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Abstract 
Filariasis, a neglected tropical disease caused by roundworms, is a significant public health 
concern in many tropical countries. Microscopic examination of blood samples can detect 
and differentiate parasite species, but it is time consuming and requires expert 
microscopists, a resource that is not always available. In this context, artificial intelligence 
(AI) can assist in the diagnosis of this disease by automatically detecting and differentiating 
microfilarias. In line with the target product profile for lymphatic filariasis as defined by the 
World Health Organization, we developed an edge AI system running on a smartphone 
whose camera is aligned with the ocular of an optical microscope that detects and 
differentiates filarias species in real time without the internet connection. Our object 
detection algorithm that uses the Single-Shot Detection (SSD) MobileNet V2 detection 
model was developed with 115 cases, 85 cases with 1903 fields of view and 3342 labels 
for model training, and 30 cases with 484 fields of view and 873 labels for model 
validation before clinical validation, is able to detect microfilarias at 10x magnification and 
distinguishes four species of them at 40x magnification: Loa loa, Mansonella perstans, 
Wuchereria bancrofti, and Brugia malayi. We validated our augmented microscopy system 
in the clinical environment by replicating the diagnostic workflow encompassed 
examinations at 10x and 40x with the assistance of the AI models analyzing 18 samples 
with the AI running on a middle range smartphone. It achieved an overall precision of 
94.14%, recall of 91.90% and F1 score of 93.01% for the screening algorithm and 95.46%, 
97.81% and 96.62% for the species differentiation algorithm respectively. This innovative 
solution has the potential to support filariasis diagnosis and monitoring, particularly in 
resource-limited settings where access to expert technicians and laboratory equipment is 
scarce. 

  



1. Introduction 
Filariasis is a tropical infectious disease caused by roundworms (Phylum Nematoda). There 
are at least eight filarial worms that are hosted in humans. These are the causative agents of 
four types of diseases: lymphatic filariasis, which is caused by Wuchereria bancrofti, Brugia 
malayi, and Brugia timori; Onchocerciasis, caused by Onchocerca volvulus; loiasis, caused by 
Loa loa; and mansonellosis, caused by Mansonella perstans, Mansonella ozzardi, and 
Mansonella streptocerca. Among these, lymphatic filariasis and onchocerciasis have 
significant clinical and public health implications, while loiasis and Mansonella perstans have 
historically received less attention and are considered neglected diseases (1–3). 

In 2000, the World Health Organization (WHO) launched the Global Programme for the 
Elimination of Lymphatic Filariasis (GPELF), which set the goal of eliminating lymphatic 
filariasis as a public health problem in 58 countries by 2030 (4). The program achieved a 
considerable reduction, but there are still 863 million people in 50 countries who require 
preventive chemotherapy (PC) (5). Similarly, onchocerciasis affects over 20.9 million people, 
with at least 220 million in need of PC (6). However, L. loa infection is hindering the 
elimination of lymphatic filariasis and onchocerciasis, as these diseases use ivermectin in 
massive drug administration (MDA), but ivermectin causes severe adverse effects when the 
individual has elevated levels of L. loa in the blood (7).  

Studies have reported that M. perstans is the most prevalent filariasis in Africa, with more 
than 100 million people estimated to be infected and 600 million living in 33 high-risk 
countries (8), yet it is one of the most neglected filariasis (2,3,9), and there are no control 
programs for it. 

