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Abstract 
Background:  

Polygenic risk scores (PRSs) are proposed for use in clinical and research settings for risk 

stratification. PRS predictions often show bias toward the population of available genome-

wide association studies, which is typically of European ancestry. This study aims to assess 

the performance differences of ancestry-specific PRS and test the implementation of multi-

ancestry PRS to enhance the generalizability of low-density lipoprotein (LDL) cholesterol 

predictions in the East Asian population 

Methods 
We computed ancestry-specific and multi-ancestry PRS for LDL using data from the global 

lipid consortium while accounting for population-specific linkage disequilibrium patterns using 

PRS-CSx method. We first conducted an ancestry-wide analysis using the UK Biobank 

dataset (n=423,596) and then applied the same models to the Taiwan Biobank dataset 

(TWB, n=68,978). PRS performances were based on linear regression with adjustment for 

age, sex, and principal components. PRS strata were considered to assess the extent to 

which a PRS categorization can stratify individuals for LDL cholesterol levels in East Asian 

samples. 

Results 

Population-specific PRS better predicted LDL levels within the target population but multi-

ancestry PRS were more generalizable. In the TWB dataset, covariate-adjusted R2 values 

were 9.3% for ancestry-specific PRS, 6.7% for multi-ancestry PRS, and 4.5% for European-

specific PRS. Similar trends (8.6%, 7.8%, 6.2%) were observed in the smaller East Asian 

population of the UK Biobank (n=1,480). Consistent with the R2 values, PRS stratification in 

East Asians (TWB) effectively captured a heterogenous variability in LDL blood cholesterol 

levels across PRS strata. The mean difference in LDL levels between the lowest and highest 

East Asian-specific PRS (EAS_PRS) deciles was 0.82, compared to 0.59 for European-

specific PRS (EUR_PRS) and 0.76 for multi-ancestry PRS. Notably, the mean LDL values in 

the top decile of multi-ancestry PRS were comparable to those of EAS_PRS (3.543 vs. 

3.541, P=0.86). 

Conclusions 

Our analysis of the PRS prediction model for LDL cholesterol further supports the issue of 

PRS generalizability across populations. Our targeted analysis of  the East Asian (EAS) 

population revealed that integrating non-European genotyping data, accounting for 

population-specific linkage disequilibrium, and considering meta-analyses of non-European-



based GWAS alongside powerful European-based GWAS can enhance the generalizability 

of LDL PRS. 

 

Background 

 

Blood lipid levels are a significant, modifiable, and heritable risk factors for coronary artery 

disease (CAD), including low-density lipoprotein (LDL-C)1. Previous studies have 

demonstrated that lipid levels have a moderate-to-high heritability variations, ranging from 20 

to 60%2. Numerous common variants have been discovered in recent genome-wide 

association studies (GWASs) associated with LDL, as well as many other traits3. However, 

the majority of these variants are weakly associated individually with a given trait or disease 

and have limited predictive power. The cumulative effects of several common variants have 

been suggested to contribute significantly to the risk stratification for clinical utility. Methods 

have been developed for analyzing data from these large-scale studies and detecting 

genetic variants and phenotype associations, i.e., one such method is the polygenic risk 

score (PRS). Several studies have evaluated the association between PRS and the risk of 

various conditions4, including lipid traits5, CAD6, cancer7,8, diabetes9, and 

neurodevelopmental disorders.  

 

One of the major issues concerning the translational use of PRS is the strong dependency 

on population specificity. In fact, the performance of PRS can be significantly influenced by 

the linkage-disequlibrium (LD) across variants and allele frequencies that are specific to 

different populations10. As a consequence, PRS has been mostly limited to European 

ancestry cohorts for which larger reference GWAS are available11. In addition to LD and 

allele frequencies also gene-environment interactions might also be responsible for the 

different genetic susceptibilities toward a trait. For instance the genetic liability of lipid levels 

is less understood in East Asian ancestry populations11. Since individuals with East Asian 

ancestry account for more than a fifth of the global population, understanding genetic 

variation in East Asians is crucial to improve risk characterization and preventive 

interventions12. 

 

In the last few years the availability of large population-based cohorts and cross-ancestry 

GWAS enabled also the development of novel computational algorithms to improve the 

generalizability of PRS13,14. A multi-ancestry, GWAS meta-analysis of lipid levels was 

conducted by the Global Lipid Genetics Consortium including 350,000 people of non-

European ancestry, 150,000 East Asian individuals, and approximately  1.65 million people5. 

The study also demonstrated that our understanding of the genetic component associated 



with lipid levels is significantly improved by increasing diversity rather than including 

additional European ancestry individuals. 

