
 1 

Critical assessment of variant prioritization methods for rare disease diagnosis 

within the Rare Genomes Project 

 

Sarah L. Stenton1,2,3, Melanie O’Leary2, Gabrielle Lemire1,2, Grace E. VanNoy2, 

Stephanie DiTroia1,2, Vijay S. Ganesh1,2,4, Emily Groopman1,2, Emily O’Heir1,2, Brian 

Mangilog2, Ikeoluwa Osei-Owusu2, Lynn S. Pais1,2, Jillian Serrano1,2, Moriel Singer-Berk2, 

Ben Weisburd2, Michael Wilson2, Christina Austin-Tse2,3, Marwa Abdelhakim5, Azza 

Althagafi5,6,7, Giulia Babbi8, Riccardo Bellazzi9,10, Samuele Bovo11, Maria Giulia Carta10, 

Rita Casadio8, Pieter-Jan Coenen12, Federica De Paoli9, Matteo Floris13, Manavalan 

Gajapathy14,15,16, Robert Hoehndorf5,6, Julius O.B. Jacobsen17, Thomas Joseph18, Akash 

Kamandula19, Panagiotis Katsonis20, Cyrielle Kint12, Olivier Lichtarge20,21,22, Ivan 

Limongelli9, Yulan Lu23, Paolo Magni9,10, Tarun Karthik Kumar Mamidi14,15,16, Pier Luigi 

Martelli8, Marta Mulargia13, Giovanna Nicora9, Keith Nykamp12, Vikas Pejaver24,25, Yisu 

Peng19, Thi Hong Cam Pham26, Maurizio S. Podda13, Aditya Rao18, Ettore Rizzo9, 

Vangala G Saipradeep18, Castrense Savojardo8, Peter Schols12, Yang Shen27,28,29, 

Naveen Sivadasan18, Damian Smedley17, Dorian Soru30, Rajgopal Srinivasan18, Yuanfei 

Sun27, Uma Sunderam18, Wuwei Tan27, Naina Tiwari18, Xiao Wang23, Yaqiong Wang23, 

Amanda Williams20, Elizabeth A. Worthey14,15,16, Rujie Yin27, Yuning You27, Daniel 

Zeiberg19, Susanna Zucca9, Constantina Bakolitsa31, Steven E. Brenner31, Stephanie M 

Fullerton32, Predrag Radivojac19, Heidi L. Rehm2,3, Anne O’Donnell-Luria1,2,3,* 

1. Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical 

School, Boston, MA, USA 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 4, 2023. ; https://doi.org/10.1101/2023.08.02.23293212doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.08.02.23293212
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

2. Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 

Cambridge, MA, USA 

3. Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA 

4. Department of Neurology, Brigham and Women’s Hospital, Harvard Medical 

School, Boston, MA, USA 

5. Computational Bioscience Research Center (CBRC), King Abdullah University of 

Science and Technology (KAUST), Thuwal, Saudi Arabia 

6. Computer, Electrical and Mathematical Sciences & Engineering Division 

(CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah 

University of Science and Technology (KAUST), Thuwal, Saudi Arabia 

7. Computer Science Department, College of Computers and Information 

Technology, Taif University, Taif, Saudi Arabia 

8. Biocomputing Group, Department of Pharmacy and Biotechnology, University of 

Bologna, Bologna, Italy 

9. enGenome Srl, Pavia, Italy 

10. Department of Electrical, Computer and Biomedical Engineering, University of 

Pavia, Pavia, Italy 

11. Department of Agricultural and Food Sciences, University of Bologna, Bologna, 

Italy 

12. Invitae, San Francisco, California, USA 

13. Department of Biomedical Sciences, University of Sassari, Sassari, Italy 

14. Center for Computational Genomics and Data Science, The University of Alabama 

at Birmingham, Birmingham, AL, USA 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 4, 2023. ; https://doi.org/10.1101/2023.08.02.23293212doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.02.23293212
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

15. Department of Genetics, Heersink School of Medicine, The University of Alabama 

at Birmingham, Birmingham, AL, USA 

16. Hugh Kaul Precision Medicine Institute, The University of Alabama at Birmingham, 

Birmingham, AL, USA 

17. William Harvey Research Institute, Barts & The London School of Medicine and 

Dentistry, Queen Mary University of London, Charterhouse Square, London, UK 

18. TCS Research, Tata Consultancy Services (TCS) Ltd, Deccan Park, Madhapur, 

Hyderabad, India 

19. Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA 

20. Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, 

TX, USA 

21. Structural and Computational Biology & Molecular Biophysics Program, Baylor 

College of Medicine, Houston, TX, USA 

22. Computational and Integrative Biomedical Research Center, Baylor College of 

Medicine, Houston, TX, USA 

23. Center for molecular medicine, Pediatric Research Institute, Children’s Hospital of 

Fudan University, Shanghai, China 

24. Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, 

NY, USA 

25. Department of Genetics and Genomic Sciences, Icahn School of Medicine at 

Mount Sinai, New York, NY, USA 

26. Anatomy and Surgical Training Department, University of Medicine and Pharmacy, 

Hue University, Vietnam 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 4, 2023. ; https://doi.org/10.1101/2023.08.02.23293212doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.02.23293212
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

27. Department of Electrical and Computer Engineering, Texas A&M University, 

College Station, TX, USA 

28. Department of Computer Science and Engineering, Texas A&M University, 

College Station, TX, USA 

29. Institute of Biosciences and Technology and Department of Translational Medical 

Sciences, College of Medicine, Texas A&M University, Houston, Texas, USA 

30. Independent consultant 

31. Department of Plant and Microbial Biology and Center for Computational Biology, 

University of California, Berkeley, CA, USA 

32. Department of Bioethics & Humanities, University of Washington School of 

Medicine, Seattle, WA, USA 

*Corresponding author: odonnell@broadinstitute.org 

 

ABSTRACT 

 

Background: A major obstacle faced by rare disease families is obtaining a genetic 

diagnosis. The average “diagnostic odyssey” lasts over five years, and causal variants 

are identified in under 50%. The Rare Genomes Project (RGP) is a direct-to-participant 

research study on the utility of genome sequencing (GS) for diagnosis and gene 

discovery. Families are consented for sharing of sequence and phenotype data with 

researchers, allowing development of a Critical Assessment of Genome Interpretation 

(CAGI) community challenge, placing variant prioritization models head-to-head in a real-

life clinical diagnostic setting. 
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Methods: Predictors were provided a dataset of phenotype terms and variant calls from 

GS of 175 RGP individuals (65 families), including 35 solved training set families, with 

causal variants specified, and 30 test set families (14 solved, 16 unsolved). The challenge 

tasked teams with identifying the causal variants in as many test set families as possible. 

Ranked variant predictions were submitted with estimated probability of causal 

relationship (EPCR) values. Model performance was determined by two metrics, a 

weighted score based on rank position of true positive causal variants and maximum F-

measure, based on precision and recall of causal variants across EPCR thresholds. 

Results: Sixteen teams submitted predictions from 52 models, some with manual review 

incorporated. Top performing teams recalled the causal variants in up to 13 of 14 solved 

families by prioritizing high quality variant calls that were rare, predicted deleterious, 

segregating correctly, and consistent with reported phenotype. In unsolved families, 

newly discovered diagnostic variants were returned to two families following confirmatory 

RNA sequencing, and two prioritized novel disease gene candidates were entered into 

Matchmaker Exchange. In one example, RNA sequencing demonstrated aberrant 

splicing due to a deep intronic indel in ASNS, identified in trans with a frameshift variant, 

in an unsolved proband with phenotype overlap with asparagine synthetase deficiency. 