The correct diagnosis and appropriate treatment are paramount for the effective control and 
elimination of parasites and their approach depends on the filarias type. WHO recommends 
utilizing the Alere Filariasis Test Strip (FTS) for all areas endemic for W. bancrofti and Brugia 
Rapid Test for all areas endemic for Brugia spp. However, these tests are species-specific 
and do not account for co-infections (10). Molecular diagnosis methods have also been 
applied in surveillance studies with good results but without possibilities to perform on site 
(11). Microscopy remains the most widely used technique for all filarial species, enabling the 
detection of microfilariae through blood smears or skin snips. The routine examination is the 
screening at low magnification (10x magnification) and then uses higher magnification to 
identify the species (e.g., 40x). The sample should be scanned completely at 10x 
magnification to report the sample as negative (12). Nonetheless, the diagnosis by 
microscopy is time-consuming and requires experienced microscopists, whose availability is 
not always assured (13,14). In that sense, different studies revealed the importance of mobile 
health (mHealth) to bring diagnostics to the point of care and scale access in low and middle-
income countries (LMICs) (15–17). Notably, several investigations reported the use of mobile 



microscopy for parasite detection, such as LoaScope, which is a point-of-care microscope 
that detects L. loa microfilaria in blood smears automatically in video (18,19) or 
SchistoScope, a mobile phone microscope for the screening of Schistosoma haematobium 
(20). 

A possible tool to address the lack of trained specialists is the detection of parasites in 
microscopic images using Artificial Intelligence (AI). AI is revolutionizing the medical field and 
can be applied in different medical subfields (21,22). The development of AI algorithms for 
microscopy depends on the digitization samples, which can be done using digital 
microscopes that have embedded cameras, converting a conventional optical microscope to 
a digital microscope using mobile phones or other image acquisition modules. 

Numerous studies reported the detection of parasites in microscopical images, revealing the 
potential of AI in this task. Quinn et al. created one of the first deep learning algorithms for 
malaria image classification, for that, they used a 3D printed adapter that aligns the mobile 
phone camera to microscope eyepiece (23). Davidson et al. presented a study that detects 
Plasmodium-infected cells and classifies the stage obtaining a 98.5% average precision in 
detecting RBCs and 99.8% in classifying the detected cells into infected or uninfected. 
Images in this study were acquired by manually aligning the mobile phone camera to the 
microscope eyepiece (24). Similarly, Holmström et al. presented a deep learning algorithm 
for the detection of soil-transmitted helminths and Schistosoma haematobium with a custom 
microscope scanner (25). Dacal et al. presented an object detection algorithm for STH that 
runs on a smartphone (27). Oyibo et al. presented an automated microscope with AI for the 
detection of Schistosoma haematobium (28). Dedhiya et al. introduced the first study that 
uses machine learning over thermal imaging to predict the viability of onchocerca worms 
(29). D'Ambrosio et al. presented an algorithm which detects L. loa microfilaria in video, 
without distinguishing species. They correlated the automated counts with manual counts 
and achieved 94% specificity and 100% sensitivity (18). Elvana et al. presented a lymphatic 
filariasis detection system using image analysis, achieving an accuracy of 70% (30). As far as 
we know, there have been very few attempts to deploy edge-AI systems using deep learning 
which are able to support in real-time and without connectivity the analysis of optical 
microscopy images for filaria detection with species differentiation and more broadly NTDs 
diagnostics.  

The objective of this study is to propose, develop, and pilot a system for real-time, automatic 
detection and quantification of filariasis using an edge AI model. The proposed system aims 
to assist the screening and species differentiation of four worm species (L. loa, M. perstans, 
W. bancrofti and B. malayi) in blood smears for filariasis. For that, we proposed a pipeline 
with the following modules: the digitization of smear samples with smartphones coupled to 
a microscope through a 3D-printed device; sample analysis and data labeling in a 



telemedicine platform for training of an AI algorithm; integration of the trained algorithm on 
the smartphone to assist the diagnosis and validation of the model in a clinical environment. 

2. Materials and Methods 

2.1 Ethics statement 

Ethical approval was obtained from the Research Ethics Committee (REC) Instituto de Salud 
Carlos III, Spain (CEI PI 74_2020).  

2.2 Overview of the methodology 
The study was conducted in two distinct phases. The initial phase involved digitizing blood 
smear samples to construct the database for the development of AI algorithms with 115 
samples. In the subsequent phase, the AI model was integrated on the smartphone and a 
pilot study was conducted to evaluate the AI’s performance on real world settings with a 
new dataset of 18 samples. 

