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Abstract— Detection and characterization of abnormalities
of movement are important to develop a method for
detecting early signs of Parkinson’s disease (PD). Most of
the current research in detection of characteristic reduc-
tion of movements due to PD, known as parkinsonism,
requires using a set of invasive sensors in a clinical or
controlled environment. Actigraphy has been widely used
in medical research as a non-invasive data acquisition
method in free-living conditions for long periods of time.
The proposed algorithm uses triaxial accelerometer data
obtained through actigraphy to detect walking bouts at
least 10 seconds long and characterize them using cadence
and arm swing. Accurate detection of walking periods is
the first step toward the characterization of movement
based on gait abnormalities. The algorithm was based on
a Walking Score (WS) derived using the value of the auto-
correlation function (ACF) for the Resultant acceleration
vector. The algorithm achieved a precision of 0.90, recall of
0.77, and F1 score of 0.83 compared to the expert scoring
for walking bout detection. We additionally described a
method to measure arm swing amplitude.
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I. INTRODUCTION

Rapid-eye-movement sleep behavior disorder (RBD)
affects 1% of adults and is in most cases the early
manifestation of a neurodegenerative disease, Parkin-
son’s disease (PD) or dementia with Lewy bodies [1][2].
Both conditions are characterized by the presence of
“parkinsonism,” observed as a progressive restriction
and slowing of movements and gait abnormalities, such
as arm swing asymmetry, which conventionally requires
physical examination by a trained neurologist. RBD
causes frequent twitches during sleep, which, as shown
in our prior work, can be accurately detected by wrist
accelerometers [3]. Wrist-worn accelerometry could
thus facilitate the diagnosis of patients with RBD in the
general population, however a convenient and scalable
method for detecting early signs of parkinsonism in this
patient population is needed.

Several studies have used accelerometry for detecting
parkinsonism, particularly differences in gait parameters
in patients with PD or RBD against healthy controls. In
the prodromal stage of isolated RBD, reduced cadence,
increased stride time, swing time [4], step width vari-
ability, and step length asymmetry could be observed,
in addition to differences in gait initiation [5], however

these could be measured only in the clinical setting,
using pressure sensor carpet. U-turn slowing is another
PD characteristic, which only recently could be mea-
sured in free-living conditions [6], however this feature
has only been tested with a hip-worn smartphone, and
in RBD, only in the clinic setting under controlled
conditions [7][8]. A study using a lower back sensor
showed that higher step time variability and asymmetry
of all gait characteristics can be detected years prior to
PD diagnosis, but this also required standardized motor
testing and is more invasive than a wrist sensor [9].

In comparison, very few studies have tested wrist ac-
celerometry in PD or prodromal patients. Mirelman et
al. found significant differences in arm swing in mu-
tation carriers prior to any detectable parkinsonism but
this was only noted under dual-task conditions and using
gyroscopes [10]. The literature on wrist accelerometry
in free-living conditions to measure motor changes as-
sociated with PD is scarce. One study reported reduced
median arm movement power during non-gait activities
[6], which may be interpreted as a reflection of bradyki-
nesia. Another study using wrist accelerometer data
from the United Kingdom (UK) Biobank and machine
learning methods analyzing gait and low-movement data
achieved good performance (area under the curve 0.85
when fused) for distinguishing PD from non-PD [11].

In summary, although most studies for measuring
parkinsonism have been conducted in the in-clinic
setting or have required controlled conditions and/or
invasive sets of sensors, emerging data using a wrist-
worn sensor suggests that analysis of gait and non-
gait movements in free-living conditions is feasible, and
could be used to monitor disease progression in RBD.
This article presents an algorithm that uses single-wrist
actigraphy to detect and characterize walking bouts in
free-living conditions.

II. METHODS

The system overview is shown in Figure 1. The system
consists of data acquisition, preprocessing, Walking
Bout Detection, and Post Processing Phases. After the
Post-processing phase, the detected walking bouts were
used to calculate cadence and arm swing for the walking
bouts. Each phase will be discussed in detail in the
following sections.
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Figure 1. Overview of the proposed method for detection and characterization of walking bouts.

II-A. Data Description

Eight healthy volunteer adult participants, 3 females
and 5 males aged 26 to 46 (32.3 +7.2) years, were
included in this study. Participants were instructed to
wear a single AX-6 (Axivity, Ltd, Newcastle, UK)
actigraphy device at the dominant wrist for at least 24
and up to 48 hours during weekdays and to follow their
usual routines, and mark the start and end times of any
continuous walking bout estimated to be longer than 1
minute.

Actigraphs recorded triaxial accelerations at a resolution
of 25 Hz using a dynamic range of +8 gravity (g). After
all participants returned their device and the list of time
stamps for their walking bouts, an independent reviewer
visually inspected raw actigraphy data for each partici-
pant using the software Open Movement graphical user
interface (OMGUI) and corrected or added any walking
bout to ensure that all labels were accurate and, to the
greatest extent possible, no obvious walking bout had
been missed. Moreover, one of the 8 recordings was
carefully reviewed and labelled in 10-second windows
to capture any short meaningful walking bouts.

