. a,
Graphs illustrate the effect size (Cohen’s d) of the main effect of medication on power as a
function of frequency in the STN (left), cortical montage 1 (middle), and cortical montage 2
(right) for all patients. Red and blue colors represent positive effects (medication on >
medication off) and negative effects (medication off > medication on), respectively. For all
patients, we found finely-tuned gamma (FTG) oscillations in the STN (pat-2, both hemispheres)
and cortex (pat-1, left hemisphere and pat-3, right hemisphere) to be the optimal biomarker for
medication-related fluctuations during active stimulation (Extended Data Fig. 2). We did not find
any significant effects in the left hemisphere of pat-3. b, The effect sizes for cortical and STN
FTG oscillations (right) were superior to those for STN beta oscillations (left) for all patients
(mean±standard error of the mean across permutations). c-e, Results of the within-subject linear
discriminant analysis for at-home recordings using power spectral density at the three brain
sites to predict the occurrence of the most bothersome symptom. c, The three graphs illustrate
the initial area under the curve (AUC) prior to bandwidth optimization as a function of frequency
for the STN (left), cortical montage 1 (middle), and cortical montage 2 (right) for all patients.

28

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 8, 2023. ; https://doi.org/10.1101/2023.08.03.23293450doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.03.23293450
http://creativecommons.org/licenses/by-nc-nd/4.0/


Across patients, we show that FTG oscillations in the STN (pat-2, both hemispheres) and cortex
(pat-1, left hemisphere and pat-3, both hemispheres) were the best predictors of the occurrence
of the most bothersome symptom and superior to beta oscillations (d, mean±standard error of
the mean across permutations, Extended Data Fig. 3). e, The combined use of STN/cortical
gamma and STN beta bands provided minimal improvement in the AUC of at-home symptom
prediction using linear discriminant analysis (mean±standard error of the mean across
permutations).
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Figure 5. Characteristics and technical performance of adaptive DBS algorithms. a,
Summary of the final stimulation parameters used for blinded, randomized comparisons
between stimulation conditions including the control signal for aDBS. All parameters but
stimulation amplitude were identical between cDBS and aDBS. b-c, Examples of two control
algorithms using subthalamic (b, pat-2R) and cortical (c, pat-1) finely-tuned gamma oscillations
at half the stimulation frequency as control signals. In each graph, the upper subplot illustrates
the control signal as a function of time with thresholds (black) that are used to determine
changes in stimulation amplitude. The lower subpanel illustrates the stimulation amplitudes
responding to fluctuations in the neural signal. In all patients, we used an on-state biomarker,
such that stimulation amplitude decreases when the biomarker amplitude exceeds a threshold.
Timing of dopaminergic medication intake is marked by dashed red vertical lines. d,e, Dynamics
of algorithm performance showing adaptive changes on a time course of minutes-hours. d, Daily
percent time spent at each stimulation amplitude. e, Average duration of each stimulation
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amplitude state in a day. Each dot represents one day of aDBS testing. Pat-3’s left hemisphere’s
state in the high amplitude has three outliers not currently plotted which include 4.32, 5.15, and
7.32 hours. f, Mean (± standard error of the mean) total electrical energy delivered (TEED)
during aDBS and cDBS, showing increased TEED throughout aDBS in all patients during the
day.
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Figure 6. Effects of aDBS compared to cDBS on both subjective and objective metrics of
motor symptoms and quality of life. a-b, Self-reported symptom duration from daily
questionnaires. a, aDBS resulted in a significantly decreased percentage of awake hours
experiencing the most bothersome symptom (each patient p<0.001). b, Even while reducing
time with the most bothersome motor symptom, aDBS resulted in either no significant change
(pat-1: p=0.56, pat-2: p=1) or an improvement (pat-3: p=0.02) in the percentage of awake hours
experiencing the opposite symptom. c, Quality of life, as measured by the EQ-5D, was improved
for two of three patients (pat-1 and pat-2: p<0.001). The third patient reported very high quality
of life scores, with minimal reported variance for both cDBS and aDBS. d-e, Wearable monitor
scores demonstrating the decreases in symptom intensity fluctuations. Only patients 1 and 3 are
displayed, as patient 2’s bothersome and opposite symptoms were not measurable by a
wearable device. Laterality refers to the brain hemisphere where aDBS was applied (and
therefore contralateral motor sign measurement). d, Fluctuation scores represent differences
between wearable scores during hypo- and hyperkinetic states defined by the neural signal.
Fluctuations were reduced during aDBS compared to cDBS, representing a stabilized clinical
profile throughout the day (pat-1: p<0.001, pat-3R: p=0.005, pat-3L: p=0.046). e, Similar
improvements in the dyskinesia fluctuation score were seen in two of three hemispheres with
aDBS (pat-1: p=0.04, pat-3R: p=0.03). Error bars reflect standard error of the mean.
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