Conclusions: By objective assessment of variant predictions, we provide insights into 

current state-of-the-art algorithms and platforms for genome sequencing analysis for rare 

disease diagnosis and explore areas for future optimization. Identification of diagnostic 

variants in unsolved families promotes synergy between researchers with clinical and 

computational expertise as a means of advancing the field of clinical genome 

interpretation. 
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INTRODUCTION 

 

Genome sequencing is increasingly becoming a standard genetic test for rare 

disease diagnosis and research (1,2), capturing variants in both the coding and non-

coding genomic space, and resulting in approximately 75,000 rare variants at ≤1% 

population allele frequency, per individual, for clinical consideration (3). Therefore, the 

reported diagnostic gap where >50% of rare disease patients remain undiagnosed 

becomes more of a question of our capability to interpret, rather than to capture, variation 

(4,5). The current standards for classification of variant pathogenicity have been defined 

by the American College of Medical Genetics and Genomics and the Association for 

Molecular Pathology (ACMG/AMP) and refined by ClinGen 

(https://clinicalgenome.org/working-groups/sequence-variant-interpretation/) (6–

8). They require in-depth assessment of variants to reach pathogenic (P) or likely 

pathogenic (LP) designation. This well-recognized analytical obstacle to diagnosis is 

eased by the prioritization of a manageable number of variants for clinical review, and 

underscores the need to develop computational methods able to integrate variant 

evidence, such as population allele frequency and in silico prediction of deleteriousness, 

in the context of phenotype and segregation of the variant(s) in the family (9). 
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CAGI challenges provide a framework to compare genome interpretation methods 

independently and objectively (10). Predictors are given data and make blind predictions 

on unpublished datasets which are independently assessed. To understand the state of 

the art and to encourage innovation for rare disease variant prioritization in a real-life 

diagnostic setting, we developed the CAGI RGP challenge, implemented in the 6th edition 

of CAGI assessments (CAGI6). The RGP (raregenomes.org/) study generates and 

analyzes research genome sequencing data from a diverse range of families seeking a 

molecular diagnosis for a rare disease. When variants of clear or potential diagnostic 

relevance are identified, they are clinically validated and returned to participants via their 

local physicians. For the CAGI6 challenge, we provided predictors with variants from 

genome sequencing and phenotype data standardized as Human Phenotype Ontology 

(HPO) terms (11) from a subset of solved and unsolved RGP families. The predictors in 

the challenge were tasked with identifying the causal variant(s) in as many families and 

at the highest rank as possible. 

Here, we report on the format, assessment, and outcome of the challenge, 

including lessons learnt from exploration of differences in performance across prediction 

strategies and provision of method reports from participating teams. 

 

METHODS 

 

Sequencing, variant calling, and analysis by the RGP team 

Genomic data were obtained by sequencing DNA purified from blood. Sequencing 

was performed by the Broad Institute Genomics Platform on an Illumina sequencer to 30x 
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depth on average. Raw sequence reads were reassembled against the GRCh38 

reference genome. Variants were called with GATK version 4.1.8.0 (12) in the form of 

single nucleotide variants (SNVs) and small insertions/deletions (indels). All data were 

analyzed by expert RGP variant analysts using seqr, an open-source, web-based 

genomic analysis tool for family-based monogenic disease analysis 

(seqr.broadinstitute.org/) (13). Structural variants (SVs) were not included in this 

challenge, but have been analyzed by the RGP team independent from the CAGI 

challenge. 

 

Challenge datasets 

Two datasets were provided for the CAGI6-RGP challenge, a training set and a 

test set. For each, a joint variant call file (VCF) was provided to the CAGI6 organizers for 

use in the challenge. In addition to the genomic data, clinical phenotype descriptions from 

patient provided information and review of medical records by a genetic counselor or 

medical geneticist were provided in HPO nomenclature. The diversity of phenotypes 

represented the range of clinical presentations routinely seen in patients referred for 

genetic testing. The family structure and affected status of each sequenced individual 

were provided, identifying the proband, sibling, mother, and father, as applicable. 

For training and contextual purposes, genome sequencing and HPO data from 35 

solved RGP families were provided along with the causal variant(s) identified by the RGP 

team. Ancestry was not provided but was imputed for the probands using the principal 

component analysis and random forest model used for the Genome Aggregation 

Database (gnomAD) (3). Overall, the training set consisted of six proband-only families, 
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three duos (proband and one biological parent), and 26 trios (proband and both biological 

parents). The majority of diagnoses were de novo (n=21), or recessive (n=8) and the 

majority of responsible variants had been reported in the ClinVar database as P and/or 

LP (14) (https://www.ncbi.nlm.nih.gov/clinvar/) at the time the challenge was announced 

(May 3, 2021) (Supplemental Table 1). 

For test purposes, the RGP team selected 30 families for inclusion in the 

challenge. Fourteen were solved and 16 were unsolved. The solved families in the test 

set were selected more stringently than for the training set, according to the following 

criteria: i) the responsible gene has an established Mendelian disease-association as per 

the Online Mendelian Inheritance in Man database (OMIM, https://www.omim.org/) and/or 

published literature at the time the challenge was announced, ii) the responsible variant(s) 

must not have been reported as P/LP in the ClinVar database or listed in/reported as a 

disease mutation (DM) in the HGMD Professional database (15) 

(https://www.hgmd.cf.ac.uk/ac/index.php) at the time the challenge was announced (May 

3, 2021), and iii) the variant(s) were classified as P, LP, or variant of uncertain significance 

(VUS) with evidence that is close to LP according to the ACMG/AMP guidelines (6). The 

causal variants in all 14 solved families had been discussed by the RGP multi-disciplinary 

team of physicians, genetic counselors, analysts, and molecular geneticists, and had 

been returned to the family via a local clinician following confirmation in a CLIA certified 

laboratory. The local clinicians concurred that the variants are diagnostic. The submission 

of these variants from RGP participants to ClinVar was intentionally delayed for the 

duration of the challenge. Supplemental Table 2 displays the answer key for the 30 

families in the test set. Overall, the test set consisted of two proband-only families, three 
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duos, 23 trios (proband and both biological parents), and two quads (proband, affected 

biological sibling, and both biological parents). All of the 16 unsolved families were trios, 

with the exception of one quad. 

A summary of the core features of the families and diagnostic variants in the 

training and test sets is depicted in Figure 1.  

 

 

Figure 1. CAGI6 RGP challenge overview of selected families. Summary of the 35 training set families 

(all solved) and 30 test set families (14 solved, 16 unsolved). Imputed population ancestry, the amount of 

familial sequencing data provided (proband-only, duo, trio, or quad), diagnostic status, and mode of 

inheritance of the causal variant(s) is displayed by family. For all returnable diagnostic variants in the solved 

FIGURE 1

A

30 families

B

15 variants across solved families

Test set
35 families 42 variants across solved families

Training set
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families in each set, the functional consequence according to the Variant Effect Predictor (VEP), ClinVar 

and HGMD reporting status at the time of announcement of the challenge (May 3, 2021), and ACMG/AMP 

classification are displayed by variant. NFE, Non-Finnish European; AFR, African/African American; AMR, 

Admixed American; ASJ, Ashkenazi Jewish; SAS, South Asian; AD, autosomal dominant; XLR, X-linked 

recessive; AR, autosomal recessive; P, pathogenic; LP, likely pathogenic; VUS, variant of uncertain 

significance; DM, disease mutation. 

 

Challenge format 

The challenge was publicly released on May 3, 2021, and open for submissions 

on June 8, 2021. The submission deadline was October 11, 2021. Participating teams 

were tasked to provide a genetic diagnosis to as many probands from the 30 families in 

the test set as possible by submitting predictions for each proband’s causal variant(s). 

The 14 solved families were included in the challenge to evaluate the performance of 

each model in prioritizing the causal variants (true positives). The unsolved families were 

included with the goal of the participating teams identifying novel, potentially causal, 

variants for further clinical and experimental assessment followed, where possible, by 

return to the families. The number of solved and unsolved families was not disclosed in 

the challenge description to allow the participating teams to perform the task in a manner 

that reflects analysis in the clinical setting. Teams were able to submit up to 100 variant 

predictions per proband, ranked by causal likelihood, from a maximum of six different 

models. The submission format, a tab-delimited text file, accepted both single (one variant 

per line) and proposed biallelic (two variants per line), compound heterozygous 

predictions. For each variant, teams were required to provide an EPCR value for the 

submitted variant(s) being causal on a scale of 0 to 1, with 1 indicating highest certainty. 
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An example submission file and a validation script were provided. Predictors were 

informed that assessors will review how often these were the top variant(s) returned (e.g., 

in the top 5, 10, 20, 50, or 100 variants) but not further informed about details of the 

assessment metrics. 

 

Assessment of model performance across solved families 

Formatting errors in the submission files were corrected, and redundant, duplicate, 

and incomplete submissions were removed. Causal variant predictions for each solved 

proband were assessed by an independent assessor (author S.L.S). The assessor was 

blinded to the identity and methods of the participating teams throughout assessment, 

and the identities of the participating teams were only revealed once the analysis was 

completed. The following two numeric metrics were considered: 

(i) Mean rank points: The mean of a weighted point allocation system based on 

the rank position of the true positive causal variant(s) in the solved probands 

within the top five (100 points), top 10 (50 points), top 20 (25 points), top 50 (10 

points), or top 100 (5 points) variant predictions per proband. Model 

performance was subsequently ranked by the mean points awarded per 

proband. 

(ii) F-max: The F-measure, a harmonic mean between the precision and recall for 

causal variant prediction in the solved probands, was calculated for all unique 

EPCR values for each model. The maximum F-measure (F-max) (16), 

corresponding EPCR threshold, and mean number of predictions submitted per 
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proband at and above this EPCR threshold were subsequently defined for each 

model and model performance was ranked by the resultant F-max value. 

For both numeric metrics, a bootstrapped standard error (SE) (17) was calculated 

over 1,000 bootstrapped samples from the probands of the 14 solved families in the test 

set only. 

