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Abstract

Motivation: . Genome-Wide Association Studies (GWAS) commonly assume phenotypic and genetic homogeneity that is not
present in complex conditions. We designed Transformative Regression Analysis of Combined Effects (TRACE), a GWAS
methodology that better accounts for clinical phenotype heterogeneity and identifies gene-by-environment (GxE) interactions.
We demonstrated with UK Biobank (UKB) data that TRACE increased the variance explained in All-Cause Heart Failure (AHF) via
the discovery of novel single nucleotide polymorphism (SNP) and SNP-by-environment (i.e. GXE) interaction associations. First,
we transformed 312 AHF-related ICD10 codes (including AHF) into continuous low-dimensional features (i.e., latent phenotypes)
for a more nuanced disease representation. Then, we ran a standard GWAS on our latent phenotypes to discover main effects and
identified GXE interactions with target encoding. Genes near associated SNPs subsequently underwent enrichment analysis to
explore potential functional mechanisms underlying associations. Latent phenotypes were regressed against their SNP hits and
the estimated latent phenotype values were used to measure the amount of AHF variance explained.

Results: .

Our method identified over 100 main GWAS effects that were consistent with prior studies and hundreds of novel
gene-by-smoking interactions, which collectively accounted for approximately 10% of AHF variance. This represents an
improvement over traditional GWAS whose results account for a negligible proportion of AHF variance. Enrichment analyses
suggested that hundreds of miRNAs mediated the SNP effect on various AHF-related biological pathways. The TRACE framework
can be applied to decode the genetics of other complex diseases.

Availability: . All code is available at https://github.com/EpistasisLab/latent_phenotype_project
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Introduction tricular and congestive heart failure are approximately 0.3 [1, 2],
while coronary heart disease (CHD) heritability is 0.5 [3]. Addition-
AHF is a complex trait that results from various underlying con-  ally, plaque displays a heritability of 0.8 when calcified and nearly o

ditions, each influenced by multiple genetic and environmental ~ otherwise [4], which adds heterogeneity to CHD diagnoses without
factors, some of which are overlapping. The genetic contribution ~ categorized arterial plaque. Thus, the distinct but outwardly sim-
to these conditions varies: heritability estimates for both left ven- ilar biological states that are classified as AHF arise from genetic,
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GXE, and epistatic effects that may apply to each state differently.
Accounting for this complexity is key to resolving the missing heri-
tability problem, where GWAS-measured heart failure heritability
falls short of twin-study estimates [5]. This problem with unexam-
ined heterogeneity worsens significantly with larger GWAS samples
[6].

The problems above are examples of unmeasured biological vari-
ation, which is a likely reason that AHF has so few GWAS SNP hits
[7]. More generally, unmeasured biological variation of a phenotype
refers to biochemical or functional differences between instances of
the same phenotype. This variation may intentionally or uninten-
tionally be unmeasured, but we assume that failure to measure this
biological variation weakens GWAS associations with the phenotype
of interest. Conversely, a homogeneous phenotype is one caused by
a unique biological state with no such unmeasured variation. GWAS
would ideally be conducted against homogeneous phenotypes, but
this is often infeasible for complex phenotypes like AHF because
indistinguishable outward symptoms often have different genetic
causes.

When a presumed homogenous phenotype contains such un-
measured biological variation, we refer to this as phenotypic het-
erogeneity. ICD codes contain substantial phenotypic heterogeneity
because they primarily document billable diagnoses rather than
precise biological conditions, the consequences of which are illus-
trated by a study on heart failure ICD codes’ internal consistency.
Two cardiologists conducted a detailed abstraction and validation
of 705 generalized heart failure (any ICD-9CM 428 code) hospi-
talizations with curated medical records, and they agreed on only
75 percent of classified cases [8]. Furthermore, most heart failure
cases remain undiagnosed until hospitalization [9], suggesting
that many controls harbor undetected heart failure. This illustrates
the narrow and diluted representation of clinical phenotypes by
ICD codes, which could cause GWAS to overlook crucial SNPs and
contribute to the missing heritability problem.

Phenotypic heterogeneity is usually caused by genetic and en-
vironmental differences. A concrete example of how this problem
unfolds is the seemingly homogeneous diagnosis of atherosclerotic
heart disease (AHD), which is a contributing factor to heart fail-
ure. An ICD10 code for AHD only suggests atherosclerosis, not the
proportion of heritable calcified plaques or associated risk factors.
Given that heart failure usually manifests with clear cardiac dys-
function [9], AHD might follow suit, presenting different cardiac
comorbidities based on the underlying pathways. If AHD is pri-
mary, heart failure and atrial fibrillation are common [10, 11], while
atrioventricular blocks can occur if diabetes is involved [12]. This
complex interrelation underlines the need for a more informative
phenotype representation in SNP discovery, hence the collective
study of these diseases under the AHF umbrella.