All preparations included in the study were appropriately stained, positive and with well-
preserved parasite morphology. Different levels of parasitemia ensured the possibility of 
collecting positive and negative fields of view. In addition to the image, other information 
regarding each preparation is also collected, such as the result obtained through alternative 
methods like polymerase chain reaction (PCR) and/or conventional microscopy, the staining 
type and where it was a thin spread or a thick drop. 

2.3 - Creating a Filariasis differentiation AI model 

2.3.1 Digitalize samples 

In the initial phase, a total of 115 sample smears from 115 different subjects were collected 
from the sample collection of the Malaria and Emerging Protozoa Unit of the Instituto de 
Salud Carlos III (Spain). In addition, all preparations have been previously anonymized 
without the possibility of reverse coding. 112 of them were stained with Giemsa and 3 of 
them with Panopticon. Case distributions were presented in Table 1.  

Images were digitized simulating the real diagnostic workflow, with a system previously 
described in Dacal et al. (27). Briefly, this system uses a 3D printed device that allows 
coupling a mobile phone with a conventional optical microscope by aligning the smartphone 
camera with the objective of the microscope to acquire images, and that converts any 
conventional microscope into a digital microscope. Following the conventional workflow, the 
analyst scanned the samples at 10x magnification and captured photos of fields containing 



structures compatible with filarial parasites. Subsequently, the objective was switched to 
40x magnification, and photos of each detected parasite were taken. Slides were digitized 
using four different smartphone models (Huawei Ascend G7; (n=95 cases), Redmi Note7 
(n=13 cases), Samsung Galaxy A32; (n= 5 cases), LG X Power K220; (n=1 case), Huawei 
Nova 5T (n=1 case)). 873 images of 10x and 1514 images of 40x were captured. 

To ensure complete separation between the training set and validation set, we implemented 
a case-level split for the digitized cases. This approach effectively prevents the inclusion of 
validation set data in the training set, thus addressing the issue of overfitted performance, 
and ensuring accurate reporting. 

Parasite Number of cases Training set Validation set 

L. loa 19 11 8 

M.  perstans 43 37 6 

W. bancrofti 9 5 4 

B. malayi 6 4 2 

L. loa + M.  perstans 20 18 2 

Negative 18 10 8 

Total 115 85 30 

Table 1: Cases included in the first phase and the training-validation split. 

2.3.2 Labeling data 

All acquired images were transferred from the smartphone to a telemedicine platform via 
mobile network, so that the images are stored and presented in an easy-to-use dashboard 
that allows their visualization, management, and labeling (Figure 1). In this web platform, 
standard clinical and analysis protocols were translated into digital tasks that were adapted 
to the clinical case and disease under study.  

 



Figure 1: The telemedicine platform facilitates image visualization, management, and 
labeling. When an AI algorithm is deployed, analysts have the option to review the 
predictions rather than starting the labeling process from scratch. 

The annotation protocol was based on the placement of bounding boxes around the 
identified parasites. All visible parasites in the image were labeled by two analysts and 
reviewed by an expert. At 10x magnification, as the species can’t be identified, all detected 
parasites belong to the microfilariae class. A total of 2293 parasites were located from 837 
images. At 40x magnification, the parasite species were annotated with their corresponding 
class. A total of 1651 parasites were tagged from 1514 images.  In addition, some artifacts 
that have a similar appearance to the parasite were labeled, which serves as a hard negative 
for the algorithm training.  

The labeled data was divided into a training set for model development and a validation set 
for selecting the best model, as shown in Table 2. The training set for 10x images consists 
of 1965 microfilarias from 700 images, while the validation set for 10x images contains 328 
microfilarias from 173 images. In the training set for 40x images, there are 906 L. loa, 378 M. 
perstans, 35 W. bancrofti, and 58 B. malayi parasites from 1203 images, while the validation 
set includes 38 L. loa, 102 M. perstans, 29 W. bancrofti, and 5 B. malayi parasites from 311 
images. 