As described, the causal variants in the answer key had been formally classified 

as P, LP, or VUS leaning towards LP according to the ACMG/AMP guidelines; however, 

for the purpose of matching the teams’ predictions to the answer key, all variants were 

treated equivalently. In the case that a correct causal variant was submitted in 

combination with a second non-causal variant in a proposed biallelic, recessive 

prediction, the prediction was considered incorrect. For P27, a proband from a family 

where both the proband and the affected sibling had inherited two paternal variants in cis, 

where it is unknown if both or only one of the variants is required and both variants were 

considered equally likely to be causal by the RGP team (Supplemental Table 2), the 

highest-ranked variant prediction for either one of the two variants by the respective 

model was retained and the other was removed from the analysis. 

 

Assessment of novel putative causal variants across solved and unsolved families 

Following assessment of model performance, predictions from top performing 

models that i) deviated from the answer key in the solved probands and ii) were submitted 

for the unsolved probands, were critically evaluated in the rare disease genomics web-

based analysis tool seqr (seqr.broadinstitute.org/) (13). Putative causal variants were 

discussed by the RGP team and, where possible, were pursued by: i) functional validation 
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of two cases by RNA sequencing, ii) SV analysis in a separate call set generated by the 

GATK-SV pipeline (18) and manually reviewed in the Integrative Genome Viewer (IGV) 

(19) to search for a second biallelic, compound heterozygous variant in the case of 

recessive disease genes, and iii) submission to the Matchmaker Exchange 

(matchmakerexchange.org/) via seqr in the case of candidate novel disease-genes. 

 

Ethical considerations 

The challenge data were derived from patients with rare, suspected monogenic, 

conditions and their close biological relatives, and included families who are medically 

underserved (20). Identification of putative causal variants, i.e., causal with respect to the 

clinical phenotype under investigation, may, if confirmed, be important for tailoring clinical 

interventions and obtaining social services. We did not actively search for variants 

unrelated to the rare condition in the family but the consent allows us to optionally provide 

clinical confirmation of secondary findings if they are incidentally discovered. For the 

purpose of this challenge, participating teams were told that pathogenic variants unrelated 

to the proband’s phenotype, such as might be identified as secondary or incidental 

variants in this challenge (21), should not be returned. All RGP participants have a 

consent video or phone call with a trained research coordinator to review the study 

protocol which includes provisions for sharing de-identified data and provide signed 

informed consent (Mass General Brigham IRB protocol 2016P001422). An institutionally 

signed (Broad-Northeastern) data transfer agreement was executed. We applied a 

registered access model (22) where all CAGI6 challenge predictors were required to sign 
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and adhere to the CAGI Data Use Agreement (genomeinterpretation.org/data-use-

agreement.html) but institutional signatures were not required. 

 

RESULTS 

 

Summary of submissions 

Sixteen teams participated in the challenge, submitting predictions from a total of 

52 models (median three models per team, range 1-6). Five teams elected to remain 

anonymous in the reporting, including one team (Team 6) that discovered a bug in their 

code during assessment and subsequently withdrew from the challenge. Between 0-100 

variant predictions (single or proposed biallelic) were submitted per proband (range 0-

100, median 100, mean 65). EPCR values ranged from 0-1 (median 0.32, mean 0.38) 

(Supplemental Figure 1). Ninety percent of predictions were single variants and 10% 

were proposed biallelic, compound heterozygous variants, including entries from five 

teams that only predicted single variants. Over half (53%) of all variant predictions were 

in established OMIM disease-associated genes, including entries from six teams limiting 

analysis to a subset of genes already implicated in disease, though the gene sets differed 

between groups. Eighty-four percent of predictions were in the coding sequence or direct 

splice region, as defined by VEP (i.e., within 1-3 bases of the exon, 3-8 bases of the 

intron, or in the splice polypyrimidine tract). Concordance between models for the top five 

ranked predictions per proband across all 30 families in the test set ranged from 0-1 

(mean 0.09, standard deviation [SD] 0.15) and was significant only between different 

models from the same team (Supplemental Figure 2).
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Table 1. Detection of causal variants in the test set summarized across all 52 submitted models. 
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P28 FGFR2 de novo missense trio, unaffected parents P 36 46 46 47 47 47 
P11 TPM2 dominant missense proband-only VUS 17 40 41 44 47 47 
P4 NALCN de novo missense trio, unaffected parents LP 27 37 39 40 44 46 
P7 EHMT1 de novo frameshift trio, unaffected parents LP 27 34 36 37 38 40 
P2 FAM111B dominant missense proband-only LP 15 27 33 35 41 41 
P21 BICC1 de novo missense trio, unaffected parents LP 3 21 25 28 33 36 
P24 KMT2D de novo missense trio, unaffected parents LP 9 19 28 30 34 34 
P22 GRIN2A unknown nonsense duo, unaffected mother P 6 19 23 32 34 34 
P23 GNAI1 de novo missense trio, unaffected parents LP 14 19 19 21 29 31 
P16 DLG4 de novo frameshift trio, unaffected parents LP 10 18 22 24 25 26 
P27 TUBB8 dominant missense quad, affected sibling VUS 11 18 20 22 23 23 
P19 CLTC de novo splice acceptor trio, unaffected parents LP 8 13 16 17 18 18 
P5 PI4KA recessive nonsense; missense duo, unaffected father P; LP 6 9 12 12 15 18 
P6 KCND2 unknown missense duo, unaffected father LP 0 3 5 12 22 26 

 
The 14 solved (true positive) cases are displayed with the causal gene, inheritance pattern, functional consequence of the causal variant(s), amount 

of familial sequencing provided in the challenge, and the ACMG/AMP classification of the variant(s). The number of models, out of 52, ranking the 

variant at position 1, 1-5, 1-10, 1-20, 1-50, and 1-100 are depicted. The probands are displayed in decreasing order by the number of causal variants 
submitted at rank position 1-5 by the models (emboldened), considered reasonable performance for a prediction metric. P, pathogenic; LP, likely 

pathogenic; VUS, variant of uncertain significance.
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Figure 2. Results of assessment using the 14 solved families (true positives). A. Number of true 

positive diagnoses (y-axis) Identified per model (x-axis) colored by the rank position of the causal variants 

in the 14 solved probands. Models are ordered by their performance according to the mean rank points 

metric (Table 2). Team names are provided except for teams that elected to remain anonymous. B. Results 

of the mean rank points and F-max value numeric assessment metrics by team and model. Model 1, the 

primary model, for each team is indicated by the grey fill. C, Performance of models, according to the mean 

rank points awarded, comparing families with proband-only or duo data (i.e., an incomplete trio/quad) 