GxE interactions also contribute to phenotypic heterogeneity
when variation in genotypes’ effects on a phenotype depends on en-
vironmental factors. For example, smokers carrying the T allele for
rs7178051 have a 12% reduced risk of CHD, while carriers who have
smoked only have a 5% reduced risk [13]. The T allele is associated
with reduced ADAMTS7 mRNA expression levels, while smoking
has been associated with upregulation. This suggests that smoking
reverses the T allele’s protective effect without introducing addi-
tional risk to non-carriers, though it is not known why suppression
of ADAMTS7 expression is cardioprotective. This is an example of
how GXE interactions worsen phenotypic heterogeneity because
the T allele for rs7178051 would explain less variance in CHD status
if smoker status was ignored.

It is possible that GXE interactions worsen phenotypic hetero-
geneity, while phenotypic heterogeneity simultaneously makes
GXE interactions more difficult to detect. To illustrate the former
case, consider that twins living in the same household share far
more environmental factors than unrelated GWAS participants,
which makes GxE interactions and their contributions to hetero-
geneity difficult to detect with GWAS. To illustrate the latter case,
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note that GXE interactions will be diluted in GWAS if they only in-
fluence a subset of homogeneous phenotypes that comprise an
observed trait. For example, consider two genetically distinct heart
conditions, A and B, which manifest as AHF. They are phenotypi-
cally indistinguishable, so patients with A and/or B would be labeled
as cases, and patients with neither as controls. Now suppose that a
pure GXE interaction affects A but not B. In a twin study, monozy-
gotic twins are more likely to share all heritable conditions than
dizygotic twins regardless of differences in their genetic architec-
ture, so the measured heritability of AHF would be the weighted
average of the heritabilities of A and B. However, B’s presence in the
GWAS would dilute the ability of investigators to detect the GXE in-
teraction effect on A because B is not influenced by it, and encoding
A and B together as AHF assumes that GXE interactions influence
A and B similarly. Therefore, the simultaneous consideration of
phenotypic heterogeneity and GxE interactions may be essential
to understand AHF’s complete genetic architecture. The TRACE
method we present here addresses these issues.

The first step of TRACE is to create relatively homogeneous AHF-
related phenotypes and analyze them with GWAS. Pleiotropy studies
repeatedly illustrate the interdependence of correlations between
genotypes and phenotypes [14], which also describes individual
ICD codes. However, we hypothesize that the latent dimensions of
sufficiently many AHF-related ICD10 codes correspond to homo-
geneous unobserved phenotypes that will correlate to genotypes
more robustly. We call these constructs ’latent phenotypes’, which
are determined by genotypes and the environment, and in turn give
rise to the observed ICD10 codes. This many genotypes — few la-
tent phenotypes — many ICD10 codes relationship requires fewer
connections than the traditional Pleiotropy model of many geno-
types — many ICD10 codes, making it more parsimonious (Figure
1a). Figure 1b illustrates how latent phenotypes can be computed
from multiple ICD10 codes per person. From a practical perspective,
pooling information from ICD10 codes will offset the noise and bias
of each one and add context to the AHF-related phenotype.

After transforming ICD10 codes into latent phenotypes, TRACE’s
next step is to uncover GxE interactions affecting them. If GXE inter-
actions are diluted by phenotypic heterogeneity, and if latent phe-
notypes are more homogenous than ICD10 codes, then we expect
to discover more GXE effects on our latent phenotypes. Additionally.
most GWAS studies assume additive GXE effects, which means that
the product of an additively encoded SNP and environmental factor
is included in the GWAS regression. Our TRACE method challenges
this oversimplification by incorporating categorical main and GXE
effects into each SNP’s encoding prior to linear regression against
the phenotype. This encoding is based loosely on the EDGE method
[15], which essentially uses target encoding [16] to incorporate cat-
egorical genetic effects into each SNP’s encoding. However (letting
Trefer toan arbitrary test statistic), while target encoding generally
substitutes x = T(y|x), our TRACE encoding generalizes T(y|x) to
T(ylx, E), where E is an environmental factor. Thus, searching for
GXE effects on latent phenotypes with TRACE may provide crucial
insights into AHF’s heritability.

Methods

Transformative Regression Analysis of Combined Effects
(TRACE)

Figure 2 showed how our TRACE method detected pure GXE effects.
It first detected combined main-GxE effect by encoding both effects
into SNPs and regressing them against latent phenotypes. Each
SNP-environmental factor pair was encoded as a six-column ma-
trix. Columns one and two were binary features with a value of
1if the SNP had one or two minor allele copies, respectively, and
a value of 0 otherwise. Columns three and four were obtained by
multiplying columns one and two by the environmental factor col-
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Figure 1. Schematic representation of our hypothesis and its operationalization. [a] Bayesian networks illustrating our hypothesis. In the presence of biological pleiotropy,
latent phenotypes (Z) act as mediators, simplifying the genotype (G) to phenotype (Y) relationship. Only one latent phenotype and ten related variables out of many possible
ones are shown for simplicity. [b] Each point on the scatter plot represents a phenotype vector. Suitable dimensionality reduction, such as PCA, could yield latent phenotype
axes (shown as arrows). The figure represents observed phenotypes as continuous for illustrative purposes, showing how dimensionality reduction of many ICD codes might
define a latent phenotype space, potentially offering a more informative phenotype representation and more robust genotype correlations"

umn. Column five was the environmental factor, and column six
was a constant. Multivariable linear regression was performed for
each SNP against each latent phenotype using these columns, and
the resulting SNP-informed beta coefficients {31, B2, B1x, Baxg}
were used to compute the new SNP encodings. SNPs with {0, 1,2}
minor allele copies were encoded as {0, B1 + B1gEi, B2 + BoxgEi}
respectively, where E; represented the ith patient’s environmental
factor value. SNPs with fewer than 1000 homozygous minor in-
stances were binarized ({0,1,2} — {0,1,1}) prior to computing
their TRACE encodings.