Labels total training validation 

Microfilaria 2293 1965 328 

L. loa 1044 906 138 

M.  perstans 480 378 102 

W. bancrofti 64 35 29 

B. malayi 63 58 5 

Table 2. Label distribution of microfilaria species in the training and validation sets 

2.3.3 Creating the AI Model 

A requirement for our AI model is that it can work offline or in limited bandwidth settings. To 
fulfill this requirement, we selected a lightweight model that can be run on a smartphone in 
real-time without internet connection. Given the multifaceted nature of the task, 
encompassing object localization, classification and counting, an object detection algorithm 
would be an appropriate solution. Specifically, we employed the Single-Shot Detection 
(SSD) MobileNet V2 detection model with a feature pyramid network as feature extractor, 
shared box prediction and focal loss (31–33). Tensorflow object detection application 
programming interface (API) was used for model training because tensorflow has natively 
optimized the model to be executed in mobile phones and edge devices (34). Given the 



relatively small size of our dataset, we used a pre-trained model that was trained with the 
COCO image database (35) and fine-tuned for this use case. 

Two distinct algorithms were developed. The first algorithm, designed for screening at 10x 
magnification, focuses solely on detecting the presence of microfilariae. The second 
algorithm, developed for microfilaria species differentiation at 40x magnification, aims to 
classify the detected microfilariae into four species: L. loa, M. perstans, W. bancrofti, and B. 
malayi. 

Given the alignment of the smartphone with the microscope eyepiece, the area visualized by 
the mobile phone is limited to a circular area, as depicted in Figure 2. In order to exclude non-
informative regions (e.g., black areas), and to present other relevant information on the 
mobile phone screen (e.g., label count, AI activation, etc), we decided to use square images 
instead of rectangular images. 

For the species differentiation algorithm that works with 40x magnification, we initially 
identify the circular region within the image and extract a square image encompassing the 
entire field of view, as illustrated on Figure 2 left. Subsequently, the cropped region was 
resized to 640x640 pixels. The reviewed data was splitted into two sets at case level as 
described above.  

To address the imbalance nature of the dataset, oversampling of the minority classes was 
employed by generating mosaic images, which consists of cropping a 320x320 pixel patches 
that contains at least one parasite, and blending 4 images to create a new image of 640x640 
pixels. After augmentation, the training set contains 1116 L. loa, 378 M. perstans, 480 W. 
bancrofti and 533 B. malayi. Additional image augmentation, including random flip, rotation, 
crop, and brightness, hue and saturation adjustment, was applied during training to enhance 
the model’s robustness. 

In the screening algorithm that works with 10x magnification, a distinct strategy was 
implemented for image cropping in comparison to the species differentiation algorithm. Given 
the relatively small size of the parasite in 10x magnification, its visualization and detection 
pose challenges for both human analysts and AI systems, necessitating the use of zoom. To 
optimize the visibility of the parasite and maximize the size of the image, we decided to crop 
the original image to the square inscribed within the circle as depicted in Figure 2 right. As 
it can be appreciated, a single crop of the inner square leaves some valuable information out. 
To overcome this limitation, we employed the sliding window technique, where 4 patches 
were generated for each image, ensuring that all the information within the field of view is 
represented. Then, patches were resized to 640x640 to fit the requirements set by the 
network used. The same data augmentation was applied as in the species differentiation 
algorithm. After data augmentation, the number of microfilarias in the training set increased 
from 328 to 10847, whereas the validation set was unmodified. 



 

Filaria with 40x magnification Filaria with 10x magnification 

  

Figure 2. Left): example input of the species differentiation algorithm. Right):  green 
rectangle represents the sliding windows size 

2.4. Validation of the AI model in a clinical setting 

To assess the usability and performance of the proposed system within the clinical workflow, 
a field validation was conducted. Initially, the AI model was deployed on the smartphone, 
followed by an evaluation of the model's performance using an analysis workflow with 18 
samples that were not used for training nor validation of the model. 

