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Abstract
Motivation: . Genome-Wide Association Studies (GWAS) commonly assume phenotypic and genetic homogeneity that is notpresent in complex conditions. We designed Transformative Regression Analysis of Combined Effects (TRACE), a GWASmethodology that better accounts for clinical phenotype heterogeneity and identifies gene-by-environment (GxE) interactions.We demonstrated with UK Biobank (UKB) data that TRACE increased the variance explained in All-Cause Heart Failure (AHF) viathe discovery of novel single nucleotide polymorphism (SNP) and SNP-by-environment (i.e. GxE) interaction associations. First,we transformed 312 AHF-related ICD10 codes (including AHF) into continuous low-dimensional features (i.e., latent phenotypes)for a more nuanced disease representation. Then, we ran a standard GWAS on our latent phenotypes to discover main effects andidentified GxE interactions with target encoding. Genes near associated SNPs subsequently underwent enrichment analysis toexplore potential functional mechanisms underlying associations. Latent phenotypes were regressed against their SNP hits andthe estimated latent phenotype values were used to measure the amount of AHF variance explained.
Results: .Our method identified over 100 main GWAS effects that were consistent with prior studies and hundreds of novelgene-by-smoking interactions, which collectively accounted for approximately 10% of AHF variance. This represents animprovement over traditional GWAS whose results account for a negligible proportion of AHF variance. Enrichment analysessuggested that hundreds of miRNAs mediated the SNP effect on various AHF-related biological pathways. The TRACE frameworkcan be applied to decode the genetics of other complex diseases.
Availability: . All code is available at https://github.com/EpistasisLab/latent_phenotype_project
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Introduction

AHF is a complex trait that results from various underlying con-ditions, each influenced by multiple genetic and environmentalfactors, some of which are overlapping. The genetic contributionto these conditions varies: heritability estimates for both left ven-

tricular and congestive heart failure are approximately 0.3 [1, 2],while coronary heart disease (CHD) heritability is 0.5 [3]. Addition-ally, plaque displays a heritability of 0.8 when calcified and nearly 0otherwise [4], which adds heterogeneity to CHD diagnoses withoutcategorized arterial plaque. Thus, the distinct but outwardly sim-ilar biological states that are classified as AHF arise from genetic,
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GxE, and epistatic effects that may apply to each state differently.Accounting for this complexity is key to resolving the missing heri-tability problem, where GWAS-measured heart failure heritabilityfalls short of twin-study estimates [5]. This problem with unexam-ined heterogeneity worsens significantly with larger GWAS samples[6].The problems above are examples of unmeasured biological vari-ation, which is a likely reason that AHF has so few GWAS SNP hits[7]. More generally, unmeasured biological variation of a phenotyperefers to biochemical or functional differences between instances ofthe same phenotype. This variation may intentionally or uninten-tionally be unmeasured, but we assume that failure to measure thisbiological variation weakens GWAS associations with the phenotypeof interest. Conversely, a homogeneous phenotype is one caused bya unique biological state with no such unmeasured variation. GWASwould ideally be conducted against homogeneous phenotypes, butthis is often infeasible for complex phenotypes like AHF becauseindistinguishable outward symptoms often have different geneticcauses.When a presumed homogenous phenotype contains such un-measured biological variation, we refer to this as phenotypic het-erogeneity. ICD codes contain substantial phenotypic heterogeneitybecause they primarily document billable diagnoses rather thanprecise biological conditions, the consequences of which are illus-trated by a study on heart failure ICD codes’ internal consistency.Two cardiologists conducted a detailed abstraction and validationof 705 generalized heart failure (any ICD-9CM 428 code) hospi-talizations with curated medical records, and they agreed on only75 percent of classified cases [8]. Furthermore, most heart failurecases remain undiagnosed until hospitalization [9], suggestingthat many controls harbor undetected heart failure. This illustratesthe narrow and diluted representation of clinical phenotypes byICD codes, which could cause GWAS to overlook crucial SNPs andcontribute to the missing heritability problem.Phenotypic heterogeneity is usually caused by genetic and en-vironmental differences. A concrete example of how this problemunfolds is the seemingly homogeneous diagnosis of atheroscleroticheart disease (AHD), which is a contributing factor to heart fail-ure. An ICD10 code for AHD only suggests atherosclerosis, not theproportion of heritable calcified plaques or associated risk factors.Given that heart failure usually manifests with clear cardiac dys-function [9], AHD might follow suit, presenting different cardiaccomorbidities based on the underlying pathways. If AHD is pri-mary, heart failure and atrial fibrillation are common [10, 11], whileatrioventricular blocks can occur if diabetes is involved [12]. Thiscomplex interrelation underlines the need for a more informativephenotype representation in SNP discovery, hence the collectivestudy of these diseases under the AHF umbrella.GxE interactions also contribute to phenotypic heterogeneitywhen variation in genotypes’ effects on a phenotype depends on en-vironmental factors. For example, smokers carrying the T allele forrs7178051 have a 12% reduced risk of CHD, while carriers who havesmoked only have a 5% reduced risk [13]. The T allele is associatedwith reduced ADAMTS7mRNA expression levels, while smokinghas been associated with upregulation. This suggests that smokingreverses the T allele’s protective effect without introducing addi-tional risk to non-carriers, though it is not known why suppressionof ADAMTS7 expression is cardioprotective. This is an example ofhow GxE interactions worsen phenotypic heterogeneity becausethe T allele for rs7178051 would explain less variance in CHD statusif smoker status was ignored.It is possible that GxE interactions worsen phenotypic hetero-geneity, while phenotypic heterogeneity simultaneously makesGxE interactions more difficult to detect. To illustrate the formercase, consider that twins living in the same household share farmore environmental factors than unrelated GWAS participants,which makes GxE interactions and their contributions to hetero-geneity difficult to detect with GWAS. To illustrate the latter case,