The main model (H;,) linearly regressed each latent pheno-
type against each TRACE-encoded SNP, its environmental factor
covariate, and a constant. A null model (H,,;;;;), containing only the
environmental factor and constant, was also regressed against each
phenotype. Nominal p-values for combined significance of main
and GxE effects were determined with a likelihood ratio test statis-
tic (A) between the two models. More precisely, Nominal p-values
were computed as follows.

Hgt 2V = BrraceX + BEE+ Bo

Hyu 2y = BEE+ Bo

A=-2ln LHgp)
L(Hnull)

Here, y was a latent phenotype, x was a TRACE-encoded SNP,
and L was a model’s likelihood function. The final step was to com-
pute GXE effects by assessing each combined effect against a distri-
bution of null effects with permuted environmental factor columns
as described in the GWAS: GXE Effects section.

Study Population and Genetic Data

Our study population included all UKB participants of self-declared
white European ancestry, which was defined as having a coding
1, 1001, 2001, or 3001 for data field 21000 [17]. Individuals with
heterotrophic cardiomyopathy were removed from the dataset as
described by Aragam and colleagues [7]. We used Plink [18, 19] to
remove SNPs from the dataset if they had a Hardy-Weinberg equi-
librium p-value less than 1070 or if they had a missingness rate
exceeding 0.02. We then used Plink to remove individuals from the
dataset if they had an average SNP missingness rate exceeding 0.02,
if their SNP heterozygosity was more than 3 standard deviations
from the mean, or if their X chromosome heterozygosity did not
clearly indicate a binary sex chromosomal pattern. We used KING
[20] to list all pairs of individuals with a kinship coefficient exceed-
ing 0.0442. We then pruned individuals from the dataset to ensure
that all pairs had kinship coefficients less than 0.0442 in a way that
retained as many AHF cases as possible. We used Eigensoft [21, 22]
to compute the top 20 PCs from a subset of SNPs that were thresh-
olded with Plink to ensure a maximum SNP pair R2 of 0.09. The
resulting dataset contained 14,762 AHF cases and 363,112 non-AHF
cases, which were used as controls.

Determination of Latent Phenotypes

ICD codes were selected from the set of all cardiovascular ICD10
codes (i.e., beginning with the letter I), select respiratory ICD codes
(i.e., beginning with the letter J) that were known to be associated
with heart failure, and the set of all miscellaneous ICD codes (be-
ginning with the letter R). ICD codes that were not significantly
correlated to AHF after a Holm-Bonferroni FPR correction were
excluded from the latent phenotype generation. The remaining 311
ICD codes (table S1) and AHF were converted into three sets of 15
latent phenotypes; first by PCA, then logistic PCA, and finally an
autoencoder. The autoencoder’s test-set reconstruction accuracy
for the ICD codes was computed with 5-fold cross validation. For
PCA and logistic PCA, a 16th latent phenotype was computed by es-
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Figure 2. Figure 2: Schematic illustration of the TRACE method for detecting GXE effects. The diagram shows the SNP encoding process, beginning with a single additive
genotype encoding (upper left), progressing through the initial EDGE transformation (upper middle), and culminating in the TRACE transformation (lower middle). In the final
TRACE transformation, heterozygous additive SNP encodings are replaced with 3 + B,E;, and homozygous minor additive encodings with B, + ,,gE;. Here, E; represents

the environmental factor (specifically gender in this example) for the ith individual. Hypothetical beta coefficient values of {1, B2, Bixg, Baxg} = 10.05,0.1,

—-0.1,—0.2} are

included for illustrative purposes, noting that TRACE computes them by regressing the 6 columns against a latent phenotype.

timating AHF from the first 15 latent phenotypes, and the estimated
binary values’ residuals comprised the 16th latent phenotype. The
autoencoder’s reconstruction error for AHF was less than 0.01%,
which we believed was not enough variance to comprise a 16th la-
tent phenotype, thus making the total number of phenotypes 47.
All latent phenotypes were linearly regressed against the top 20
genetic PCs, and the Yeo-Johnson transformed residuals comprised
the final latent phenotypes.

GWAS: Main Effects

GWAS was conducted on the entire dataset. We computed main
effect p-values using ordinary linear regression, with each SNP
additively encoded and regressed against each latent phenotype.
As demonstrated by the distribution of QQ-plot genomic inflation
factors (Figure S1), they were less than or near 1.1 for all but two of
the latent phenotypes. We deemed both main and GXE SNP hits sta-
tistically significant if their p-values fell below an adjusted genome-
wide threshold [23]. This adjustment divided the standard genome-
wide correction factor of 5 x 10~8 by 5*m, where m represented
the ICC-corrected number of phenotypes, and 5 accounted for the
number of effects tested. These effects included main effects and
SNP interaction effects with smoking, alcohol, sex, and exercise.