2.4.1 Deployment and integration of technology 

The AI mobile model was optimized using post-training quantization, which is a conversion 
technique that reduces model size while also improving CPU and hardware accelerator 
latency, with little degradation on model accuracy. Subsequently, the model was converted 
into the Tensorflow Lite format. The model then is embedded into the custom application to 
perform the image analysis in real time. Speed test is conducted on two smartphones: the 
BQ Aquaris X2 and the Samsung S9. The execution time on BQ Aquaris X2 on CPU is 1400 
milliseconds for a single image, while the Samsung S9, utilizing the GPU, accomplished the 
task in 610 milliseconds. 

To facilitate the process of digitization and AI-assisted analysis, a customized Android 
application was developed. This application records both clinical data and images. While the 
user visualizes the image on the mobile phone screen, the selected AI algorithm, screening 
or species differentiation is running in real time depending on the magnification used (10x or 



40x), generating predictions for the corresponding frame, and outlining the detected 
parasites within bounding boxes. When the user takes a photo, both the images and the 
prediction are saved, and the parasite detection counter is incremented no matter if the 
prediction is correct or not. In the case that the user finds parasites not detected by the AI 
algorithm, they can tap on the button of the corresponding label to increase the count of this 
parasite. Once the analysis is finished, this information is uploaded to the telemedicine 
platform, allowing users to review and correct the prediction and share information. Figure 
3 explains how the smartphone is attached to the conventional and the screening and species 
differentiation algorithm running on the smartphone. In addition, the Video 1 on 
supplementary data showcases the whole AI system including hardware. As the video 
demonstrates, the smartphone camera is aligned to the microscope eyepiece with the 
assistance of an adapter, with AI running in real time, the analyst moves the sample and 
analyzes it with AI assistance. Video 2 in the supplementary data provides a screen recording 
that offers a more detailed perspective of AI detecting microfilarias at 10x magnification and 
differentiating species at 40x magnification. 

 

 

Figure 3: (a) smartphone attached to the conventional microscope with a 3D printed adapter. 
(b) screening algorithm working on the smartphone. (c) species differentiation working on 
the smartphone. 



2.4.2 Experiment- Pilot replicating diagnostic workflow 

To assess the performance of the AI models, a real-time pilot study was conducted to 
evaluate the effectiveness of the edge AI system in assisting parasite detection through the 
mobile application. 

To pilot the proposed system, the algorithm developed in the first phase was integrated on 
the mobile phone and the telemedicine platform to be validated. For all selected samples 
(N=18), Figure 4 represents the ideal workflow: with the AI algorithm operating in real time, 
the analyst examines the complete sample using a 10x magnification objective. Depending 
on whether the algorithm detects a parasite, different actions are taken. When a parasite is 
identified by the AI algorithm, the analyst captures a photo and the detected parasites are 
automatically counted by the app, and switches to a 40x magnification objective. At this 
point, the species differentiation algorithm is activated to discern the specific species of the 
detected parasites, a photo is taken to count the parasite. In cases where parasites are 
present on the screen but not detected by the screening AI, the analyst manually adds the 
count by tapping on the corresponding label. Since the mobile application did not allow 
modification of the incorrect prediction, both images and the mobile prediction were 
uploaded to the telemedicine platform for further correction and validation. The results were 
independently reviewed by two analysts: analyst A, a junior researcher in parasitology, who 
analyzed images on real time using the mobile application; and analyst B, an expert in 
microscopy of infectious diseases and who only reviewed the digitized image on the 
telemedicine platform. 

 

Figure 4. Schema represents the validation workflow of AI assisted filariae detection. At least 
3 images of negative fields were acquired for each sample.  