note that GxE interactions will be diluted in GWAS if they only in-fluence a subset of homogeneous phenotypes that comprise anobserved trait. For example, consider two genetically distinct heartconditions, A and B, which manifest as AHF. They are phenotypi-cally indistinguishable, so patients with A and/or B would be labeledas cases, and patients with neither as controls. Now suppose that apure GxE interaction affects A but not B. In a twin study, monozy-gotic twins are more likely to share all heritable conditions thandizygotic twins regardless of differences in their genetic architec-ture, so the measured heritability of AHF would be the weightedaverage of the heritabilities of A and B. However, B’s presence in theGWAS would dilute the ability of investigators to detect the GxE in-teraction effect on A because B is not influenced by it, and encodingA and B together as AHF assumes that GxE interactions influenceA and B similarly. Therefore, the simultaneous consideration ofphenotypic heterogeneity and GxE interactions may be essentialto understand AHF’s complete genetic architecture. The TRACEmethod we present here addresses these issues.The first step of TRACE is to create relatively homogeneous AHF-related phenotypes and analyze them with GWAS. Pleiotropy studiesrepeatedly illustrate the interdependence of correlations betweengenotypes and phenotypes [14], which also describes individualICD codes. However, we hypothesize that the latent dimensions ofsufficiently many AHF-related ICD10 codes correspond to homo-geneous unobserved phenotypes that will correlate to genotypesmore robustly. We call these constructs ’latent phenotypes’, whichare determined by genotypes and the environment, and in turn giverise to the observed ICD10 codes. Thismany genotypes→ few la-
tent phenotypes→many ICD10 codes relationship requires fewerconnections than the traditional Pleiotropy model ofmany geno-
types→many ICD10 codes, making it more parsimonious (Figure1a). Figure 1b illustrates how latent phenotypes can be computedfrom multiple ICD10 codes per person. From a practical perspective,pooling information from ICD10 codes will offset the noise and biasof each one and add context to the AHF-related phenotype.After transforming ICD10 codes into latent phenotypes, TRACE’snext step is to uncover GxE interactions affecting them. If GxE inter-actions are diluted by phenotypic heterogeneity, and if latent phe-notypes are more homogenous than ICD10 codes, then we expectto discover more GxE effects on our latent phenotypes. Additionally.most GWAS studies assume additive GxE effects, which means thatthe product of an additively encoded SNP and environmental factoris included in the GWAS regression. Our TRACE method challengesthis oversimplification by incorporating categorical main and GxEeffects into each SNP’s encoding prior to linear regression againstthe phenotype. This encoding is based loosely on the EDGE method[15], which essentially uses target encoding [16] to incorporate cat-egorical genetic effects into each SNP’s encoding. However (lettingT refer to an arbitrary test statistic), while target encoding generallysubstitutes x = T(y|x), our TRACE encoding generalizes T(y|x) to
T(y|x,E), where E is an environmental factor. Thus, searching forGxE effects on latent phenotypes with TRACE may provide crucialinsights into AHF’s heritability.

Methods

Transformative Regression Analysis of Combined Effects
(TRACE)

Figure 2 showed how our TRACE method detected pure GxE effects.It first detected combined main-GxE effect by encoding both effectsinto SNPs and regressing them against latent phenotypes. EachSNP-environmental factor pair was encoded as a six-column ma-trix. Columns one and two were binary features with a value of1 if the SNP had one or two minor allele copies, respectively, anda value of 0 otherwise. Columns three and four were obtained bymultiplying columns one and two by the environmental factor col-
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Figure 1. Schematic representation of our hypothesis and its operationalization. [a] Bayesian networks illustrating our hypothesis. In the presence of biological pleiotropy,
latent phenotypes (Z) act as mediators, simplifying the genotype (G) to phenotype (Y) relationship. Only one latent phenotype and ten related variables out of many possible
ones are shown for simplicity. [b] Each point on the scatter plot represents a phenotype vector. Suitable dimensionality reduction, such as PCA, could yield latent phenotype
axes (shown as arrows). The figure represents observed phenotypes as continuous for illustrative purposes, showing how dimensionality reduction of many ICD codes might
define a latent phenotype space, potentially offering a more informative phenotype representation and more robust genotype correlations"