GWAS: Environmental Data

Our GXE interaction analysis focused on environmental factors:
smoking, alcohol, sex, and exercise. Smoking was quantified using
the UKB’s pack years of smoking feature (data-field 20161). Never-
smokers (data-field 20160) were assigned zero pack years, and we
imputed the remaining missing values. We calculated annual alco-
hol consumption by summing values from specific UKB data-fields
(1568, 1578, 1588, 1598, 1608, 5364) and multiplying by the number
of weeks per year. In the event of missing data, we resorted to the

sum of corresponding monthly quantity data-fields (4407, 4418,
4429, 4440, 4451, 4462) multiplied by 12. If all contributing data-
fields were missing, or if any were declined (i.e. assigned values
of -1 or -3), then we designated the annual alcohol consumption
value as missing. Non-drinkers (data-field 1558) were assigned
zero annual consumption, and we imputed the remaining missing
values. Sex used a binary coding (1 for male, 0 for female). Exer-
cise was represented as the first principal component of data-fields
(874, 894, 914), post missing value imputation. Missing values
within our modified alcohol and smoking features, and in data-
fields (874, 894, 914), were imputed with MICE [24, 25], which
drew upon a range of other data-fields (table S2). MICE gener-
ally outperformed mean imputation, as indicated by simulations of
random and nonrandom missingness (Table S3), unless frequent
walkers were disproportionately absent in responses to data-field
874.

GWAS: GXE Effects

Our TRACE method overestimated the significance of combined
main-GxE effects because target encoding methods are known to
overfit data [16]. To address this, a permutation test assessed the
pure GXE effect for each SNP with a nominally significant TRACE
p-value (the test statistic). For each nominally significant TRACE
p-value, we computed 20,000 null p-values by permuting the en-
vironmental factor and recalculating the TRACE p-value, creating
a null distribution that we would have expected in the absence of
GXE effects. However, this distribution was noisy due to the limited
number of permutations included. We addressed this by resampling
10,000 bootstrapped null distributions (each also of size 20000),
fitting a Tukey-gh model to each bootstrapped distribution, and
calculating the p-value of the original test statistic relative to each
fitted Tukey-gh model. This generated a reliable distribution of
10,000 true p-value estimates, from which we used the 95th per-
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Table 1. Tabulated counts of unique SNPs associated with all three latent phenotype models, followed by an aggregate comparison of their SNP hits.
[a] Compares TRACE and linear regression in detecting nonlinear gene-by-smoking interactions, with TRACE improving by approximately 4 -log10p
units. [b] Counts novel and known SNP associations across various effects, including main effects and interactions. [c] Cross-model analysis shows
considerable overlap of significant main effect SNP hits, indicating that models capture largely overlapping biological information. [d] highlights
that GXE interaction effects are more sensitive to latent phenotype construction, yet their average -log10 p-value proxy across models significantly

exceeds random chance.

centile as each SNP’s final GXE effect p-value, which ensured a false
positive rate of 0.05.

Predictive Models for AHF

SNPs with corrected genome-wide significant additive or GXE ef-
fects were used to predict their respective latent phenotypes. The
SNPs’ additive contribution to these estimates, which we referred to
as weighted SNP sums, were used as input for both logistic regres-
sion (LR) and gradient boosting classification (GBC). LR was used
without regularization to explain AHF in terms of the weighted SNP
sums. GBC was compared to LR to assess whether or not nonlin-
earity can improve the model’s fit. All models were validated with
nested cross validation (30 outer folds and 10 inner folds) to confirm
that any gains relative to LR were not a result of overfitting that
can occur with standard cross validation. To ensure balanced case-
control ratios and minimize bias, a subset of controls equal to the
number of cases were randomly selected for each cross validation
fold.

Ontological Enrichment Analysis

We performed several in silico analyses to validate our SNP hits.
Many of our main effects were validated by using LDtrait [26] to
identify previous GWAS SNP hits that were within 500 kilobases
(KB) of our SNP hits and had an R? of at least 0.8. We used FUMA
[27] to list all genes within 300KB of our SNP hits. We also used
MSigDB [28, 29, 30] with the corresponding msigdbr R package
[31] to identify gene sets that were significantly enriched for genes
within 300 KB of each effect type. Among the gene-by-smoking
interaction SNP hits, most of the enriched gene sets corresponded
to miRNA molecules or transcription factors that were known to
regulate those genes, so we used miEAA [32] to find KEGG pathways
that were enriched for those miRNA molecules. We further exam-
ined the genes containing the aforementioned miRNA linked SNP
hits by finding known literature associations with cardiovascular
disease via DisGeNET [33, 34, 35, 36, 37]. Specifically, we entered
a double-colon separated list of genes, downloaded the summary
of disease-gene associations, retained only the rows containing a
“Cardiovascular Diseases” flag in the “Disease Class” column, and
ranked the strength of evidence that each gene was associated with

cardiovascular disease by their gda score sums. We used Geneves-
tigator [38] to rank the strength of evidence that each gene was
differentially expressed in response to cigarette smoke.