The evaluation of the algorithm’s performance was based on precision (P), which measures 
the proportion of correctly identified objects among all the objects predicted by the model; 
recall (R), which measures the proportion of the correctly identified objects among all the 
ground truth objects; and F1 score, a combined metric that takes into account both precision 
and recall to provide a single value that represents the overall performance. Object detection 
algorithms have capabilities that go beyond classification algorithms, being able to detect 
multiple objects as well as their location and size within the image, in the form of bounding 



boxes. Therefore, to compute those metrics, additional considerations must be put in place. 
For each proposed bounding box with confidence score greater than 50%, it is considered as 
a true positive (TP) if the intersection over union with the ground truth is greater than 0.5 and 
the class is correct. Conversely, if the predicted area corresponds to artifacts or other 
parasites class then it is considered as false positive (FP). Furthermore, ground truth boxes 
that were not proposed by the algorithm were categorized as false negatives (FN). True 
negative (TN) were not computed as all areas without predictions are considered TN. 
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3. Results 

3.1 Evaluation of the AI model performance 

 

The performance assessment of the model was conducted on the validation set with 30 
cases as described in Table 1. The screening algorithm, designed to work with 10x 
magnification, achieved a precision of 88.17%, recall of 91.62%, and an F1 score of 89.85%. 
On the other hand, the species differentiation algorithm achieved a weighted precision of 
84.08%, recall of 95.33%, and an F1 score of 94.70%. Breaking down the results per class, 
the precision rates were 94.85% for L. loa, 97.03% for M. perstans, 94.00% for W. bancrofti, 
and 66.67% for B. malayi. The corresponding recall rates were 93.48%, 96.08%, 97.92%, 
and 92.31% respectively. 

The resulting confusion matrix of the species differentiation algorithm that works with 40x 
magnification is presented in Table 3. It should be noted that the AI algorithm was not 
specifically trained with artifact labels, which are areas on the image that may look like a 
parasite (e.g., mycelium, fibers), but the model may occasionally predict the artifact region as 
a parasite (false positive) where the analyst did not assign a label. 

 

 

 

 



  AI Predictions 

 Artifact L. loa M.  perstans W. bancrofti B. malayi 

G
ro

un
d 

Tr
ut

h 

Artifact - 7 3 2 3 

L. loa 6 129 0 1 1 

M.  perstans 4 0 98 0 0 

W. bancrofti 0 0 0 47 1 

 B. malayi 1 0 0 0 12 

Table 3: Confusion matrix of the species differentiation algorithm (40x) on the validation 
set, each row represents the ground truth, and each column represents the prediction. The 
model may predict the artifacts as a parasite (false positive), but the analysts did not label 
all artifacts. 

3.2 Validation of the AI-assisted mobile app 

For the pilot study, a total of independent 18 samples from different subjects with respect to 
the ones used for training and validation were analyzed with AI assistance on the mobile 
phone by analyst A. 452 field of views of 10x magnification and 624 field of views of 40x 
magnification were analyzed on the mobile phone, uploaded to the telemedicine platform, 
and reviewed by another analyst, generating the ground truth to evaluate the model 
performance in real time. 

To assess the potential benefits of reviewing AI analysis and its impact on inter-observer 
variability and time, we shuffled and split the uploaded images into four groups, 10x 
magnification with AI and without AI assistance (232 images with AI and 220 images without 
AI), and 40x magnification with and without AI assistance (320 images with AI and 304 
images without AI). Both analysts analyze the two groups without AI assistance -10x 
without AI and 40x without AI - from scratch and analyze the two groups with AI assistance 
-10x with AI and 40x with AI - by reviewing the prediction generated by the AI on the 
smartphone. This allowed us to investigate the potential time-saving benefits and the 
potential reduction in inter-observer variability provided by AI assistance. 