umn. Column five was the environmental factor, and column sixwas a constant. Multivariable linear regression was performed foreach SNP against each latent phenotype using these columns, andthe resulting SNP-informed beta coefficients {β1,β2,β1xE,β2xE}were used to compute the new SNP encodings. SNPs with {0, 1, 2}minor allele copies were encoded as {0,β1 + β1xEEi,β2 + β2xEEi}respectively, where Ei represented the ith patient’s environmentalfactor value. SNPs with fewer than 1000 homozygous minor in-stances were binarized ({0, 1, 2} → {0, 1, 1}) prior to computingtheir TRACE encodings.
The main model (Halt) linearly regressed each latent pheno-type against each TRACE-encoded SNP, its environmental factorcovariate, and a constant. A null model (Hnull), containing only theenvironmental factor and constant, was also regressed against eachphenotype. Nominal p-values for combined significance of mainand GxE effects were determined with a likelihood ratio test statis-tic (λ) between the two models. More precisely, Nominal p-valueswere computed as follows.

Halt : y = βTRACEx + βEE + β0

Hnull : y = βEE + β0

λ = –2ln
(
L(Halt)
L(Hnull)

)

Here, ywas a latent phenotype, xwas a TRACE-encoded SNP,and Lwas a model’s likelihood function. The final step was to com-pute GxE effects by assessing each combined effect against a distri-bution of null effects with permuted environmental factor columnsas described in the GWAS: GxE Effects section.

Study Population and Genetic Data

Our study population included all UKB participants of self-declaredwhite European ancestry, which was defined as having a coding1, 1001, 2001, or 3001 for data field 21000 [17]. Individuals withheterotrophic cardiomyopathy were removed from the dataset asdescribed by Aragam and colleagues [7]. We used Plink [18, 19] toremove SNPs from the dataset if they had a Hardy-Weinberg equi-librium p-value less than 10–6 or if they had a missingness rateexceeding 0.02. We then used Plink to remove individuals from thedataset if they had an average SNP missingness rate exceeding 0.02,if their SNP heterozygosity was more than 3 standard deviationsfrom the mean, or if their X chromosome heterozygosity did notclearly indicate a binary sex chromosomal pattern. We used KING[20] to list all pairs of individuals with a kinship coefficient exceed-ing 0.0442. We then pruned individuals from the dataset to ensurethat all pairs had kinship coefficients less than 0.0442 in a way thatretained as many AHF cases as possible. We used Eigensoft [21, 22]to compute the top 20 PCs from a subset of SNPs that were thresh-olded with Plink to ensure a maximum SNP pair R2 of 0.09. Theresulting dataset contained 14,762 AHF cases and 363,112 non-AHFcases, which were used as controls.

Determination of Latent Phenotypes

ICD codes were selected from the set of all cardiovascular ICD10codes (i.e., beginning with the letter I), select respiratory ICD codes(i.e., beginning with the letter J) that were known to be associatedwith heart failure, and the set of all miscellaneous ICD codes (be-ginning with the letter R). ICD codes that were not significantlycorrelated to AHF after a Holm-Bonferroni FPR correction wereexcluded from the latent phenotype generation. The remaining 311ICD codes (table S1) and AHF were converted into three sets of 15latent phenotypes; first by PCA, then logistic PCA, and finally anautoencoder. The autoencoder’s test-set reconstruction accuracyfor the ICD codes was computed with 5-fold cross validation. ForPCA and logistic PCA, a 16th latent phenotype was computed by es-
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Figure 2. Figure 2: Schematic illustration of the TRACE method for detecting GxE effects. The diagram shows the SNP encoding process, beginning with a single additive
genotype encoding (upper left), progressing through the initial EDGE transformation (upper middle), and culminating in the TRACE transformation (lower middle). In the final
TRACE transformation, heterozygous additive SNP encodings are replaced with β1 + β1xEEi, and homozygous minor additive encodings with β2 + β2xEEi . Here, Ei represents
the environmental factor (specifically gender in this example) for the ith individual. Hypothetical beta coefficient values of {β1, β2, β1xE, β2xE} = {0.05, 0.1, –0.1, –0.2} are
included for illustrative purposes, noting that TRACE computes them by regressing the 6 columns against a latent phenotype.

timating AHF from the first 15 latent phenotypes, and the estimatedbinary values’ residuals comprised the 16th latent phenotype. Theautoencoder’s reconstruction error for AHF was less than 0.01%,which we believed was not enough variance to comprise a 16th la-tent phenotype, thus making the total number of phenotypes 47.All latent phenotypes were linearly regressed against the top 20genetic PCs, and the Yeo-Johnson transformed residuals comprisedthe final latent phenotypes.
GWAS: Main Effects