Shapley Value Explanations

We used ICD10 codes’ Shapley value contributions to the latent phe-
notypes to explain two correlations between latent phenotypes and
miRNA linked gene-by-smoking SNP hits that resided inside of
genes. We selected two genes for this follow-up analysis. One gene
was primarily linked to cardiovascular disease with no significant
ties to smoking, while the other had a notable smoking association
but no clear link to cardiovascular disease. We extracted a minimal
set of ICD10 codes, whose summed mean absolute Shapley values

constituted 85% of the total. We then selected the smallest subset
from these codes whose Shapley value sums (across individuals)
correlated significantly with the TRACE-encoded SNP. For each sub-
set size, we computed nominal GXE p-value proxies for all subset
sums, treating each subset sum as a latent phenotype. The p-value

proxies were defined as the nominal TRACE p-value divided by the

main effect p-value, which correlated strongly (r = 0.87) with our

permutation p-values (figure S2) for the applicable latent pheno-
type models. Identifying the permutation p-value for the subset

with the lowest nominal GXE p-value allowed us to highlight the

smallest subset size with a permutation p-value less than 5 x 108

that also yielded recurring ICD10 codes among the nominal top

20 subset combinations. These recurring codes, cross-referenced

with related literature on the respective genes, provided plausible

biological mechanisms for these gene-smoking interactions.

Results
GWAS: Main and GxE Effects

Applying TRACE to AHF uncovered numerous main and GxE in-
teraction effects on 47 latent phenotypes, as detailed in table S4.
Several dozen ICD10 codes contributed to the majority of our latent
phenotypes, which are detailed in figure S3, though they broadly
include various heart diseases, arrhythmias, vascular dysfunctions,
and respiratory conditions. In this setting, we identified 300 SNPs
significantly associated with latent phenotypes through main ef-
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Figure 3. Performance comparison of predictive models for AHF using SNP-derived latent phenotypes. [a] Nested cross validation R? values (with 95% bootstrapped CIs)
illustrate the correlation between predicted and actual AHF statuses. GBC significantly outperforms LR across all models, as shown by paired Wilcoxon tests. [b] Comparative
assessment of our latent phenotype p-values against LR (vs AHF) p-values and those from [7]. [*] The [7] p-value for rs12138073 could only be visually interpolated from

their third figure, and is therefore a rough estimate.

fects. We also identified 1207 gene-by-smoking interactions, 8
gene-by-sex interactions, and 11 gene-by-alcohol interactions. Ta-
ble 1a counted two categories of independent SNP hits: ”known”
hits, which were in linkage disequilibrium (LD) with previously
reported AHF-related GWAS hits, and "novel” hits, which were
not. While there were an appreciable number of novel main effects,
the majority of the gene-by-smoking SNP hits were novel, under-
scoring TRACE’s capacity to expand the GWAS search space. Be-
cause only one gene-by-exercise effect was detected at rs4382520,
we did not further explore this interaction. We observed a range
of non-additive GXE effects, spanning from partial dominance to
over-dominance (Figure S4), which standard GWAS analyses would
typically miss. Table 1b reinforces this finding by showing how a
simple linear model produced significantly higher average p-values.
In contrast, when we excluded non-additive effects (termed ”condi-
tional” in Table 1b), the linear model only marginally outperformed
TRACE’s p-values.

Comparison of Main and GxE Effects

We assessed our latent phenotypes for their ability to capture similar
biological information in the form of main and GxE interaction ef-
fects, which is important because they were derived from the same
set of ICD10 codes. Table 1c quantified the SNP hit redundancy be-
tween models, demonstrating that each latent phenotype’s main
effect SNP hits tended to maintain low average p-values in other
models, significantly lower than what we would expect by chance.
This confirmed that different latent phenotype models captured
largely similar biological information, though not all main effect
SNP hits achieved significance across all models, highlighting the
importance of generating diverse latent phenotypes. Variance from
GXE SNP hits was shared among latent phenotype models obtained
for main effects via GWAS, but to a lesser extent. As shown in Ta-
ble 1d, each model’s gene-by-smoking interaction SNP hits were
associated with other models’ latent phenotypes at lower average p-
value proxies (see the Shapley Value Explanations methods subsec-
tion) than expected by chance. However, these gene-by-smoking
interaction SNP hits failed to maintain significance across different
models more often than main effect SNPs, underscoring the height-
ened specificity with which GXE interaction effects contributed to
latent phenotypes.

Predictive Models for AHF

We used LR and GBC to predict AHF using weighted SNP sums de-
rived from each model’s latent phenotypes. Figure 3a showed the R?

values between predicted AHF probabilities and actual AHF statuses

with 95% confidence intervals (CIs). We compared LR and GBC on
the same 30 validation folds for each model, and a paired Wilcoxon
test confirmed that nonlinear GBC significantly outperformed LR
in all three models. This finding aligned with recent evidence sug-
gesting that human epistasis occurs at the systems level rather
than the SNP level [39, 40]. Table S5 illustrated that the optimal
complexity parameter (max tree depth) for GBC models remained
consistent across outer validation folds, reducing the likelihood of
overfitting or cross-validation bias in more complex models. Figure
3b compared our p-values to those mentioned in [7] for LR of SNPs
against AHF. Noting that LR revealed only one significant SNP not
reported by [7], figure 3b demonstrated the relative effectiveness
of regressing SNPs against latent phenotypes.