versus trio or quad data (i.e., a complete trio/quad).
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Table 2. Numeric assessment metrics for all models. 
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1 Team 9 (Invitae Moon) 9 13 13 13 13 13 92.9 ± 7.3 0.64 ± 0.12 0.88 1 ± 0 1 2 
1 Team 12 (Lichtarge) 9 12 12 12 12 12 85.7 ± 9.3 0.65 ± 0.11 0.6 1.21 ± 0.43 2 1 
1 Team 11 (enGenome) 7 10 11 11 11 11 75 ± 10.5 0.49 ± 0.09 0.16 1.64 ± 1.69 3 4 
3 Team 14 (TCS) 5 10 11 11 11 11 75 ± 10.6 0.34 ± 0.1 0.8 1.07 ± 1 3 11 
2 Team 14 (TCS) 4 10 11 11 11 11 75 ± 11.1 0.34 ± 0.1 0.8 1.07 ± 1 3 11 
1 Team 5 (Exomiser) 6 9 11 12 12 12 73.2 ± 8.8 0.47 ± 0.1 0.87 1.14 ± 1.29 6 6 
3 Team 12 (Lichtarge) 8 10 10 10 11 11 72.1 ± 12.7 0.32 ± 0.1 0.95 1.71 ± 2.05 7 19 
2 Team 12 (Lichtarge) 5 10 10 10 11 11 72.1 ± 11.9 0.26 ± 0.09 0.95 1.79 ± 1.85 7 25 
3 Team 11 (enGenome) 4 9 11 11 11 12 71.8 ± 10.8 0.35 ± 0.09 0.12 1.43 ± 1.65 9 10 
4 Team 11 (enGenome) 7 10 10 10 10 10 71.4 ± 10.8 0.48 ± 0.1 0.19 0.79 ± 0.89 10 5 
2 Team 5 (Exomiser) 6 10 10 10 10 10 71.4 ± 12.3 0.53 ± 0.1 0.61 1.71 ± 1.82 10 3 
2 Team 11 (enGenome) 7 9 10 10 10 10 67.9 ± 12 0.43 ± 0.1 0.1 1 ± 1.47 12 8 
1 Team 14 (TCS) 6 9 10 10 10 10 67.9 ± 12.3 0.45 ± 0.11 0.9 0.57 ± 0.85 12 7 
3 Team 5 (Exomiser) 4 9 10 10 10 10 67.9 ± 12 0.34 ± 0.09 0.88 1.07 ± 1.64 12 11 
2 Team 10 2 9 9 10 11 11 66.8 ± 12 0.26 ± 0.08 0.98 1.71 ± 0.91 15 25 
1 Team 10 1 6 8 11 11 11 55.4 ± 10.9 0.14 ± 0.06 0.99 5.07 ± 5.15 16 39 
2 Team 1 4 7 7 8 10 10 53.2 ± 13.1 0.36 ± 0.09 0.07 1.36 ± 1.22 17 9 
2 Team 4 (DITTO) 3 7 7 8 10 10 53.2 ± 13.4 0.32 ± 0.08 0.86 1.71 ± 2.02 17 19 
4 Team 4 (DITTO) 3 7 7 8 10 10 53.2 ± 12.8 0.32 ± 0.08 0.86 1.64 ± 2.02 17 19 
1 Team 4 (DITTO) 3 7 7 8 10 10 53.2 ± 11.7 0.33 ± 0.08 0.86 1.57 ± 1.74 17 17 
5 Team 4 (DITTO) 3 7 7 8 10 10 53.2 ± 11.7 0.33 ± 0.09 0.86 1.57 ± 1.74 17 17 
3 Team 4 (DITTO) 3 7 7 8 10 10 53.2 ± 12.1 0.34 ± 0.09 0.86 1.5 ± 1.74 17 11 
6 Team 4 (DITTO) 3 7 7 8 10 10 53.2 ± 12.4 0.34 ± 0.09 0.86 1.5 ± 1.74 17 11 
4 Team 5 (Exomiser) 2 6 8 9 10 10 52.5 ± 11.7 0.24 ± 0.1 0.96 1.43 ± 1.45 24 30 
1 Team 1 4 7 7 7 7 9 50.7 ± 12.6 0.34 ± 0.1 0.76 1.07 ± 0.92 25 11 
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4 Team 1 4 7 7 7 7 8 50.4 ± 15.1 0.27 ± 0.11 0.99 0.57 ± 0.51 26 22 
1 Team 2 (AIBI) 5 6 7 8 10 10 49.6 ± 12.8 0.22 ± 0.12 0.96 0.29 ± 0.61 27 31 
2 Team 2 (AIBI) 5 6 7 8 10 10 49.6 ± 11.6 0.22 ± 0.11 0.96 0.29 ± 0.61 27 31 
5 Team 2 (AIBI) 4 6 7 8 10 10 49.6 ± 12.3 0.25 ± 0.13 1 0.14 ± 0.36 27 28 
4 Team 2 (AIBI) 5 6 7 8 9 10 49.3 ± 11.9 0.25 ± 0.12 0.88 0.14 ± 0.36 30 28 
3 Team 1 3 5 7 9 10 10 47.1 ± 11.1 0.27 ± 0.11 1 0.57 ± 0.51 31 22 
5 Team 1 3 5 7 9 10 10 47.1 ± 10.4 0.27 ± 0.11 1 0.57 ± 0.51 31 22 
1 Team 13 4 6 7 7 7 7 46.4 ± 13.3 0.17 ± 0.09 0.59 1.5 ± 2.98 33 35 
6 Team 2 (AIBI) 5 5 7 8 10 10 46.1 ± 11.4 0.22 ± 0.1 1 0.29 ± 0.83 34 31 
2 Team 8 (BORG) 3 5 6 8 12 13 46.1 ± 10 0.26 ± 0.09 0.36 0.64 ± 1.6 34 25 
3 Team 2 (AIBI) 5 5 7 8 9 9 45.4 ± 11.8 0.13 ± 0.12 0.98 0.07 ± 0.27 36 41 
2 Team 15 6 6 6 6 6 6 42.9 ± 13.6 0.08 ± 0.03 0.85 9.5 ± 3.88 37 49 
1 Team 15 6 6 6 6 6 6 42.9 ± 13.8 0.14 ± 0.09 0.83 5.14 ± 4.94 37 39 
2 Team 13 3 5 6 7 7 7 41.1 ± 12.2 0.18 ± 0.08 0.73 0.57 ± 1.16 39 34 
4 Team 8 (BORG) 0 3 5 7 10 13 35.4 ± 9 0.15 ± 0.06 0.46 0.86 ± 2.07 40 37 
3 Team 8 (BORG) 1 3 5 6 10 11 33.6 ± 9.7 0.17 ± 0.1 0.55 0.64 ± 1.39 41 35 
1 Team 16 1 4 5 5 5 5 32.1 ± 11.1 0.12 ± 0.08 0.51 0.21 ± 0.43 42 42 
1 Team 8 (BORG) 2 3 3 5 8 11 28.2 ± 9.9 0.15 ± 0.08 0.38 2.86 ± 3.18 43 37 
5 Team 5 (Exomiser) 0 3 4 4 5 7 26.4 ± 10.6 0.1 ± 0.06 0.98 2 ± 2.48 44 48 
1 Team 7 (Uniss) 1 2 4 6 6 7 25.4 ± 9.6 0.11 ± 0.07 1 1.71 ± 1.73 45 47 
3 Team 16 1 2 4 5 6 6 23.9 ± 9.4 0.12 ± 0.09 0.51 0.21 ± 0.43 46 42 
2 Team 16 1 2 4 4 6 7 23.2 ± 9.9 0.12 ± 0.1 0.51 0.21 ± 0.43 47 42 
2 Team 3 (Bologna Biocomputing Group) 1 2 3 5 6 6 22.1 ± 8.7 0.06 ± 0.04 1 5.64 ± 8.04 48 50 
4 Team 16 1 2 2 2 2 2 14.3 ± 10 0.12 ± 0.08 0.51 0.21 ± 0.43 49 42 
1 Team 3 (Bologna Biocomputing Group) 1 1 1 1 1 1 7.1 ± 6.5 0.12 ± 0.08 1 0.21 ± 0.43 50 42 
1 Team 6 0 0 0 0 0 0 0 ± 0 NA NA NA 51 51 
2 Team 6 0 0 0 0 0 0 0 ± 0 NA NA NA 52 52 

 
For each team and model, the number of detected causal variants at rank 1, 1-5, 1-10, 1-20, 1-50, and 1-100 is displayed out of a maximum of 14. 
The mean rank points (maximum 100) and F-max value (maximum 1) assessment metrics are displayed with the bootstrapped SE (see Methods). 

The F-max producing EPCR values and the mean number of predictions per proband at or above this threshold are displayed with the SD. Model 

performance is ranked separately for each of the two metrics. SE, standard error; SD, standard deviation; F-max, maximum F-measure; EPCR, 

estimated probability of causal relationship. 
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Summary of numeric assessment of model performance and methodology 

Overall, model performance was highly variable (Figure 2A). All causal variants in 

the answer key were predicted within the first five rank positions by at least one model 

(Table 1). Our selected numeric assessment metrics for each submitted model are 

displayed in Table 2 and are depicted in Figure 2B. One of the top performing models 

from Team 9 (Invitae Moon) was able to call 13 of the 14 causal variants within the top 

five rank positions, followed by Team 12 (Lichtarge) with 12, Team 11 (enGenome) and 

Team 14 (TCS) tied with 10, and Team 5 (Exomiser) with 9 (Table 2). Here, we provide 

a summary of the numeric assessment of model performance and methodology for the 

five top performing teams. More detailed methods descriptions are provided for in total 

11 of the 16 participating teams in the Supplemental Material. 

Team 9 (Invitae Moon): The Invitae Moon team submitted one model and 

predicted the causal variant(s) in 13 of 14 solved families within the top five ranked 

variants, nine at rank position one. At the F-max producing EPCR threshold, a mean of 

one variant was prioritized per proband. The model’s performance ranked first by the 

mean rank points metric and second by F-max. Only one diagnosis was missed, a de 

novo variant in BICC1 for P21, presenting with unilateral multicystic kidney dysplasia and 

severe infantile onset neutropenia. 

Moon™ (Invitae, San Francisco, CA) is an automated analysis software package 

developed to prioritize likely causative variants from genome or exome sequencing data. 

Variant prioritization is achieved by an algorithm incorporating i) the patient’s clinical and 

sequencing data, ii) parental sequencing data and affected status, iii) curated gene-

phenotype associations, and iii) variant annotations, including gnomAD frequency, variant 
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effect predictions, ClinVar submissions and Invitae classifications (internal data). Gene-

phenotype associations are maintained in the “Apollo” database by trained genetic 

scientists at Invitae, and kept up-to-date by daily scanning of the published medical 

literature for new gene-phenotype associations, followed by manual review and curation 

of relevant information; HPO terms, the number of patient observations for each HPO, 

range of disease onset for reported individuals, and the reported inheritance pattern and 

pathogenic mechanism for the gene. Variants were submitted only for genes that have 

already been associated with Mendelian disorders in scientific literature. Moon™ is a 

commercial product available for paid licensed use and was used in an automated 

fashion. 