GWAS was conducted on the entire dataset. We computed maineffect p-values using ordinary linear regression, with each SNPadditively encoded and regressed against each latent phenotype.As demonstrated by the distribution of QQ-plot genomic inflationfactors (Figure S1), they were less than or near 1.1 for all but two ofthe latent phenotypes. We deemed both main and GxE SNP hits sta-tistically significant if their p-values fell below an adjusted genome-wide threshold [23]. This adjustment divided the standard genome-wide correction factor of 5 × 10–8 by 5*m, where m representedthe ICC-corrected number of phenotypes, and 5 accounted for thenumber of effects tested. These effects included main effects andSNP interaction effects with smoking, alcohol, sex, and exercise.
GWAS: Environmental Data

Our GxE interaction analysis focused on environmental factors:smoking, alcohol, sex, and exercise. Smoking was quantified usingthe UKB’s pack years of smoking feature (data-field 20161). Never-smokers (data-field 20160) were assigned zero pack years, and weimputed the remaining missing values. We calculated annual alco-hol consumption by summing values from specific UKB data-fields(1568, 1578, 1588, 1598, 1608, 5364) and multiplying by the numberof weeks per year. In the event of missing data, we resorted to the

sum of corresponding monthly quantity data-fields (4407, 4418,4429, 4440, 4451, 4462) multiplied by 12. If all contributing data-fields were missing, or if any were declined (i.e. assigned valuesof -1 or -3), then we designated the annual alcohol consumptionvalue as missing. Non-drinkers (data-field 1558) were assignedzero annual consumption, and we imputed the remaining missingvalues. Sex used a binary coding (1 for male, 0 for female). Exer-cise was represented as the first principal component of data-fields(874, 894, 914), post missing value imputation. Missing valueswithin our modified alcohol and smoking features, and in data-fields (874, 894, 914), were imputed with MICE [24, 25], whichdrew upon a range of other data-fields (table S2). MICE gener-ally outperformed mean imputation, as indicated by simulations ofrandom and nonrandom missingness (Table S3), unless frequentwalkers were disproportionately absent in responses to data-field874.

GWAS: GxE Effects

Our TRACE method overestimated the significance of combinedmain-GxE effects because target encoding methods are known tooverfit data [16]. To address this, a permutation test assessed thepure GxE effect for each SNP with a nominally significant TRACEp-value (the test statistic). For each nominally significant TRACEp-value, we computed 20,000 null p-values by permuting the en-vironmental factor and recalculating the TRACE p-value, creatinga null distribution that we would have expected in the absence ofGxE effects. However, this distribution was noisy due to the limitednumber of permutations included. We addressed this by resampling10,000 bootstrapped null distributions (each also of size 20000),fitting a Tukey-gh model to each bootstrapped distribution, andcalculating the p-value of the original test statistic relative to eachfitted Tukey-gh model. This generated a reliable distribution of10,000 true p-value estimates, from which we used the 95th per-
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Table 1. Tabulated counts of unique SNPs associated with all three latent phenotype models, followed by an aggregate comparison of their SNP hits.
[a] Compares TRACE and linear regression in detecting nonlinear gene-by-smoking interactions, with TRACE improving by approximately 4 -log10punits. [b] Counts novel and known SNP associations across various effects, including main effects and interactions. [c] Cross-model analysis showsconsiderable overlap of significant main effect SNP hits, indicating that models capture largely overlapping biological information. [d] highlightsthat GxE interaction effects are more sensitive to latent phenotype construction, yet their average -log10 p-value proxy across models significantlyexceeds random chance.

centile as each SNP’s final GxE effect p-value, which ensured a falsepositive rate of 0.05.

Predictive Models for AHF

SNPs with corrected genome-wide significant additive or GxE ef-fects were used to predict their respective latent phenotypes. TheSNPs’ additive contribution to these estimates, which we referred toas weighted SNP sums, were used as input for both logistic regres-sion (LR) and gradient boosting classification (GBC). LR was usedwithout regularization to explain AHF in terms of the weighted SNPsums. GBC was compared to LR to assess whether or not nonlin-earity can improve the model’s fit. All models were validated withnested cross validation (30 outer folds and 10 inner folds) to confirmthat any gains relative to LR were not a result of overfitting thatcan occur with standard cross validation. To ensure balanced case-control ratios and minimize bias, a subset of controls equal to thenumber of cases were randomly selected for each cross validationfold.