Ontological Enrichment Analysis

We examined the biological processes and pathways over-
represented by genes in/near our SNP hits. Table 2a listed the top
ten independent Gene Ontology (GO) pathways significantly en-
riched for genes within 300 KB of our main effect SNP hits. These
pathways predominantly related to cardiovascular phenotypes,
which substantiated the findings from table 1b. Table 2b listed the
top ten KEGG pathways significantly enriched for miRNA molecules,
where each miRNA molecule was enriched for genes within 300
KB of our gene-by-smoking interaction SNP hits. The top three
pathways among these corresponded to growing evidence that ter-
penoids influence atherosclerosis [41], G protein-coupled odor-
ant receptors regulate myocardial contractility [42], and smoking-
induced impairment of ether lipid metabolism via LDL receptors in
hepatocytes impacts cardiovascular phenotypes [43, 44, 45]. Table
2c listed the top GO pathways significantly enriched for transcrip-
tion factor genes, each transcription factor being enriched for genes
within 300 KB of our gene-by-sex interaction SNP hits. These path-
ways suggested a potential correspondence between our SNP hits
and the enhanced vasculogenic potential of female hematopoietic
stem cells [46].

Several pathways that extended beyond the top ten lists were
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Table 2. Examination of biological processes enriched for genes/miRNA linked to SNP hits against our latent phenotypes. [a] The top ten independent
GO pathways significantly enriched for genes within 300 KB of our main effect SNP hits, emphasizing their key role in cardiovascular disease-related
processes. [b] The top ten KEGG pathways significantly enriched for miRNA molecules, which in turn are enriched for genes in proximity to our
gene-by-smoking interaction SNP hits. Several of these pathways suggest promising new avenues of research, including those related to terpenoid
backbone biosynthesis (facilitates atherosclerosis in mice), olfactory transduction (regulates myocardial contractility), and ether lipid metabolism
(regulates ion channels and correlates to cardiovascular health). [c] The most enriched pathways for transcription factor genes, which in turn are
enriched for genes in proximity to our gene-by-gender interaction SNP hits. Note that our gene-by-gender interaction SNP hits enrich pathways
related to both gender differentiation and cardiovascular disease, such as the heightened vasculogenic potential of female hematopoietic stem cells.

also directly involved in cardiovascular disease. The top 11-25 gene-
by-smoking interaction-linked miRNA KEGG pathways included
renin secretion, ferroptosis, porphyrin and chlorophyll metabolism
(integral to hemoglobin production), cholinergic synapses, arrhyth-
mogenic right ventricular cardiomyopathy, cholesterol metabolism,
and hypertrophic cardiomyopathy. A complete list of all enriched
pathways from the gene set enrichment analysis were listed in Ta-
ble S6. Despite the smaller number of gene-by-alcohol interaction
SNP hits, genes within 300 KB of these hits were significantly en-
riched for few metabolic pathways. Each of these pathways, though
enriched by only a single gene, was statistically significant. Fur-
thermore, two out of the three associated genes had functions that
could plausibly be impacted by ethanol.

Genes within 300 KB of our gene-by-smoking interaction SNP
hits predominantly enriched gene sets regulated by specific miR-
NAs. We attempted to understand this observation with additional
in silico analysis. For each latent phenotype model, a Fisher ex-
act test confirmed that gene-by-smoking interaction SNPs were
more likely to be within a gene if they were linked to an miRNA.
This finding was congruent with the known regulatory roles of
miRNAs at mRNA UTR regions and intronic sequences. We then
cross-referenced these genes with external biological evidence. Ta-
ble 3a listed the top five genes according to supporting study count,
each exceeding a gda-score sum of 2 and an average differential
expression (DE) ratio exceeding 1.5. While these genes broadly influ-
enced various cell types, they consistently impacted cardiovascular
disease-relevant pathways. In contrast, Table 3b presented the five
genes with the highest gda-score sums and no appreciable DE in
response to cigarette smoke. Note that four of these genes were
almost exclusively expressed in tissues other than lung. Table 3c
listed genes with the most supporting DE studies and a DE ratio
exceeding 1.5, but without associations to cardiovascular disease,
which suggested they are promising targets for future research.
Finally, table 3d highlighted novel gene associations with no known
links to cardiovascular disease or cigarette smoke exposure. For a

complete list of miRNA linked gene-SNP pairs, see Table S7.