 

In this study, we derived ancestry-specific and cross-ancestry PRS to predict serum LDL 

level by first considering all populations and then focusing on East Asian individuals. 

Specifically, we derived six LDL-PRSs: four ancestry-specific PRS (East Asian, South Asian, 

European, African) and two multi-ancestry PRSs (East Asian with European meta-analysis, 

and the four ancestry meta-analysis). The six PRSs were tested among nine population 

groups estimated from the UK Biobank (UKB, n=423,596). We focused on the East Asian 

ancestry group from the UKB and validated the PRS with participants from the Taiwan 

Biobank (TWB, n=68,978). We then tested the associations between PRS and LDL 

cholesterol changes among East Asian individuals in both biobanks. 

   

Methods 

 

Study subjects 

The analysis was performed using genetic and phenotypic data of the UKB and 

TWB. UKB is a population-based cohort study, with over 500,000 individuals aged 

40 to 69 years at the time of recruitment15. We excluded outliers with high genotype 

missing rates, putative sex chromosome aneuploidy, and discordant reported sex vs 

genotypic sex16. We randomly excluded one from each pair of related individuals if 

the genetic relationship was closer than the second degree, defined as kinship 

coefficient > 0.0884 as calculated by the UKB. We applied a previous approach to 

divide UKB individuals into nine ancestry groups by projecting data onto the PCA 

space of 1000 Genomes Project11. 

 

TWB is a Taiwanese-based cohort study, with 68,978 individuals aged from 30 to 75 

across 750k SNPs17. For more overlapping SNPs with PRS models, we imputed the 

TWB cohort. First, we filtered out SNPs based on the missing rate and Hardy-

Weinberg equilibrium. Then, we imputed the genotype with a reference based on the 

whole genome sequencing data of 1,496 Taiwanese individuals. In total, we obtained 

15 million SNPs for 69k Taiwanese individuals as our external validation set. 

 

UK Biobank ancestry grouping 



We assigned the samples to different countries using PC-projection as demonstrated 

in a previous study11. In this previous study, the authors explored different methods 

to classify individuals into ancestry groups using principal component analysis (PCA) 

of genome-wide genotype data. They find that Euclidean distances in the PCA space 

are proportional to genetic differences between populations and recommend using 

this distance measure. They suggest using all principal components to capture 

population structure, as using only two or four is insufficient for distinguishing certain 

populations. They apply PCA-based distance to infer ancestry in datasets and 

propose two solutions: projecting PCs to reference populations or using internal 

data. They demonstrate that these solutions are effective for inferring ancestry and 

grouping genetically similar individuals. Here, we used this approach to define the 

nine ancestry groups based on UK Biobank data and birth country information, with 

some groups including individuals from neighboring countries (namely, East Asian: 

China; European: United Kingdom, Italy, and Poland; African: Nigeria, and 

Caribbean; South Asian: India; Middle East: Iran, and Ashkenazi Jewish). 

Additionally, we defined East Asian subpopulations by projecting samples in the 

1000 Genomes Project PC space considering the five East Asian subpopulations as 

references. 

 

Construction of multi-ancestry polygenic score 

To evaluate the potential of PRS to predict increased LDL cholesterol levels in East 

Asian ancestry. We used the latest Global Lipid Genetics Consortium GWAS  that 

was conducted in different populations to derive an ancestry-specific or multi-

ancestry LDL PRS5.  We considered the summary statistics that did not include UK 

Biobank samples. Six PRSs were created: one for each ancestry (East Asian, South 

Asian, European, African), and two meta-analyses using multi-ancestry GWAS (one 

using East Asian and European ancestry, and the other using the four ancestries).  

PRSs weights were conducted using PRS-CSx13 (accounting for population-specific 

allele frequencies and LD patterns ) and the 1000 Genomes Project as a reference 

panel  that matched the ancestry of each discovery GWAS. The PRS-CSx method 

incorporates summary statistics from different GWAS and links the genetic effects 

across populations using a continuous shrinkage prior that is shared between them. 

This approach allows for more precise estimation of effect sizes by using information 



from the summary statistics and taking advantage of the variation in linkage 

disequilibrium across the discovery samples. By jointly modeling these multi-

ancestry summary statistics, PRS-CSx might be able to better capture the underlying 

genetic effects and produce more accurate predictions. We developed the multi-

ancestry PRS using the “--meta” option provided by the software. We tested each of 

the six PRSs in the nine population groups from the UKB. We then evaluated the 

six PRSs among the East Asian cohort of the TWB. We compared the PRS 

performance between individuals in TWB and two East Asian sub-populations from 

the UKB (namely Han Chinese South [CHS] and Kinh in Ho Chi Minh City, Vietnam 

[KHV]) from the 1000 Genomes Project. Notebly, that most of TWB individuals are 

clustered with the CHS group18. We excluded the other three East Asian 

subpopulations due to sample size limitations. 