Ontological Enrichment Analysis

We performed several in silico analyses to validate our SNP hits.Many of our main effects were validated by using LDtrait [26] toidentify previous GWAS SNP hits that were within 500 kilobases(KB) of our SNP hits and had an R2 of at least 0.8. We used FUMA[27] to list all genes within 300KB of our SNP hits. We also usedMSigDB [28, 29, 30] with the corresponding msigdbr R package[31] to identify gene sets that were significantly enriched for geneswithin 300 KB of each effect type. Among the gene-by-smokinginteraction SNP hits, most of the enriched gene sets correspondedto miRNA molecules or transcription factors that were known toregulate those genes, so we used miEAA [32] to find KEGG pathwaysthat were enriched for those miRNA molecules. We further exam-ined the genes containing the aforementioned miRNA linked SNPhits by finding known literature associations with cardiovasculardisease via DisGeNET [33, 34, 35, 36, 37]. Specifically, we entereda double-colon separated list of genes, downloaded the summaryof disease-gene associations, retained only the rows containing a“Cardiovascular Diseases” flag in the “Disease Class” column, andranked the strength of evidence that each gene was associated with

cardiovascular disease by their gda score sums. We used Geneves-tigator [38] to rank the strength of evidence that each gene wasdifferentially expressed in response to cigarette smoke.
Shapley Value Explanations

We used ICD10 codes’ Shapley value contributions to the latent phe-notypes to explain two correlations between latent phenotypes andmiRNA linked gene-by-smoking SNP hits that resided inside ofgenes. We selected two genes for this follow-up analysis. One genewas primarily linked to cardiovascular disease with no significantties to smoking, while the other had a notable smoking associationbut no clear link to cardiovascular disease. We extracted a minimalset of ICD10 codes, whose summed mean absolute Shapley valuesconstituted 85% of the total. We then selected the smallest subsetfrom these codes whose Shapley value sums (across individuals)correlated significantly with the TRACE-encoded SNP. For each sub-set size, we computed nominal GxE p-value proxies for all subsetsums, treating each subset sum as a latent phenotype. The p-valueproxies were defined as the nominal TRACE p-value divided by themain effect p-value, which correlated strongly (r = 0.87) with ourpermutation p-values (figure S2) for the applicable latent pheno-type models. Identifying the permutation p-value for the subsetwith the lowest nominal GxE p-value allowed us to highlight thesmallest subset size with a permutation p-value less than 5 × 10–8
that also yielded recurring ICD10 codes among the nominal top20 subset combinations. These recurring codes, cross-referencedwith related literature on the respective genes, provided plausiblebiological mechanisms for these gene-smoking interactions.

Results

GWAS: Main and GxE Effects

Applying TRACE to AHF uncovered numerous main and GxE in-teraction effects on 47 latent phenotypes, as detailed in table S4.Several dozen ICD10 codes contributed to the majority of our latentphenotypes, which are detailed in figure S3, though they broadlyinclude various heart diseases, arrhythmias, vascular dysfunctions,and respiratory conditions. In this setting, we identified 300 SNPssignificantly associated with latent phenotypes through main ef-
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Figure 3. Performance comparison of predictive models for AHF using SNP-derived latent phenotypes. [a]Nested cross validation R2 values (with 95% bootstrapped CIs)
illustrate the correlation between predicted and actual AHF statuses. GBC significantly outperforms LR across all models, as shown by paired Wilcoxon tests. [b] Comparative
assessment of our latent phenotype p-values against LR (vs AHF) p-values and those from [7]. [*] The [7] p-value for rs12138073 could only be visually interpolated from
their third figure, and is therefore a rough estimate.

fects. We also identified 1207 gene-by-smoking interactions, 8gene-by-sex interactions, and 11 gene-by-alcohol interactions. Ta-ble 1a counted two categories of independent SNP hits: ”known”hits, which were in linkage disequilibrium (LD) with previouslyreported AHF-related GWAS hits, and ”novel” hits, which werenot. While there were an appreciable number of novel main effects,the majority of the gene-by-smoking SNP hits were novel, under-scoring TRACE’s capacity to expand the GWAS search space. Be-cause only one gene-by-exercise effect was detected at rs4382520,we did not further explore this interaction. We observed a rangeof non-additive GxE effects, spanning from partial dominance toover-dominance (Figure S4), which standard GWAS analyses wouldtypically miss. Table 1b reinforces this finding by showing how asimple linear model produced significantly higher average p-values.In contrast, when we excluded non-additive effects (termed ”condi-tional” in Table 1b), the linear model only marginally outperformedTRACE’s p-values.

Comparison ofMain and GxE Effects

We assessed our latent phenotypes for their ability to capture similarbiological information in the form of main and GxE interaction ef-fects, which is important because they were derived from the sameset of ICD10 codes. Table 1c quantified the SNP hit redundancy be-tween models, demonstrating that each latent phenotype’s maineffect SNP hits tended to maintain low average p-values in othermodels, significantly lower than what we would expect by chance.This confirmed that different latent phenotype models capturedlargely similar biological information, though not all main effectSNP hits achieved significance across all models, highlighting theimportance of generating diverse latent phenotypes. Variance fromGxE SNP hits was shared among latent phenotype models obtainedfor main effects via GWAS, but to a lesser extent. As shown in Ta-ble 1d, each model’s gene-by-smoking interaction SNP hits wereassociated with other models’ latent phenotypes at lower average p-value proxies (see the Shapley Value Explanations methods subsec-tion) than expected by chance. However, these gene-by-smokinginteraction SNP hits failed to maintain significance across differentmodels more often than main effect SNPs, underscoring the height-ened specificity with which GxE interaction effects contributed tolatent phenotypes.