Shapley Value Explanations

Having analyzed the Shapley value contributions of ICD10 codes to
latent phenotypes, we proposed potential biological mechanisms
for two gene-by-smoking SNP effects. For the cardiac-specific
RYR2 gene in table 3b, subset analysis of Shapley values (size six)
revealed that ICD codes 125.1 (atherosclerotic cardiomyopathy) and
125.9 (unspecified ischemic heart disease) were the most important
contributors to the gene-by-smoking correlation between PCA la-
tent phenotype 12 and rs6698949. Given the literature on calcium
channel blockers mitigating cigarette-induced hypertension [47],a
potential RYR2-smoking interaction could increase ischemic heart
disease risk. We suspected this to occur via a non-atherosclerotic
pathway because the Shapley values for 125.1 and 125.9 were anticor-
related. For the cigarette-related KCNMB2 gene in table 3c, subset
analysis of Shapley values (size 8) revealed that ICD10 code 183.9
(varicose veins) consistently contributed the most to the correlation
between latent phenotype 12 and rs67183339. While numerous other
ICD codes were prominent, we note that KCNMB2 is a large conduc-
tance, voltage and calcium-sensitive potassium channel, and since
these specific potassium channels mediate the link between Matrix
metalloproteinase 2 and varicose veins [48], a KCNMB2 SNP variant
and cigarette smoke may interact to precipitate varicose veins. This
aligned with findings that linked smoking to increased varicose
veins risk [49, 50, 51], and varicose veins to heightened cardiovas-
cular disease risk [52]. These proposed mechanisms provide novel
hypotheses for further verification and study.
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d
phenotype gca

gene symbol  function rsID Eos bestpvalue  maf  score
sum
RYR2 | ckec calidm 156698949 PCA 703x10" 033 852
channel
ESR1 | estrogen receptor 52982896 logistic PCA  245x 1070 022 449
endothelin
ECE1 | converting 1511799887 PCA 529x107° 041 386
enzyme
T e 1510509298 logistic PCA 535x10" 016 337
contraction
HSPG2 | perlecan protein  rs2124369 PCA 107x10" 018 268
phenotype
gene symbol  function rsID best p value maf
model
Vesicle trafficki 2
STxg | coicetralicking 16958300 PCA 274x10 036
protein
T ,
ZNFe0g | ranscription 155046848 PCA 366x 102 047
factor
GALNT16 glycosylation rs1298730 logistic PCA 6.15 x 107" 047
RSU1 Ras regulator rs34382478 PCA 6.37 x 1072 0.14
KIAA1024 mTOR regulator rs56651691 PCA 6.56 x 10712 017

Table 3. Detailed investigation of genes that contain a gene-by-smoking interaction SNP hit and are linked to a regulatory miRNA. [a] Top five genes,
each with a gda-score sum over 2 and an average DE ratio exceeding 1.5, ranked by the number of supporting DE studies. [b] Five genes with the
highest gda-score sums but lacking evidence of DE. Notably, RYR2, ESR1, ECE1, and MYPN are almost exclusively expressed in non-lung tissues. [c]
Genes with the most supporting studies and a DE ratio over 1.5. These genes are not linked to cardiovascular disease, but the functions of CSGALNACT1
[58], KANK1 [59], and KCNMB2 [60] are linked. [d] Top five genes (sorted by p-value) with no known links to cardiovascular disease or cigarette
smoke. The functions of STX8 [61], GALNT16 [62], RSU1 [63], and KIAA1024 [ 64] are associated with cardiovascular disease.

Discussion

Most of the GXE effects detected were interactions with smoking, a
finding that aligns with prior GxE effects that were identified for
coronary artery disease and high blood pressure [53]. However, the
effects identified in previous studies number around 40, whereas
our approach found over 1000. The increased number of GXE effects
and their consistency with prior literature’s effect types suggest
that our original hypothesis is correct. Specifically, phenotypic
heterogeneity dilutes GXE effects, and our latent phenotypes cor-
respond to unobserved phenotypes that are more homogeneous.
Unfortunately, our study is limited by the lack of replication of re-
sults, which is made difficult by the lack of a resource comparable
to the UKB. However, future research could strengthen our find-
ings by validating our GxE effects in an independent dataset. Our
method could be applied to uncover novel genetic and GxE effects
for any complex disorder, including depression, whose inherent
heterogeneity has often resulted in SNP replication failure [54].
The identification of numerous non-additive gene-by-smoking
interaction effects by TRACE is reminiscent of the considerable por-
tion of heterosis in maize attributed to epistasis [55]. The possibility
that epistasis contributes to AHF is further supported by recently
discovered epistatic main effect contributions to cardiovascular
disease [56]. While we did not discover any heterotic main effects,
numerous gene-by-smoking interaction effects showed partial het-
erosis, hinting that cigarette smoke could influence AHF’s epistatic
variance, consistent with the observed environmental dependency
of bacterial epistatic effects [57]. Future research should explore
gene-by-gene-by-environment interactions in heterotic GxE hits,
which may elucidate the genetic-environmental interplay in AHFE.
We addressed the tendency for target encoding to overfit by val-
idating our GXE interactions with a permutation test, with uncer-
tainty quantified by bootstrapping the distribution of permutation
test null p-values. However, our choice of the 95th percentile as
the final p-value might be overly conservative, potentially missing
significant SNP hits. Table 1a confirmed that, for statistically signif-
icant additive GXE effects, linear regression’s average -log10(p) val-
ues were usually significantly higher than those of TRACE. However,
it is crucial to note that even robust-looking parametric statistics
may hide inherent variability, especially in the context of ultra-low
p-values frequently found in GWAS. These are often sourced from
data sparse tails of distributions, leading to hidden uncertainties.