Team 12 (Lichtarge): The Lichtarge team at the Baylor College of Medicine 

submitted three models. Their top performing model by both metrics, model 1, predicted 

the causal variant(s) in 12 of 14 solved families within the top five ranked variants, of 

which nine were at rank position one. At the F-max producing EPCR threshold, a mean 

of 1.21 variants were prioritized per proband. The model’s performance ranked second 

by the mean rank points metric and first by the F-max metric. The model did not identify 

the causal variant(s) for two probands (P6 and P19). 

The Lichtarge team developed scoring systems to prioritize missense, nonsense, 

and frameshift variants. The team left silent, splicing, and non-coding variants out of their 

analysis, such as the causal variant of P19. They used the Evolutionary Action method 

(23) to predict the functional consequences of the missense variants, and accounted for 

variant call quality, population allele frequency, variant segregation pattern in the families 

(de novo, X-linked dominant males, and autosomal recessive), the ability of each gene to 
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tolerate mutations (unpublished score based on Evolutionary Action), and known gene 

associations with the patient’s phenotype. Their top performing model, model 1, prioritized 

the variants according to the predicted probability for loss of gene function, in contrast to 

models 2 and 3 that prioritized variants, above a threshold for predicted loss of gene 

function, according to their association to the provided phenotypes. Merging of the 

variants prioritized for different inheritance modes was performed manually using the 

predictor’s judgement to provide a single submission. These tools are in-house, involved 

automated and manual analysis, and are not publicly available at this time; more 

information can be obtained by contacting the authors. 

Team 11 (enGenome): The enGenome team submitted four models. Their top 

performing model by both metrics, model 1, predicted the causal variant(s) in 10 of 14 

solved families within the top five ranked variants, of which seven were at rank position 

one, and predicted 11 of 14 overall. At the F-max producing EPCR threshold, a mean of 

1.64 variants were prioritized per proband. The model did not identify the causal variant(s) 

for three probands (P6, P21, and P23) in their submission. However, with model 3, the 

enGenome team identified 12 causative variants of 14 overall. 

The enGenome team applied ensemble and linear machine learning classifiers 

trained on the challenge training set. The features set used to identify the causative 

variant(s) relies on ACMG/AMP variant pathogenicity, computed through enGenome 

proprietary variant interpretation software eVai, (24,25), as well as variant quality, family 

segregation and phenotypic similarity. ACMG/AMP classification is computed only if the 

gene is associated with at least one condition in databases such as MedGen 

(https://www.ncbi.nlm.nih.gov/medgen/), Disease Ontology (https://disease-
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ontology.org/), and Orphanet (https://www.orpha.net/) and phenotypic similarity metrics 

are computed only when the gene is known to be associated with at least one phenotype. 

This explains the diagnoses missed by enGenome in the test set (P6 and P23), as both 

causative genes (KCND2 and GNAI1) were not associated with conditions in these 

databases when the models were trained. In one additional case (P21), the causative 

gene was not associated with phenotypes in these databases at the time of the challenge 

and was identified only by model 3. enGenome’s eVai platform is a commercial product 

available for paid licensed use and was used in an automated fashion. 

Team 14 (TCS): The TCS team submitted three models. Their top performing 

models by mean rank points, models 2 and 3, predicted the causal variant(s) in 10 of 14 

solved families within the top five ranked variants, with a maximum of five at rank position 

one, and predicted 11 overall. Collectively, the models did not identify the causal 

variant(s) for three probands (P6, P16, and P24). Their top performing model by F-max 

value was model 1, prioritizing a mean of 0.6 variants per proband at the F-max producing 

EPCR threshold. 

The TCS team used a combination of in-house tools, “VPR” for variant prioritization 

and “PRIORI-T” (26) and “GPrio” for gene prioritization. Briefly, variants were ranked 

based on minor allele frequency (MAF), evolutionary conservation, in silico predictions of 

deleteriousness, and prior disease associations. PRIORI-T queries a rare disease 

heterogeneous association network with the HPO terms for each proband and outputs a 

ranked list of genes. GPrio calculates gene scores by two methods. The first is based on 

HPO-gene correlations reported in the HPO database (https://hpo.jax.org/app/) (11). The 

second uses the STRING-DB database (https://string-db.org/) (27) to explore indirect hits 
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through interacting genes with relevant HPO correlations. Based on different 

combinations of the tools, three prediction models were submitted, described in the 

Supplemental Materials. The TCS tools are in-house, involved manual analysis, and are 

not publicly available at this time; more information can be obtained by contacting the 

authors. 

Team 5 (Exomiser): The Exomiser team submitted five models. Their top 

performing model by mean rank points, model 1, predicted the causal variant(s) in nine 

of 14 solved families within the top five ranked variants, of which six were at rank position 

one, and predicted 12 overall. The model did not identify the causal variant(s) for two 

probands (P24 and P27) in their submission. Their top performing model by F-max value 

was model 2, prioritizing a mean of 1.71 variants per proband at the F-max producing 

EPCR threshold. 

The open-source Exomiser tool (version 13.0.0) (28) was run using the latest 

databases (2109) at time of analysis (Sep 2021), along with a local frequency file 

generated from 86 non-training samples where AC>1. A maximum of 100 variants per 

model were returned for all candidates with an Exomiser score >0.2 based on Exomiser’s 

ranking with no further manual intervention. Model 1 used the recommended default 

Exomiser settings where high quality (FILTER=PASS in input VCF), rare, segregating, 

coding variants were prioritized based on minor allele frequency, predicted pathogenicity 

and the similarity of the patient phenotypes to reference genotype to phenotype 

knowledge from human disease and model organism databases along with neighbors 

from the STRING-DB protein-protein association databases (https://string-db.org/) (27). 

Model 2 used the same settings except only reference human disease knowledge was 
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used. Model 3 extended the model 2 analysis to all variants in the VCF, rather than just 

the high-quality ones. Model 4 extended the model 2 analysis to allow incomplete 

penetrance where the prioritized variants can also be present in unaffected family 

members. Model 5 extended the model 3 analysis to non-coding variants in the genome 

sequence using the Genomiser variant of Exomiser (29). The two diagnoses missed by 

model 1 were due to a sex-limited phenotype in one case and a low predicted 

pathogenicity by REVEL and MVP (30,31) in the other. In the latter case, this variant has 

now been deposited in ClinVar and would be a top-ranked candidate if rerun due to the 

ClinVar whitelisting feature of Exomiser. For the three diagnoses ranked outside the top 

five, two involved disease-gene associations that were in the published literature but not 

present in OMIM at the time of analysis; these would be highlighted as top-ranking 

candidates if rerun now (May, 2023). Exomiser is open source and freely available and 

was used in an automated fashion. 

 

Reanalysis of solved families 

Given the high performance of these models, we reanalyzed the solved families in 

which models ranked variants higher than the causal variants identified by the RGP team 

in the answer key, to determine if they may contribute to disease or represent a more 

likely causal diagnosis; however, no compelling variants were found. To illustrate this, a 

detailed review of the variants prioritized by one of the top performing teams, Team 9 

(Invitae Moon) in four solved probands (P2, P6, P7, and P11) is provided in the 

Supplemental Material. 
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Review of “difficult to predict” diagnoses 

In genomics-driven diagnostics, failure to recognize causal variants and falsely 

prioritizing non-causal variants are recognized complications (5,32). We therefore 

reanalyzed families in the answer key for which predictors consistently failed to prioritize 

the causal variant(s). Several of these are described below. 

The most poorly predicted diagnosis was KCND2 (c.1207C>G, p.Pro403Ala, 

ENST00000331113) in P6, a patient presenting with infantile-onset bilateral 

sensorineural hearing impairment, blindness, retinal dystrophy, hypotonia, chorea, 

profound global developmental delay, intellectual disability, and dystonia. Across all 

models, the causal variant was never reported at rank position one, was ranked at position 

2-5 by just three models, and was only listed by 26 of 52 models (50%) across all variant 

predictions. This heterozygous ACMG/AMP LP missense variant in KCND2 explains the 

patient’s phenotype (33), is predicted to be deleterious by in silico prediction (REVEL 0.84 

- PP3 Moderate) (8,30), and is absent from large population databases (gnomAD and 

TOPMed) (3,34). However, only duo sequencing was available for this family, from the 

proband and unaffected father; therefore, the de novo status of the variant remains 

unconfirmed. This may hinder models in prioritizing the variant. Indeed, calculating the 

mean rank points metric separately for families with proband-only or duo data versus 

those with trio or quad data, demonstrates a significant improvement in model 

performance with trio or quad data (paired Student's T-Test p-value 0.00086) (Figure 

2C). KCND2 is also not yet reported in the OMIM database as Mendelian-disease 

associated (last accessed April 2023). Thereby, models limiting their assessment to 

variants within OMIM reported Mendelian-disease associated genes would fail to prioritize 
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this causal variant. This highlights the importance of OMIM and similar databases to the 

medical genomics community and the need to be able to represent novel gene-disease 

associations more rapidly. One such option for laboratories reporting novel Mendelian 

gene-disease relationships is to deposit them in the Gene Curation Coalition (GenCC) 

Database (https://thegencc.org/) allowing more rapid dissemination of findings to the 

community as well as the aggregation of many public and private gene-disease 

databases (35). 