3.2.1 Real-time AI-Performance 

The analysis conducted by analyst B, who has greater expertise compared to analyst A, was 
considered as the ground truth for our evaluation. According to analyst B, at 10x 
magnification, out of the 452 images examined, 280 were identified as positive, indicating 
the presence of at least one parasite, while 172 were determined to be negative. The parasite 



count reported by analyst B and the AI for each image is significantly correlated, with a 
pearson correlation coefficient of 0.984. At parasite level, the screening algorithm achieved 
an overall performance of 94.14% precision, 91.90% recall, and 93.01% F1-score. In the 
context of differentiating between parasite species, according to analyst B, out of the 624 
images assessed, 511 were classified as positive. The parasite count reported by analyst B 
and the AI for each image is also significantly correlated for species differentiation algorithm, 
with a pearson correlation coefficient of 0.953. The AI algorithm demonstrated an overall 
precision of 95.46%, recall of 97.81%, and F1-score of 96.62% in this regard. The per-class 
precision values were determined as 98.80% for L. loa, 60.00% for M. perstans, 100.00% for 
W. bancrofti, and 58.97% for B. malayi. The corresponding recall rates were calculated as 
98.50%, 100.00%, 76.00%, and 100.00%, respectively. Table 4 presents the confusion 
matrix of the AI model in relation to analyst B's analysis.  
 

  AI predictions 

  Artifact 
(10x) 

Microfilaria 
(10x) 

Artifact 
(40x) 

L. loa 
(40x) 

M.  
perstans 

(40x) 

W. 
bancrofti 

(40x) 

B. 
malayi 
(40x) 

G
ro

un
d 

tr
ut

h 

Artifact (10x) - 53      

Microfilaria 75 851      

Artifact (40x)   - 8 10 0 13 

L. loa   10 658 0 0 0 

M.  perstans   0 0 15 0 0 

W. bancrofti   3 0 0 19 3 

B. malayi   0 0 0 0 23 

 

Table 4: Performance of the AI algorithm on pilot study using mobile phone. Each row 
represents the ground truth and each column represents the AI prediction. 

3.2.2 Inter-observer variability 

To assess inter-observer variability, we compared the total number of parasites detected in 
each sample by analyst B and analyst A, both with and without AI assistance. Additionally, 
we compared the parasite count of each image generated by the AI system with the count 
provided by analyst B (considered as the ground truth). This comparison allowed us to 
analyze the performance and agreement between the analysts and the AI system in 
identifying and quantifying parasites. 

The results reported by both analysts are strongly correlated. The Pearson correlation 



coefficient between analyst A and analyst B when analyzing without AI is 0.989 for the 
screening algorithm and 0.992 for species differentiation algorithm. Similarly, when 
analyzing with AI assistance, the correlation coefficients are 0.994 and 0.997 respectively. 
Notably, the correlation coefficients are slightly higher when analysts utilize AI assistance 
during their assessments. 

Furthermore, it is noteworthy that there is a high correlation between the parasite counts 
reported by the AI model and analyst B. The minimum Pearson correlation coefficient 
observed in this comparison was 0.928, further indicating a strong correlation between their 
reported counts. 

 With AI Without AI 

10x 0.994* 0.990* 

40x 0.997* 0.992* 

Table 5: Inter-observer agreement of detected parasites when analyzing with and without 
AI assistance of 2 experts and of the AI. * indicates that the p-value is smaller than 0.001. 

3.2.3 Analysis time 

In addition to evaluating the performance of the edge AI system, we also analyzed the 
potential time-saving effect of AI assistance on the telemedicine platform. We compared the 
time required for analysts to review AI predictions versus the time needed for labeling from 
scratch. Both analysts were asked to review 524 images without AI assistance, and then 524 
different images with AI assistance. For Analyst A, the analysis time significantly decreased 
from an average of 23.5 seconds per image to just 3.5 seconds per image when utilizing AI 
assistance. However, it should be noted that the analysis time for Analyst B remained 
unchanged. 

 without AI assistance with AI assistance 

Analyst A 23.5 3.5 

Analyst B 12 12 

Table 6: Average analysis time in seconds for both analysts with and without AI assistance 
for each image. 