While TRACE’s p-values for GXE effects may appear stringent, their
robustness is absent from more powerful parametric approaches.
Future work developing a linear regression-based test for TRACE
should bear in mind the need to account for such variance.

We identified hundreds of miRNA-linked gene-by-smoking in-
teraction SNPs situated within genes, where many of these genes
had known involvement with cardiovascular disease or smoking.
The fact that our miRNA-linked SNPs disproportionately resided
within a gene suggested a complex interaction network involving
gene regulation by miRNAs. A cohort study in patients with diverse
smoking histories may identify specific miRNA signatures associ-
ated with AHF and smoking. Functional validation of the findings
via experimental studies such as reporter gene assays following
invitro knockdown/overexpression of miRNAs would also help to
verify the influence of miRNAs and the genes they regulate on AHF.

While several promising research efforts tackle the environmen-
tal component of gene-by-smoking interactions, discovering and
incorporating biologically causal SNPs into the analysis remains
challenging. Traditional explanations point to the specific correla-
tion between SNPs and causal SNPs in one LD pattern [65], which
may not hold in another. However, this fails to account for the ab-
sence of independent GWAS in groups with varying LD patterns
to find nearby SNPs with compensatory effects. We propose that
phenotypic heterogeneity, particularly that arising from biases in
ICD code assignment, might significantly contribute to these in-
consistencies [6]. Differences in ICD code assignment are directly
influenced by socioeconomic conditions [66], which also influenced
exposure to environmental factors that contribute to heart disease
and ischemia [67, 68]. Thus, in addition to reducing total pheno-
typic heterogeneity, our TRACE method could reduce differences in
phenotypic heterogeneity between populations by shifting focus
from heterogenous individual ICD10 codes to homogeneous ICD10
code patterns.

Potential implications

Our findings contribute to the growing body of evidence that phe-
notypic heterogeneity dilutes GWAS SNP hits, and our novel GWAS
method demonstrates one way to manage these issues. Applica-
tion of TRACE to AHF resulted in hundreds of SNP hits, providing a
different perspective from GWAS based on binary classification of
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cardiovascular disease ICD10 codes. The correlation we observed be-
tween SNPs and sums of specific Shapley value subsets highlights
the complex nature of heart failure and how binary features failed
to capture this complexity. The high number of heterotic gene-
by-smoking interaction effects highlights the potential benefits
of using a flexible model that does not impose the assumptions of
standard SNP encodings. Interestingly, we observed enrichment
for the miRNAs linked to genes near our SNP hits in crucial KEGG
pathways, but not for the genes themselves, which indicates a sig-
nificant role for miRNAs in heart failure’s genetic regulation. Thus,
a complex interplay of genetic and gene-environment interaction
effects seemingly drives AHF, which was only revealed by latent
phenotypes.

Availability of source code and requirements

- Project name: TRACE

- Project home page: our github repo

- Operating system: linux for the bash scripts

- Programming language: Python, R, bash

- Other requirements: see requirements.txt on our github repo
- License: MIT

Data availability

The input data are available for other researchers via the UKB’s
controlled access scheme [69]. The procedure to apply for access
[70] requires registering with the UK Biobank and compiling an
application form detailing:

+ A summary of the planned research

+ The UK Biobank data fields required for the project

- A description of derivatives (data, variables) generated by the
project

In addition, several publicly available bio-informatics tools with
associated databases were used in this study:

- Genevestigator: We used this to compare genes containing SNP
hits to the genes’ DE in response to cigarette smoke. It can be
accessed at https://genevestigator.com/.

- LDTrait tool: We used this to find established GWAS SNP
hits in LD with those of our study. It can be accessed at
https://ldlink.nih.gov/?tab=Idtrait.

- DisGeNET: This public platform’s gda-scores were used to
quantify the evidence that genes containing some of our SNP
hits are related to cardiovascular disease. It is available at
https://www.disgenet.org/search.

- FUMA: We used this to select all genes within 300kb of our SNP
hits. It is available at https://fuma.ctglab.nl/.

- MSigDB: We used this for our enrichment analyses. It can be ac-
cessed at https://www.gsea-msigdb.org/gsea/msigdb/index.jsp

- miEAA: We used this for our miRNA enrichment analysis. It is
available at https://ccb-compute2.cs.uni-saarland.de/mieaa.

Access to these online resources is publicly available, but specific
usage may require user registration. Please refer to each resource’s
respective website for details on access, data use policies, and terms
of service.

List of abbreviations

AHF:All-Cause Heart Failure; AHD:atherosclerotic heart dis-
ease; CHD:coronary heart disease; CI:Confidence Interval;
DE:Differential Expression; GBC:Gradient Boosting Classification;
GO:Gene Ontology; GWAS:Genome-Wide Association Studies;
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GxE:gene-by-environment; ICC:Intraclass Correlation Coeffi-
cient; KB:kilobases; LD:Linkage Disequilibrium; LR:Logistic
Regression; MICE:Multivariate Imputation by Chained Equations;
PCA:Principal Component Analysis; SNP:single nucleotide
polymorphism; TRACE:Transformative Regression Analysis of
Combined Effects; UKB:United Kingdom Biobank.
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