Predictive Models for AHF

We used LR and GBC to predict AHF using weighted SNP sums de-rived from each model’s latent phenotypes. Figure 3a showed theR2
values between predicted AHF probabilities and actual AHF statuseswith 95% confidence intervals (CIs). We compared LR and GBC onthe same 30 validation folds for each model, and a paired Wilcoxontest confirmed that nonlinear GBC significantly outperformed LRin all three models. This finding aligned with recent evidence sug-gesting that human epistasis occurs at the systems level ratherthan the SNP level [39, 40]. Table S5 illustrated that the optimalcomplexity parameter (max tree depth) for GBC models remainedconsistent across outer validation folds, reducing the likelihood ofoverfitting or cross-validation bias in more complex models. Figure3b compared our p-values to those mentioned in [7] for LR of SNPsagainst AHF. Noting that LR revealed only one significant SNP notreported by [7], figure 3b demonstrated the relative effectivenessof regressing SNPs against latent phenotypes.

Ontological Enrichment Analysis

We examined the biological processes and pathways over-represented by genes in/near our SNP hits. Table 2a listed the topten independent Gene Ontology (GO) pathways significantly en-riched for genes within 300 KB of our main effect SNP hits. Thesepathways predominantly related to cardiovascular phenotypes,which substantiated the findings from table 1b. Table 2b listed thetop ten KEGG pathways significantly enriched for miRNA molecules,where each miRNA molecule was enriched for genes within 300KB of our gene-by-smoking interaction SNP hits. The top threepathways among these corresponded to growing evidence that ter-penoids influence atherosclerosis [41], G protein-coupled odor-ant receptors regulate myocardial contractility [42], and smoking-induced impairment of ether lipid metabolism via LDL receptors inhepatocytes impacts cardiovascular phenotypes [43, 44, 45]. Table2c listed the top GO pathways significantly enriched for transcrip-tion factor genes, each transcription factor being enriched for geneswithin 300 KB of our gene-by-sex interaction SNP hits. These path-ways suggested a potential correspondence between our SNP hitsand the enhanced vasculogenic potential of female hematopoieticstem cells [46].
Several pathways that extended beyond the top ten lists were
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Table 2. Examination of biological processes enriched for genes/miRNA linked to SNP hits against our latent phenotypes. [a] The top ten independentGO pathways significantly enriched for genes within 300 KB of our main effect SNP hits, emphasizing their key role in cardiovascular disease-relatedprocesses. [b] The top ten KEGG pathways significantly enriched for miRNA molecules, which in turn are enriched for genes in proximity to ourgene-by-smoking interaction SNP hits. Several of these pathways suggest promising new avenues of research, including those related to terpenoidbackbone biosynthesis (facilitates atherosclerosis in mice), olfactory transduction (regulates myocardial contractility), and ether lipid metabolism(regulates ion channels and correlates to cardiovascular health). [c] The most enriched pathways for transcription factor genes, which in turn areenriched for genes in proximity to our gene-by-gender interaction SNP hits. Note that our gene-by-gender interaction SNP hits enrich pathwaysrelated to both gender differentiation and cardiovascular disease, such as the heightened vasculogenic potential of female hematopoietic stem cells.

also directly involved in cardiovascular disease. The top 11-25 gene-by-smoking interaction-linked miRNA KEGG pathways includedrenin secretion, ferroptosis, porphyrin and chlorophyll metabolism(integral to hemoglobin production), cholinergic synapses, arrhyth-mogenic right ventricular cardiomyopathy, cholesterol metabolism,and hypertrophic cardiomyopathy. A complete list of all enrichedpathways from the gene set enrichment analysis were listed in Ta-ble S6. Despite the smaller number of gene-by-alcohol interactionSNP hits, genes within 300 KB of these hits were significantly en-riched for few metabolic pathways. Each of these pathways, thoughenriched by only a single gene, was statistically significant. Fur-thermore, two out of the three associated genes had functions thatcould plausibly be impacted by ethanol.Genes within 300 KB of our gene-by-smoking interaction SNPhits predominantly enriched gene sets regulated by specific miR-NAs. We attempted to understand this observation with additional
in silico analysis. For each latent phenotype model, a Fisher ex-act test confirmed that gene-by-smoking interaction SNPs weremore likely to be within a gene if they were linked to an miRNA.This finding was congruent with the known regulatory roles ofmiRNAs at mRNA UTR regions and intronic sequences. We thencross-referenced these genes with external biological evidence. Ta-ble 3a listed the top five genes according to supporting study count,each exceeding a gda-score sum of 2 and an average differentialexpression (DE) ratio exceeding 1.5. While these genes broadly influ-enced various cell types, they consistently impacted cardiovasculardisease-relevant pathways. In contrast, Table 3b presented the fivegenes with the highest gda-score sums and no appreciable DE inresponse to cigarette smoke. Note that four of these genes werealmost exclusively expressed in tissues other than lung. Table 3clisted genes with the most supporting DE studies and a DE ratioexceeding 1.5, but without associations to cardiovascular disease,which suggested they are promising targets for future research.Finally, table 3d highlighted novel gene associations with no knownlinks to cardiovascular disease or cigarette smoke exposure. For a