 

Assessment of PRS accuracy  

We assessed the prediction accuracy of the six PRSs in the nine estimated 

populations from the UKB and Taiwanese population from the TWB. We 

standardized PRSs to a mean of 0 and standard deviation of 1. Two models were 

used: (1) the full model which included PRS with sex, age, age2 and the first four 

genetic principal components as covariates (formula: LDL ~ PRS + sex + age + age2 

+ PC1 + PC2 + PC3 + PC4), and (2) the reference model which only accounted for 

covariates (formula: LDL ~ sex + age + age2 + PC1 + PC2 + PC3 + PC4). Linear 

regression was performed, and incremental R2 was calculated following previous 

study19 as the difference between the adjusted  R2 of the full model (including PRS 

as an additional predictor) and the reference model. Mean LDL values across deciles 

of EAS_PRS, EUR_PRS, and multi-ancestry PRS were computed in all individuals of 

TWB to evaluate the range of phenotypic variability cover for these PRS.  

 

Results 

Study populations 

In the UK Biobank, the estimated ethnic groups of the United Kingdom (UK) and 

China had significantly different study participant characteristics (Table 1). In 

comparison to people in the United Kingdom (UK), Chinese participants had lower 

LDL concentrations (mean, SD: 3.42 mmol/L, 0.77), lower TC levels (mean, SD: 5.54 



mmol/L, 1.03), and similar HDL levels (mean, SD: 1.46 mmol/L, 0.38). They were 

also younger (mean age, SD: 52.3, 7.71). The Chinese participants had a lower 

percentage of men than the UK (38.8% vs. 45.9%). Participants from China had a 

significantly lower body mass index (BMI) (mean, SD:  24.07 kg/m2, 3.4) than UK 

participants (p-value <2.2 x 10-16). 

 



Table 1 Study participant characteristics stratified by estimated ethnicity in UK Biobank. For continuous variables, p-values from the Welch t-statistic tests are 
reported, while for categorical and binary variables, p-values from Pearson’s Chi-squared tests are reported. HC, hypercholesterolemia; HDL, high-density 
lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol; SD, standard deviation. 

 

Participants, N Males, N (%) Age, Mean (SD) HC Cases, N (%) HC Controls, N BMI, Mean (SD) LDL, Mean (SD) HDL, Mean (SD) TC, Mean (SD) 

UK Biobank 

United Kingdom 423596 194259 (45.9) 56.81 (8.02) 110166 (26.01) 313430 (73.99) 27.4 (4.76) 3.57 (0.87) 1.45 (0.38) 5.71 (1.14) 

Italy 6451 2882 (44.7) 54.5 (8.41) 1624 (25.17) 4827 (74.83) 27.35 (4.94) 3.56 (0.86) 1.45 (0.38) 5.68 (1.12) 

India 6303 3413 (54.1) 53.42 (8.41) 1135 (18.01) 5168 (81.99) 27.42 (4.5) 3.35 (0.85) 1.25 (0.32) 5.31 (1.12) 

Poland 4095 1544 (37.7) 54.4 (7.53) 1088 (26.57) 3007 (73.43) 27.39 (4.96) 3.59 (0.85) 1.49 (0.4) 5.76 (1.13) 

Nigeria 3802 1744 (45.9) 51.95 (8.14) 551 (14.49) 3251 (85.51) 29.82 (5.31) 3.21 (0.84) 1.43 (0.35) 5.17 (1.09) 

Caribbean 2492 898 (36) 52.52 (8.13) 396 (15.89) 2096 (84.11) 29.49 (5.56) 3.28 (0.83) 1.47 (0.38) 5.29 (1.09) 

Ashkenazi 2359 1067 (45.2) 58.09 (7.1) 613 (25.99) 1746 (74.01) 27.13 (4.54) 3.55 (0.9) 1.44 (0.39) 5.68 (1.2) 

China 1480 545 (36.8) 52.33 (7.71) 263 (17.77) 1217 (82.23) 24.07 (3.4) 3.42 (0.77) 1.46 (0.38) 5.54 (1.03) 

Iran 1145 680 (59.4) 51.99 (7.98) 234 (20.44) 911 (79.56) 27.98 (4.55) 3.43 (0.86) 1.28 (0.33) 5.4 (1.11) 