The second most poorly predicted diagnosis was PI4KA in P5, a patient presenting 

with global developmental delay, poor coordination, hypotonia, and spasticity, with an 

MRI-brain demonstrating cerebral hypomyelination and a dysplastic corpus callosum. 

Across all models, the two causal variants in this recessive gene were found at position 

1-5 in nine models and were only listed by 18 of 52 models (35%) across all submitted 

variants. The first variant is a P nonsense variant (c.1852C>T, p.Arg618Ter, 

ENST00000255882; ACMG/AMP criteria applied: PVS1, PM2, PP1, PP3, and PP4). The 

second is a LP missense variant (c.4990G>A, p.Asp1664Asn, ENST00000255882; 

ACMG/AMP criteria applied: PP1, PP3, PP4, PM1 Supporting, PM2, PM3). One plausible 

explanation for the low prediction rate is that this is the only proband in the test set with a 

recessive diagnosis, requiring the models to jointly prioritize a pair of heterozygous 

variants. Notably, only 11 of 16 teams included proposed biallelic variants in their 

submissions, though several cases of recessive inheritance were included in the training 

set. Moreover, as with the KCND2 family above, this family was only sequenced as a duo 

(proband and unaffected father), demonstrating paternal inheritance of the nonsense 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 4, 2023. ; https://doi.org/10.1101/2023.08.02.23293212doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.02.23293212
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28 

variant, and requiring the assumption that the missense variant is maternally inherited or 

de novo, on the maternal haplotype, to constitute a recessive diagnosis. 

The third most poorly predicted diagnosis was a splice acceptor variant in CLTC 

(c.1534del, p.Val512LeufsTer11, ENST00000621829), a gene associated with 

intellectual disability in OMIM (MIM: 617854). The proband (P19) presented with global 

developmental delay, hearing impairment, severely reduced visual acuity, constipation, 

hyperbilirubinemia, pulmonary arterial hypertension, and intracranial hemorrhage. This 

variant was ranked at position 1-5 by 13 models and was only listed by 18 of 52 models 

(35%) across all submitted variants. This de novo heterozygous LP splice acceptor 

variant (ACMG/AMP criteria applied: PS2, PM2, PVS1 Moderate) is predicted to cause a 

frameshift leading to a premature stop codon 11 amino acids downstream (in exon 10 of 

31) in a highly loss-of-function constrained gene and is absent from large population 

databases. Moreover, since the challenge, the CLTC variant has been reported as LP in 

ClinVar by an independent submitter in association with intellectual disability (ClinVar 

variation ID: 811442). This variant arises at an acceptor splice site in the gene, thereby 

outside of the protein-coding region, which may explain the lower level of detection. 

Finally, the fourth most poorly predicted diagnosis was TUBB8 in P27 (c.1039A>G, 

p.Asn347Asp and c.1033C>T, p.Leu345Phe, ENST00000568584), a female proband 

sequenced as a quad with her affected female sibling and both unaffected parents. In this 

family, two causal variants in TUBB8 were identified, inherited in cis from the unaffected 

father. Carriage of the causal variants by the unaffected father is explained by sex-limited 

expression of the oocyte maturation defect disease phenotype in females (MIM: 616780). 

To not exclude these variants as causal, the model would need to take sex-limited 
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expression into consideration or allow for incomplete penetrance. Notably, amongst the 

11 models ranking at least one of these causal variants at position one was Exomiser 

model 4, a model specifically allowing for incomplete penetrance, and all six models from 

DITTO, that did not take familial segregation into account. 

 

Patterns in model performance 

Following assessment of model performance, the prediction assessor was 

unblinded to the identity and methods of the participating teams. The wide variability in 

methodology, spanning stepwise filtering approaches to machine learning and artificial 

intelligence, did not allow for a comprehensive analysis nor use of statistical tests. 

However, a qualitative review of the methods demonstrated a pattern of decreasing 

performance when one or more of the following features were not considered by the 

model: i) variant call quality; e.g., depth, allele balance, and genotype quality (inclusion 

of sequence artifacts into submissions), ii) variant allele frequency; e.g., rare in large scale 

population databases such as gnomAD and TOPMed, iii) variant deleteriousness 

prediction; e.g., use of in silico tools and/or training on reported variants in clinical 

databases such as ClinVar and HGMD, iv) familial segregation within the provided 

dataset and inheritance mode of the respective gene, and v) relevance of the putative 

causal variant(s) to the proband’s phenotype. In some cases, all or most features were 

considered, yet the model did not identify many diagnostic variants, presumably due to 

the specific methodology used, information sources, and thresholds selected. 
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Summary of variant predictions in unsolved probands 

Through reanalysis of the 16 unsolved families, directed by the submitted variant 

predictions from the top 10 teams, two additional families (12.5%) received a genetic 

diagnosis. The first, by the detection of a de novo splice region variant in TCF4 

(c.1228+3G>T, ENST00000398339), prioritized by eight models in total, submitted by 

Team 9 (Invitae Moon, model 1 at rank 1), Team 5 (Exomiser, model 1-2 at rank 1 and 

model 3 at rank 2), and Team 11 (enGenome, model 2 and 4 at rank 1, and model 1 and 

3 at rank 2). The second, by the detection of compound heterozygous frameshift 

(c.706del, p.Arg236GlyfsTer8, ENST00000175506) and deep intronic 

(c.1137+200_1137+205del, ENST00000175506) variants in ASNS, submitted as a 

biallelic prediction by Team 11 (enGenome, model 1, 2, and 4 at rank 1, and model 3 at 

rank 2) only. Notably, four additional models from Team 9 (Invitae Moon, model 1, rank 

7) and Team 2 (AIBI, model 1, 5, and 6 at rank 83-91) prioritized the ASNS frameshift 

variant only. In both probands, the variant(s) impact on the transcript were functionally 

validated by RNA sequencing and were returned to the families following confirmation in 

a CLIA certified laboratory (Supplemental Table 3). 

In a further six unsolved families, variants in putative novel disease genes were 

prioritized (Supplemental Table 3). For four of the six, a submission had already been 

made by the RGP team to Matchmaker Exchange (TPPP in P9, KCNH8 in P14, KLHL13 

in P15, and THAP12 in P18). For the remaining two, new submissions were made 

(MRPL54 in P25 and FRY in P26). To date, Matchmaker Exchange matches warranting 

further consideration of these candidate genes have not been received, however, 

functional studies are underway for some candidates through the GREGoR consortium 
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(https://gregorconsortium.org/). Across the remaining unsolved families, no variants 

identified were deemed of comparably high interest by the RGP team to pursue by 

functional studies or submission to Matchmaker Exchange. 

Overall, there was more limited concordance in the variant predictions submitted 

between the top performing models in the unsolved families, compared to the solved 

families (Figure 3); and the vast majority of prioritized variants in the unsolved families 

did not merit further evaluation after review. 

 

Figure 3. Concordance in the variant predictions submitted by top five performing teams in the 

solved and unsolved families. Venn diagrams demonstrating the overlap in the variant predictions 

submitted across all probands in the solved families (left) compared to the unsolved families (right) between 

top performing teams. 

 

The variants that did not merit further review in the unsolved families mostly fell 

into one or more of the following categories: i) heterozygous variants in dominant disease 
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genes (according to the reported mode of inheritance in OMIM)  inherited from an 

unaffected biological parent, and where incomplete penetrance is not expected based on 

current understanding, ii) heterozygous variants in dominant disease genes present in 

large population databases at an allele frequency higher than consistent with the 

prevalence of disease, where incomplete penetrance is not expected, and iii) single 

heterozygous variants in recessive disease genes that are unable to constitute a 

diagnosis without a second biallelic, compound heterozygous variant. For families with a 

single recessive variant and at least partial phenotype overlap with the reported 

phenotype, an SV call set generated by the GATK-SV pipeline was analyzed and the 

gene was manually reviewed in IGV with the aim to identify an SV in trans. This analysis 

did not, however, result in the detection of any additional variants of interest. 

To provide one example, a heterozygous, maternally inherited, missense variant 

in GRIK2 was prioritized at rank position one by Team 9 (Invitae Moon) in P15. The variant 

(c.1066G>A, p.Gly356Arg, ENST00000421544) is predicted to be deleterious by in silico 

predictions (REVEL 0.95 – PP3 Strong) (36) and is absent in large population databases. 