Discussion and Conclusion 

This study introduces the first real-time edge AI deployment on smartphones to assist in the 
screening and species differentiation for filarial samples in mobile microscopy and validated 
it in a clinical setting. To create and validate the AI powered mobile application, we proposed 



a methodology that encompasses an image digitization system, a telemedicine platform to 
visualize and annotate images, a training and deployment pipeline, and an Android 
application to deploy AI models.  

Diagnosis is an essential part of the monitorization of the effect of MDA, which is a 
recommended strategy to control or eliminate several neglected tropical diseases, including 
filariasis. Microscopy is a widely used technique for filariasis diagnosis, as it can distinguish 
parasite species, but it requires expert microscopists, and is time-consuming. Very few 
studies attempted to automatize filarias parasite detection detecting microfilarias, without 
distinguishing species (18,30). With respect to these prior works, our proposal allows us to 
replicate the full diagnostic workflow including 10x and 40x examinations, successfully 
distinguishing between different microfilariae species, making it particularly valuable in co-
endemic areas where multiple species are prevalent. Our system also operates in real-time 
without the internet connection, enabling its deployment at the point of care and not relying 
on expensive or hard to find hardware as it can be utilized with any conventional microscope 
and low- to middle-end mobile phones, making it accessible and affordable. The system is 
easily scalable, as it is deployed on smartphones. 

The AI system that we propose follows the conventional workflow, screening the sample at 
10x magnification and differentiating species at 40x magnification. Hence, two algorithms 
were deployed for each use case using 85 samples, which were first validated on 30 samples 
to assess the model performance and then deployed to the clinical environment to evaluate 
the whole system usability. The validation in the clinical environment was conducted by 
analyzing 18 samples with the AI model running on mobile phone in real time, achieving an 
overall precision of 94.14%, recall of 91.90% and F1 score of 93.01% for the screening 
algorithm and 95.46%, 97.81% and 96.62% for the species differentiation algorithm 
respectively. 

In the inter-observer variability and analysis time comparison, we found that with AI 
assistance the correlation between two analysts increased slightly, and the analysis time 
reduced for the junior researcher in parasitology while it remained unchanged for the expert 
in infectious diseases microscopy.  

It is important to acknowledge that our study has a limited sample size in general, especially 
for W. bancrofti, and B. malayi (35, 58 labels for training respectively). Despite that, our 
algorithm achieved high precision and recall, even though the performance fluctuates a lot 
for minority classes. Additionally, the fact that all samples come from one research center 
may introduce bias and reduce generalizability of our algorithm, performing worse in samples 
from other centers, due to the sample preparation, etc. To address these limitations, future 
research should include multi-centric study, including training and validating on samples 
from different research centers and involving more analysts. Such an extensive validation 
process would help to assess the robustness and generalizability of the AI system across 



various real-world settings and conditions. 

In conclusion, the presented system can assist the diagnosis of filariasis in resource-
constrained settings, particularly when healthcare workers are scarce, by transforming any 
optical microscope into an intelligent point-of-care device. The system is easily scalable, as 
it is deployed on smartphones. This approach could reduce the dependency of highly 
specialized personnel as we can empower community health workers to contribute to 
filariasis control. Additionally, the system's telemedicine platform provides the opportunity 
for seeking second opinions and quality control in cases of diagnostic uncertainty, enhancing 
overall accuracy. The platform also can be used as an epidemiological surveillance platform, 
contributing to the tracking and the monitoring of the prevalence and distribution of filariasis. 
Furthermore, our system can be expanded to other neglected tropical diseases by collecting 
samples of other diseases, with the vision of creating a universal AI model for parasite 
detection. We also believe that future AI supporting systems will be multi-modal, 
incorporating a wide range of clinical inputs from diverse data sources beyond imaging, such 
as medical text or speech, enhancing the accuracy and generating comprehensible diagnostic 
interfaces reports (36,37). The current AI revolution in medicine should also be viewed as an 
opportunity for NTDs. 
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