P-Value:  United 
Kingdom/China  <1.1 x 10-16 <2.2 x 10-16 <2.9 x 10-16 <2.9 x 10-16 <2.2 x 10-16 <1.8 x 10-13 0.53 <1.6 x 10-10 

Taiwan Biobank   

Taiwan 68,978 21,495 (31.2) 51.0 (10.9) 8,196 (13.5) 60,782 (86.5) 24.25 (3.8) 3.16 (0.82) 1.43 (0.35) 5.12 (0.93) 



In the TWB, the percentage of men is 31.2% which is lower than the percentage of 

Chinese participants in the UK Biobank, while the age distribution (mean, SD: 51.0, 

10.9) is similar. In addition, TWB individuals had lower levels of lipid traits, including 

LDL (mean, SD: 3.16 mmol/L, 0.82), HDL (mean, SD: 1.43 mmol/L, 0.35), and TC 

(mean, SD: 5.12 mmol/L, 0.93), but higher BMI (mean, SD: 24.25 kg/m2, 3.80). 

 

Evaluation of the PRS in the nine-estimated populations from the UK Biobank 

We assessed the performance of ancestry-specific PRS for the LDL levels across 

the nine estimated populations in the UKB (Figure 1). As expected, the LDL PRS 

derived from European GWAS (EUR_PRS) was associated with the best 

performance in different European populations (namely, United Kingdom, Poland, 

and Italy) and in Middle East populations (namely, Ashkenazi Jews and Iranians). 

Similarly, the LDL PRS derived from African GWAS (AFR_PRS) showed the best 

performance in the population of African origin (Nigeria and Caribbean). The LDL 

PRS derived from the East Asian GWAS (EAS_PRS) was the best performing in the 

Chinese population. Surprisingly, when we tested EUR_PRS and PRS derived from 

the South Asian GWAS (SAS_PRS) in the India participants, EUR_PRS performed 

better than SAS_PRS.  

Concerning the multi-ancestry PRS, we tested a PRS derived from a meta-analysis 

of European and East Asian GWASs (EUR_EAS_PRS), and a global PRS derived 

from a meta analysis of the four ancestries (EUR_EAS_SAS_AFR_PRS). The multi-

ancestry PRS showed comparable prediction to ancestry-specific PRS and seems to 

be more generalizable across populations, specifically for European, Middle East, 

and SAS populations. For instance, for the United Kingdom population, the adjusted 

R2% using EUR_PRS (8.62%) was similar to that using EUR_EAS_SAS_AFR_PRS 

(8.56%). For the AFR and EAS populations, ancestry-specific PRS performed better 

than multi-ancestry PRS. For instance, for the Chinese population, the adjusted R2% 

using EAS_PRS (6.35%) was higher than that using EUR_EAS_SAS_AFR_PRS 

(5.55%). 

 



 

Figure 1. Performance of ancestry-specific and multi-ancestry PRS models for LDL 

across nine sub-population in the UKB. 

Evaluation of the PRS in the Taiwan biobank 

Within the TWB, we evaluated the different ancestry-specific and multi-ancestry 

PRSs for the LDL levels (Figure 2). Similar to our findings in the UKB China 

participants, the EAS_PRS (adjusted R2%=9.3%) also demonstrated better 

performance than EUR_PRS (adjusted R2%=4.5%) in the TWB individuals and had 

even a better performance compared to multi-ancestry PRS (adjusted R2%=6.7%). 

We also compared the performance of PRS between TWB individuals and the East 

Asian sub-populations from the UKB. We found that EAS_PRS has a comparable 

performance specially between populations from TWB (adjusted R2%=6.5%) and 

CHS (adjusted R2=6.1%) from UKB.  

 



 

Figure 2. Performance of ancestry-specific and multi-ancestry PRS models for LDL 

on East Asian populations. 

 

Association between different PRS strata and LDL values 

 

We analyzed the mean of LDL levels in individuals from TWB based on their 

EAS_PRS, EUR_PRS, and multi-ancestry PRS deciles. We compared the difference 

in mean LDL levels between the lowest and highest deciles of EAS_PRS, 

EUR_PRS, and Multi PRS. Our findings showed that in East Asians, EAS_PRS 

explained a wider range of phenotypic variability compared to EUR_PRS. 

Specifically, the difference in mean LDL levels between the lowest and highest 

EAS_PRS deciles was 0.82, while for EUR_PRS it was 0.59 (Figure 3). The mean 

difference in LDL levels between the lowest and highest multi-ancestry PRS deciles 

was 0.76. However, the mean LDL levels in the highest deciles in both EAS_PRS 

and multi-ancestry PRS were the same (LDL mean (mmol/L) = 3.54, P=0.86). 