GRIK2 is associated with dominant neurodevelopmental delay, impaired language, and 

ataxia (MIM: 619580) and with recessive intellectual disability (MIM: 611092). The 

dominant form of disease results from de novo gain-of-function variants clustering in a 

specific domain of ionotropic glutamate receptors, proven to affect channel kinetics and 

function (37,38). As the GRIK2 variant prioritized by Team 9 is inherited from the 

unaffected mother and falls far outside of this functional domain, it is inconsistent with 

being the cause of dominant disease under the assumption of complete penetrance, 

whereby every individual who has the variant with show signs and symptoms of the 
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disease. The recessive form of disease results from biallelic loss-of-function variants 

(39,40). As the proband is lacking a second biallelic variant, the variant can also be 

deprioritized as a cause of recessive disease. 

 

Returnable diagnoses identified in two unsolved families 

For P1, Team 11 (enGenome) prioritized compound heterozygous putative loss-

of-function variants in ASNS at rank position 1-3 across four submitted models; a 

maternally inherited frameshift variant (c.706del, p.Arg236GlyfsTer8, 

ENST00000175506) and a paternally inherited deep intronic 6 base pair deletion 

(c.1137+200_1137+205del, ENST00000175506). ASNS is a disease gene associated 

with asparagine synthetase deficiency (MIM: 615574) and is a phenotype match for the 

proband, who presented with Lennox-Gastaut syndrome, infantile spasms, microcephaly, 

hypotonia, nystagmus, optic nerve hypoplasia, partial agenesis of the corpus callosum, 

and delayed myelination. Loss-of-function of ASNS is an established disease mechanism 

in autosomal recessive asparagine synthetase deficiency (41,42). The frameshift variant 

is rare in large population databases (absent in gnomAD, reported in 1/264,690 alleles in 

TOPMed) and has recently (Feb, 2022) been reported as P in ClinVar (ClinVar variation 

ID: 1411238). The variant leads to a premature stop codon in the middle of the gene, in 

exon six of 13, and is expected to result in a truncated protein. The variant is classified 

as LP according to ACMG/AMP guidelines (criteria applied: PVS1 and PM2 Supporting). 

The deep intronic indel between exons 10 and 11 (200bp away from the exon),  is absent 

from large population databases and has a moderate SpliceAI score (0.2) (43) predicting 

acceptor gain. RNA sequencing analysis performed on blood from the proband 
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demonstrated evidence of complex splice disruption, including intron retention and novel 

exon creation, leading to a premature stop codon in the middle of the gene (Figure 4A). 

In light of this evidence, the variant was classified as LP according to ACMG/AMP 

guidelines (criteria applied: PS3, PM3, and PM2 Supporting). ASNS was deemed a 

clinical fit by the family’s local physician. A cerebrospinal fluid (CSF) asparagine level was 

measured in the proband and was found to be within normal range. Though low CSF 

asparagine level would further support the diagnosis, normal levels have previously been 

reported in patients with ASNS defects, due to limitations in the sensitivity of the assay 

(41,44). The family is now pursuing oral asparagine therapy. 

In P3, three top performing teams, Team 9 (Invitae Moon), Team 5 (Exomiser), 

and Team 11 (enGenome), prioritized a de novo variant in TCF4 (c.1228+3G>T, 

ENST00000398339), a disease gene associated with dominant Pitt-Hopkins syndrome 

(PHS, MIM 610954). This splice region variant has a moderate SpliceAI score (0.72) 

predicting donor loss and is absent from large population databases. Moreover, it is a 

putative loss-of-function variant in a highly loss-of-function constrained gene (pLI score 

1, LOEUF 0.22, gnomAD) for which loss-of-function is an established disease mechanism 

(45). This TCF4 variant was flagged during analysis in seqr by the RGP team. However, 

at the time, it was considered non-compelling due to the absence of classical PHS 

features in the proband, such as dysmorphism, including a large beaked nose, wide 

mouth, fleshy lips, and clubbed fingertips, and abnormal breathing patterns, presenting 

as hyperventilation episodes. The phenotypic spectrum of TCF4 has, however, since 

been expanded to include neurodevelopmental delay in the absence of classical PHS 

(46). Moreover, upon re-contacting the family for additional clinical information and to 
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request photographs, abnormal breathing patterns and mild dysmorphic features 

supporting PHS were confirmed. The variant has recently (Aug, 2021) been 

independently reported in ClinVar as LP (variation ID: 1204043), and has been reported 

in a study generating patient-specific induced pluripotent stem cells to model PHS (47). 

RNA sequencing analysis performed on cultured lymphoblasts from the proband 

demonstrated evidence of splice disruption with exon skipping in the middle of the gene, 

in exon 11 of 20 (Figure 4B). The variant was thereby classified as LP according to 

ACMG/AMP guidelines (criteria applied: PVS1 and PM2 Supporting). 
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Figure 4. Confirmatory RNA sequencing in P1 and P3. For both A and B, in the top panel, paired end reads from the RNA sequencing BAM file are 

displayed for the proband. In the lower panels, the RNA sequencing read pileup tract is displayed with the novel (orange) and known (blue) junctions 

annotated in the proband and in aggregated data from GTEx controls, respectively. Beneath, the gene transcript isoforms are displayed. A, RNA 

sequencing analysis performed on blood in P1 compared to normalized GTEx blood samples (n=755) (48). The results for ASNS (displaying exon 

9 and 10) demonstrate evidence of splice disruption due to a deep intronic indel (indicated by the red box in the proband) with cryptic exon creation 

and intron 9 read-through. B, RNA sequencing analysis performed on an EBV-transformed lymphoblastoid cell line (LCL) in P3 compared to 

normalized GTEx lymphocyte samples (n=174). The results for TCF4 (displaying exon 10 to 13) demonstrate evidence of splice disruption due to a 

near-splice variant (indicated by the red line in the proband) with skipping of exon 11 in approximately 20% of reads.  E, exon.
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DISCUSSION 

 

Genome sequencing allows us to identify the majority of DNA variants in the 

human genome. However, we are only able to interpret the clinical relevance of a small 

subset. To aid in bridging this knowledge gap, a broad-spectrum of in silico 

deleteriousness prediction and meta-prediction tools of variant impact have been 

developed (30,43), and large population databases provide allele frequencies (3,34,49) 

that enable metrics such as loss-of-function intolerance (50) and missense constraint (51) 

to be assigned genome-wide. The precise nature in which these tools can most effectively 

be integrated with phenotype information to pinpoint the genetic diagnosis for an 

individual patient remains an open question and has spurred the development of 

numerous computational algorithms integrating machine learning, artificial intelligence, 

natural language processing, and HPO semantic similarity, among others (9). 

The CAGI6 RGP challenge was thereby designed to assess the state of the art in 

rare disease genome interpretation and to stimulate the development of new methods, 

providing a forum for highlighting innovation and successes, and discussing bottlenecks. 

While variants reported by clinical laboratories are often previously observed in patients 

with the same phenotype or are unreported loss-of-function variants in a gene where loss-

of-function is a known mechanism of disease (6,7), we specifically selected solved 

families with unreported predominantly missense variants, which are often classified as 

VUS without careful consideration, and included a predominance of families for which no 

causal variant was yet identified following current field standards. We selected two 

numeric assessment metrics and found wide variability in model performance. Such wide 
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variability is expected for a challenge encouraging participation from teams experimenting 

with novel models side-by-side to those with well-established models and infrastructure. 

Given that formal variant curation in line with the ACMG/AMP guidelines (6) 

requires considerable time and is likely to be undertaken only for a handful of highly 

ranked variants per proband in the clinical setting, for the assessment we developed a 

simple weighted point allocation metric, the mean rank points metric. This metric did not 

take into consideration the EPCR values submitted by the teams, and focused only on 

the rank position of the variants. The metric was weighted to most highly reward models 

ranking the causal variant(s) at position 1-5, followed by 6-10, 11-20, 21-50, and 51-100, 

with the number of awarded points falling rapidly for variants ranked in the lower 

categories. In contrast, our second assessment metric, the F-max value required the 

models to have a consistent EPCR scoring system across all probands. This metric 

rewarded models able to stratify causal from non-causal variants at an optimized EPCR 

threshold, determined by the F-max. This is important as models with a reliable EPCR 

threshold for the detection of causal variant can support the decision of when an analyst 

can conclude analysis of a diagnostic genome and deem the result inconclusive, as 

opposed to arbitrarily manually curating the top 5 or 10 ranked variants, for example. 