complete list of miRNA linked gene-SNP pairs, see Table S7.

Shapley Value Explanations

Having analyzed the Shapley value contributions of ICD10 codes tolatent phenotypes, we proposed potential biological mechanismsfor two gene-by-smoking SNP effects. For the cardiac-specific
RYR2 gene in table 3b, subset analysis of Shapley values (size six)revealed that ICD codes I25.1 (atherosclerotic cardiomyopathy) andI25.9 (unspecified ischemic heart disease) were the most importantcontributors to the gene-by-smoking correlation between PCA la-tent phenotype 12 and rs6698949. Given the literature on calciumchannel blockers mitigating cigarette-induced hypertension [47], apotential RYR2-smoking interaction could increase ischemic heartdisease risk. We suspected this to occur via a non-atheroscleroticpathway because the Shapley values for I25.1 and I25.9 were anticor-related. For the cigarette-related KCNMB2 gene in table 3c, subsetanalysis of Shapley values (size 8) revealed that ICD10 code I83.9(varicose veins) consistently contributed the most to the correlationbetween latent phenotype 12 and rs67183339. While numerous otherICD codes were prominent, we note that KCNMB2 is a large conduc-tance, voltage and calcium-sensitive potassium channel, and sincethese specific potassium channels mediate the link between Matrixmetalloproteinase 2 and varicose veins [48], a KCNMB2 SNP variantand cigarette smoke may interact to precipitate varicose veins. Thisaligned with findings that linked smoking to increased varicoseveins risk [49, 50, 51], and varicose veins to heightened cardiovas-cular disease risk [52]. These proposed mechanisms provide novelhypotheses for further verification and study.
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Table 3. Detailed investigation of genes that contain a gene-by-smoking interaction SNP hit and are linked to a regulatory miRNA. [a] Top five genes,each with a gda-score sum over 2 and an average DE ratio exceeding 1.5, ranked by the number of supporting DE studies. [b] Five genes with thehighest gda-score sums but lacking evidence of DE. Notably, RYR2, ESR1, ECE1, andMYPN are almost exclusively expressed in non-lung tissues. [c]Genes with the most supporting studies and a DE ratio over 1.5. These genes are not linked to cardiovascular disease, but the functions of CSGALNACT1[58], KANK1 [59], and KCNMB2 [60] are linked. [d] Top five genes (sorted by p-value) with no known links to cardiovascular disease or cigarettesmoke. The functions of STX8 [61], GALNT16 [62], RSU1 [63], and KIAA1024 [64] are associated with cardiovascular disease.

Discussion

Most of the GxE effects detected were interactions with smoking, afinding that aligns with prior GxE effects that were identified forcoronary artery disease and high blood pressure [53]. However, theeffects identified in previous studies number around 40, whereasour approach found over 1000. The increased number of GxE effectsand their consistency with prior literature’s effect types suggestthat our original hypothesis is correct. Specifically, phenotypicheterogeneity dilutes GxE effects, and our latent phenotypes cor-respond to unobserved phenotypes that are more homogeneous.Unfortunately, our study is limited by the lack of replication of re-sults, which is made difficult by the lack of a resource comparableto the UKB. However, future research could strengthen our find-ings by validating our GxE effects in an independent dataset. Ourmethod could be applied to uncover novel genetic and GxE effectsfor any complex disorder, including depression, whose inherentheterogeneity has often resulted in SNP replication failure [54].The identification of numerous non-additive gene-by-smokinginteraction effects by TRACE is reminiscent of the considerable por-tion of heterosis in maize attributed to epistasis [55]. The possibilitythat epistasis contributes to AHF is further supported by recentlydiscovered epistatic main effect contributions to cardiovasculardisease [56]. While we did not discover any heterotic main effects,numerous gene-by-smoking interaction effects showed partial het-erosis, hinting that cigarette smoke could influence AHF’s epistaticvariance, consistent with the observed environmental dependencyof bacterial epistatic effects [57]. Future research should exploregene-by-gene-by-environment interactions in heterotic GxE hits,which may elucidate the genetic-environmental interplay in AHF.We addressed the tendency for target encoding to overfit by val-idating our GxE interactions with a permutation test, with uncer-tainty quantified by bootstrapping the distribution of permutationtest null p-values. However, our choice of the 95th percentile asthe final p-value might be overly conservative, potentially missingsignificant SNP hits. Table 1a confirmed that, for statistically signif-icant additive GxE effects, linear regression’s average -log10(p) val-ues were usually significantly higher than those of TRACE. However,it is crucial to note that even robust-looking parametric statisticsmay hide inherent variability, especially in the context of ultra-lowp-values frequently found in GWAS. These are often sourced fromdata sparse tails of distributions, leading to hidden uncertainties.