 

 

 

 

 

 



 
 

Figure 3. LDL mean values across deciles of EAS, EUR and Multi PRSs of East 

Asians (TWB) PRS. 

 

 

Discussion 

In this study aimed at predicting LDL in two EAS populations (from UKB and TWB) 

using the latest Global Lipids Genetics Consortium GWAS. Our findings indicate 

that: 1) ancestry-specific PRS yield better performance in predicting LDL levels, and 

2) multi-ancestry PRSs together with computational approaches integrating 

population specific LD-pattern can be used to enhance the generalizability of PRSs. 

In particular, the multi-ancestry PRSs showed that even relatively small proportions 

of non-European samples can significantly improve prediction in non-EUR 

populations. Our work emphasizes the importance of conducting global GWAS that 

include diverse populations to enhance the generalizability of PRSs, even when the 

availability of diverse population samples is limited.  

Our study further suggest that statistical genetics approaches can be used to take 

advantage of the already available global GWAS data, even when the number of 

non-European samples is limited. One example, the latest Global Lipids Genetics 

Consortium GWAS includes individuals across five genetic ancestry groups: 

admixed African or African (6.0% of the sample), East Asian (8.9%), European 

(79.8%), Hispanic (2.9%), and South Asian (2.5%)5. Recently published Bayesian 

PRS approaches demonstrated an improvement in the accuracy of PRSs in non-

European populations by utilizing common genetic effects across ancestries13,14. 



Another recent study, the authors conducted a benchmarking analysis to compare 

several PRS methods for multi-ancestry analysis in the UKBB dataset, which 

included lipid traits and EAS data using also global lipid consortium GWAS data20. 

The findings of this study provided insights on the use of statistical methods to 

improve prediction performance in non-Europeans.  

The applicability of the findings on the portability of PRS from multi-ancestry meta-

analyses to other traits needs to be taken into account, considering multiple 

factors21. These factors include the heritability of the trait22, genetic correlation23, 

causal variants allele frequencies24, gene-environment interactions25, and the 

inclusion of multi-ancestry populations in GWAS26,27. In a recent study, they 

estimated the cross-ancestry genetic correlation for cholesterol and observed a 

significant genetic heterogeneity between ancestries for total and LDL cholesterol22. 

While many traits exhibit a significant shared genetic correlation across ancestries, 

indicating potential transferability of multi-ancestry PRS28, some traits have specific 

genetic variations that are more commonly found in particular ancestral groups29,30. 

To ensure the effective use of PRS in diverse populations, it is crucial to conduct 

comprehensive investigations considering these factors and include a representative 

range of ancestries in future GWAS studies 31. Moreover, a recent study emphasizes 

the necessity of moving away from discrete genetic ancestry clusters and embracing 

the continuum of genetic ancestries when analyzing and interpreting PGS10. By 

accounting for individual variation and considering the diverse genetic backgrounds 

within populations, more accurate PGS assessments can be achieved.  

By leveraging the available diverse GWAS data, we can improve the generalizability 

of PRSs, and ultimately enhance our ability to predict complex disease risk across 

diverse populations. As such, our study provides valuable insights into the 

development and implementation of PRSs for predicting lipid traits in East Asian 

populations, and highlights the need for continued efforts to increase diversity in 

genetic research while also working on bioinformatics approaches to meta-analyze 

the association signal across different populations. 

 

 
 



Conclusion 

In our study we evaluated the performance of ancestry-specific and multi-ancestry 

PRSs for LDL, in various populations including East Asians from the UK Biobank and 

Taiwan Biobank. The findings corroborated that ancestry specific PRSs performed 

better than out of target population PRSs in the respective ancestry. In particular, the 

EAS_PRS had better performance in East Asian populations, while the EUR_PRS 

showed better performance in European and Middle East populations. The multi-

ancestry PRS analysis showed that even a small proportion of non-European 

samples can significantly improve prediction in non-EUR populations. These findings 

provide valuable insights into the development of PRSs for diverse populations and 

the potential clinical applications of PRSs. On the one hand, our analysis suggests 

that incorporating cross-ancestry GWAS data and utilizing optimized computational 

algorithms to account for population-specific LD-patterns can improve the 

generalizability of PRS. On the other hand, these results further emphasize the 

necessity of enhancing genetic diversity in GWAS studies and establishing large-

scale population-based cohorts to more accurately model the genetic liability of 

multifactorial traits, such as LDL cholesterol. 
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