Overall, we found provision of genome sequencing data from the biological parents 

and an affected sibling as trios or quads to have a significant positive impact on model 

performance. This emphasizes the importance of sequencing the biological parents of the 

proband to ease the analytical burden of variant interpretation by enabling variant phasing 

and identification of de novo variants. Models weighing variant call quality, population 

allele frequency, and predicted functional consequence in the context of variant 
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segregation in the family, expected inheritance mode of the condition associated with the 

respective gene, and clinical correlation with the patient’s phenotype, according to current 

knowledge, were more effective in correctly identifying causal variants at higher rank, as 

opposed to those where one or more of these features were not taken into consideration. 

There were minor discrepancies between the performance of the models depending on 

the metric used for assessment; however, the top performing teams were reasonably 

consistent. Among the top performing teams was Team 9 (Invitae Moon), identifying all 

but one diagnosis in the true positive families within the top five rank positions, including 

two that no other model had ranked as highly. Moreover, three of the top performing 

teams, Team 11 (enGenome), Team 9 (Invitae Moon), and Team 5 (Exomiser), 

contributed to the diagnosis of two previously unsolved probands by prioritizing variants 

that led to return of the result to the families following functional validation through RNA 

sequencing, formal curation, and clinical confirmation. This included a compound 

heterozygous diagnosis in ASNS in one previously unsolved family, prioritized by Team 

11 (enGenome), that indicated a targeted therapy of potential clinical benefit, oral 

asparagine therapy (52). The large volume of genetic sequencing and phenotype data 

mined to curate variants and for model development by teams with diagnostic 

laboratories, may have given an advantage. For example, key considerations enabling 

the upgrade of a variant from VUS to P/LP; e.g., report of a specific clinical phenotype or 

identification of a variant in multiple unrelated individuals, may come from internal 

knowledge and unpublished data. 

Looking into the variant predictions in our unsolved families, we found many of the 

prioritized variants to segregate incorrectly in the family, to have a higher population allele 
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frequency than feasible for the respective Mendelian disease, to be inconsistent with the 

expected mode of inheritance, to have no clear functional consequence based on 

currently available in silico deleteriousness prediction tools, or to have insufficient overlap 

with the patient's phenotype to be considered plausible, raising a number of issues. First, 

our reanalysis of the unsolved families assumed complete penetrance, unless incomplete 

penetrance is reported for the gene, and monogenic cause. We therefore deprioritized 

variants with higher-than-expected allele frequencies that may, arguably, play a role in 

incompletely penetrant or higher-order oligogenic disease. Second, beyond cases of a 

clear phenotypic overlap, such as the newly diagnosed ASNS proband, that involved a 

deep intronic indel, we did not consider non-coding variants without in silico support of 

deleteriousness. The strength of some models, for example in recognizing deleterious 

non-coding variants, may therefore be under-appreciated by the design of this challenge 

and current knowledge limitations, and would be better positioned to perform highly in a 

CAGI challenge with a functional read out of variant consequence as the answer key. 

Functional interpretation of variants remains a major limitation in genome sequencing 

analysis for which integration of high-throughput functional “omics” data, such as RNA 

sequencing and quantitative proteomics analyses, and multiplex assays of variant effect 

(MAVE) (53), including deep mutational scanning, massively parallel reporter assays, and 

saturation genome editing, will aid in identification of causal variants (54–56). Third, there 

was an overall scarcity of phenotype overlap between the gene with the prioritized 

variants and the HPO terms of the respective proband, indicating room for improvement 

in phenotype matching methodology. For each of these scenarios, it is reasonable to 

consider that some of the variants identified in the challenge may in the future be 
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reclassified as P/LP if phenotype and mode of inheritance expansions are made and with 

increased knowledge of incomplete penetrance, to name just a few mechanisms. Notably, 

some models, including that from Team 9 (Invitae Moon), that limited their analysis of 

unreported variants to coding regions of known disease genes, and Team 11 

(enGenome), that focused only on clinical genes, with established gene-condition and 

gene-phenotype associations, selected approaches that limit noise at the cost of 

hindering discovery. It was not a limiting factor for the performance of these teams in the 

RGP challenge because we did not include gene discoveries in the answer key given it 

is more difficult to assert an answer is correct in the case of a gene discovery. Finally, 

many models had poor discriminatory power to prioritize a small number of variants, 

though this is also due to study design as this was not defined as a goal for submitting 

candidates. The long lists of candidates underscores the high rate of detection of 

unreported, unrecognized, findings in genome sequencing data and cautions the 

overinterpretation of rare variants, and direct usability of these approaches without careful 

human review. In this regard, though predictive models are approaching useful clinical 

decision support tools, they require detailed review and conservative assessment of 

variants against established criteria for use in diagnostics. 

The CAGI6 RGP challenge has several limitations. Unlike other CAGI prediction 

challenges where teams are often tasked to predict functional consequences for variants 

where the resultant enzyme activity had been quantitatively measured, there was no 

definitive answer key for this challenge. The answer key used in assessment reflects to 

the best of our team’s abilities to identify the causal variant(s) in the family following 

current clinical field standards. We proactively selected families where the causal variant 
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was not reported as disease-causing in ClinVar or HGMD at the time of challenge design, 

in order to task the models to identify novel causal variants, and delayed submission of 

the variant to ClinVar for the duration of the challenge. This skewed the spectrum of 

selected families toward novel heterozygous de novo variants and resulted in the 

inclusion of only one compound heterozygous recessive diagnosis. In future iterations of 

the challenge, we recommend including a wider array of inheritance modes for diagnoses 

so that we may give recognition to models that are able to weight other inheritance modes. 

The challenge was also limited to SNVs and small indel variants, and did not include other 

classes of variant; e.g., SVs, short tandem repeats, mitochondrial DNA variants, or 

epigenetic alterations. Each assessment methodology also had limitations and neither 

precisely models the clinical challenge of identifying variants to be reported, where we 

want to understand both sensitivity (for discovery) and specificity (for clinical reporting), 

which are different goals. Predictors were also not informed of the specific scoring used 

for the rank-based metric nor about the application of the F-max metric and therefore how 

the choice of assessment method might impact them. However, for the scale of the data, 

and with subsequent analysis, our selected assessment metrics effectively identified the 

strength and weakness of different prediction models. As reflected in the methods of 

some teams, for the CAGI6 RGP challenge, we did not stipulate that entries should not 

undergo manual curation prior to submission. Therefore, we cannot mitigate the risk of 

model performance reflecting, to some extent, the result of human review. In future, we 

intend to offer two challenges, one version with a similar study design to CAGI6 and a 

second version where we require teams to submit the automated output of the model 

without human review/reprioritization. We could also ask teams to provide estimates of 
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run time and cost to gain an appreciation for the computational power required and burden 

of the model. Early participation in RGP was predominantly by families of European 

descent and that is reflected in the RGP CAGI6 challenge. We hope to have a more US-

representative cohort in future challenges and have been working on approaches to 

diversify participation (20). 

Overall, CAGI challenges provide essential information about methods in the field, 

evaluating both commercial and non-commercial tool performance on unpublished 

datasets through independent assessment. The CAGI6 RGP challenge has seen among 

the highest participation of teams to date, in particular increased uptake from industry, 

even with the higher bar to participate by requiring predictors sign a data use agreement. 

The challenges are, however, only as good as the amount of participation from research 

and industry teams, as well as clinical diagnostic laboratories, and involvement is greatly 

encouraged and appreciated. 

 

CONCLUSIONS 

 

Computational models for genome analysis were found to be highly variable in 

terms of methodology and effectiveness. For the diagnosis of patients with rare disease, 

top performing models significantly aid genome interpretation, and were able to provide 

new insights into the genetic basis of rare disease by novel variant detection, leading to 

the return of new diagnostic variants, and to prioritize novel disease genes for further 

consideration. Overall, we find that computational models can act as clinical decision 
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support tools, requiring detailed review and conservative assessment of prioritized 

variants against established criteria for use in diagnostics. 

 

LIST OF ABBREVIATIONS 

 

ACMG/AMP : American College of Medical Genetics and Genomics and the 

Association for Molecular Pathology 

AD : autosomal dominant 

AFR : African/African American 

AMR : Admixed American 

AR : autosomal recessive 

ASJ : Ashkenazi Jewish 

CAGI : Critical Assessment of Genome Interpretation 

CSF : cerebrospinal fluid 

DM : disease mutation 

EPCR : estimated probability of causal relationship 

F-max : maximum F-measure 

HPO : Human Phenotype Ontology 

IGV : Integrative Genome Viewer 

indel : small insertion/deletion 

LP : likely pathogenic 

NFE : Non-Finnish European 

P : pathogenic  
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PHS : Pitt-Hopkins syndrome 

RGP : Rare Genomes Project 

SAS : South Asian 

SE : standard error 

SNV : single nucleotide variant 

SV : structural variant 

VCF : variant call file 

VEP : Variant Effect Predictor 

VUS : variant of uncertain significance 

XLR : X-linked recessive 
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