While TRACE’s p-values for GxE effects may appear stringent, theirrobustness is absent from more powerful parametric approaches.Future work developing a linear regression-based test for TRACEshould bear in mind the need to account for such variance.We identified hundreds of miRNA-linked gene-by-smoking in-teraction SNPs situated within genes, where many of these geneshad known involvement with cardiovascular disease or smoking.The fact that our miRNA-linked SNPs disproportionately residedwithin a gene suggested a complex interaction network involvinggene regulation by miRNAs. A cohort study in patients with diversesmoking histories may identify specific miRNA signatures associ-ated with AHF and smoking. Functional validation of the findingsvia experimental studies such as reporter gene assays following
in vitro knockdown/overexpression of miRNAs would also help toverify the influence of miRNAs and the genes they regulate on AHF.While several promising research efforts tackle the environmen-tal component of gene-by-smoking interactions, discovering andincorporating biologically causal SNPs into the analysis remainschallenging. Traditional explanations point to the specific correla-tion between SNPs and causal SNPs in one LD pattern [65], whichmay not hold in another. However, this fails to account for the ab-sence of independent GWAS in groups with varying LD patternsto find nearby SNPs with compensatory effects. We propose thatphenotypic heterogeneity, particularly that arising from biases inICD code assignment, might significantly contribute to these in-consistencies [6]. Differences in ICD code assignment are directlyinfluenced by socioeconomic conditions [66], which also influencedexposure to environmental factors that contribute to heart diseaseand ischemia [67, 68]. Thus, in addition to reducing total pheno-typic heterogeneity, our TRACE method could reduce differences inphenotypic heterogeneity between populations by shifting focusfrom heterogenous individual ICD10 codes to homogeneous ICD10code patterns.

Potential implications

Our findings contribute to the growing body of evidence that phe-notypic heterogeneity dilutes GWAS SNP hits, and our novel GWASmethod demonstrates one way to manage these issues. Applica-tion of TRACE to AHF resulted in hundreds of SNP hits, providing adifferent perspective from GWAS based on binary classification of
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cardiovascular disease ICD10 codes. The correlation we observed be-tween SNPs and sums of specific Shapley value subsets highlightsthe complex nature of heart failure and how binary features failedto capture this complexity. The high number of heterotic gene-by-smoking interaction effects highlights the potential benefitsof using a flexible model that does not impose the assumptions ofstandard SNP encodings. Interestingly, we observed enrichmentfor the miRNAs linked to genes near our SNP hits in crucial KEGGpathways, but not for the genes themselves, which indicates a sig-nificant role for miRNAs in heart failure’s genetic regulation. Thus,a complex interplay of genetic and gene-environment interactioneffects seemingly drives AHF, which was only revealed by latentphenotypes.

Availability of source code and requirements

• Project name: TRACE• Project home page: our github repo• Operating system: linux for the bash scripts• Programming language: Python, R, bash• Other requirements: see requirements.txt on our github repo• License: MIT

Data availability

The input data are available for other researchers via the UKB’scontrolled access scheme [69]. The procedure to apply for access[70] requires registering with the UK Biobank and compiling anapplication form detailing:
• A summary of the planned research• The UK Biobank data fields required for the project• A description of derivatives (data, variables) generated by theproject

In addition, several publicly available bio-informatics tools withassociated databases were used in this study:
• Genevestigator: We used this to compare genes containing SNPhits to the genes’ DE in response to cigarette smoke. It can beaccessed at https://genevestigator.com/.• LDTrait tool: We used this to find established GWAS SNPhits in LD with those of our study. It can be accessed athttps://ldlink.nih.gov/?tab=ldtrait.• DisGeNET: This public platform’s gda-scores were used toquantify the evidence that genes containing some of our SNPhits are related to cardiovascular disease. It is available athttps://www.disgenet.org/search.• FUMA: We used this to select all genes within 300kb of our SNPhits. It is available at https://fuma.ctglab.nl/.• MSigDB: We used this for our enrichment analyses. It can be ac-cessed at https://www.gsea-msigdb.org/gsea/msigdb/index.jsp• miEAA: We used this for our miRNA enrichment analysis. It isavailable at https://ccb-compute2.cs.uni-saarland.de/mieaa.

Access to these online resources is publicly available, but specificusage may require user registration. Please refer to each resource’srespective website for details on access, data use policies, and termsof service.
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