A total of 816.9 hours of actigraphy data was avail-
able for analysis, averaging 102.1 4 87.1 hours per
participant. The average number of walking bouts was
4.3+2.5 per day and per participant, with durations
ranging from 1 to 134 minutes and an average of
13.6£4.5 minutes.

II-B. Preprocessing

The raw accelerometer data was preprocessed following
our previous work [3], which includes cubic spline
interpolation to 25 Hz, calibration to 1 g for stationary
periods, computation of accelerometer resultant(R) as
shown in Eq.1, and high-pass filtering of the resultant
using an infinite impulse response (IIR) Butterworth
filter with a stopband attenuation of 80 dB at 0.1 Hz

and passband ripple of 1 dB starting at 0.5 Hz.

R=abs(y/a2+a%+a2—1) ()

II-C. Walk Bout Detection Algorithm

We considered walking bouts of at least 10 seconds
meaningful in terms of later analysis and character-
ization. This is based on the minimal gait duration
for trained neurologists evaluating parkinsonism in the
clinical setting. Walking bouts are visually recognizable
in raw accelerometer data as noisy sinusoidal waves
with a quasi-stationary fundamental frequency, which
can vary between walking bouts.

Based on these considerations, the resultant (R) was ini-
tially segmented into 10-second windows and analyzed
through the autocorrelation function (ACF). The ACF
was analyzed from a lag between 0.3 and 4 seconds,
and the maximum value and location were extracted. A
Walking Score (WS) was computed for each window as
shown in Eq.2 where ACF, is the normalized ACF.

max(ACF(R)), if max(ACF,(R)) > 0.5
WS = :
0, otherwise

2

1I-D. Postprocessing

A post-processing scheme was implemented in two
steps. First, a detection threshold was fitted to maximize
the F1 score to self-report walking in 7 participants. In
this comparison, walking bouts closer than 60 seconds
were combined to match the 1-minute resolution of self-
reporting. Secondly, the walking bout onset and offset
were adjusted to match the data exactly rather than
having a 10-second resolution.

This was achieved by first computing the dominant

frequency of R matching the walking cadence and
subsequently searching for the first significant decrease

August 1, 2023


https://doi.org/10.1101/2023.08.01.23293509

medRxiv preprint doi: https://doi.org/10.1101/2023.08.01.23293509; this version posted August 2, 2023. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

All rights reserved. No reuse

A. Brink-Kjer, et al.: Detection and ...

0.2

0.1

allowed without permission.

Page 3 of 5

1

Walking Score Walking ‘

i

N

— ACF max (normalized) —— ACF max Walking ‘

05 1

Mn

Ll

il IA

N B

Resultant [g]

o

Resultant Walking

03:00:00 05:00:00 07:00:00 09:00:00

11:00:00 13:00:00 15:00:00

Figure 2. An example tracing of a walking bout in the test recording with precise annotations.

in the power of that frequency. The walking cadence was
extracted for each 10-second window by computing the
fast Fourier transform of the ACF and finding the peak
frequency. For the first and last 10-second window, the
nearest 1-second window (at most 5 seconds away) with
a 75% drop in the power of the dominant frequency +
5Hz. The frequency power was computed using a short-
time Fourier transform (STFT) with a window size of 3
seconds, an overlap of 2 seconds, and a Hann window.

II-E. Walking Bout Analysis

Walking bouts were analyzed to extract the mean and
standard deviation of the cadence and arm swing am-
plitude. The arm swing amplitude was computed by
searching R for peaks with a minimum distance of
75% of the reciprocal of the dominant frequency, which
was extracted for both positive and negative peaks. The
arm swing amplitude for a 10-second window was then
defined as the difference in the median between posi-
tive and negative peaks of R. Distributions of metrics
for walking bouts were compared between participants
using the Kruskal-Wallis test to find if there were any
variations in the median between participants.

III. RESULTS

The performance metrics used to evaluate the walking
bout detection algorithm were Precision, Recall, and
F1 Score calculated as showed in Eq.3,4 and 5 where
TP (True Positives), FP (False Positives) and FN (False
Negatives).

TP
Precision —
recision TPLFP 3
TP
Recall = ——— “4)
TP+FN

Table 1. Walking bout detector performance on 10-second
windows optimized and compared to self-reported walking.

Precision Recall F1
Overall 0.65+ 0.11 0.70+0.18 0.66+0.08
Participant 1 0.61 0.63 0.62
Participant 2 | 0.70 0.48 0.57
Participant 3 0.52 0.80 0.63
Participant 4 | 0.74 0.92 0.82
Participant 5 0.73 0.69 0.71
Participant 6 | 0.78 0.51 0.61
Participant 7 0.49 0.92 0.64
* *
FlScore — 2 x Precision * Recall )

Precision + Recall

The detection threshold was optimized to be 0.01728
based on the training set, which resulted in an F1 score
of 0.661+0.08 in the 7 participants. Walk-bout detection
results for the individual participants and overall are
shown in Table 1 .

After postprocessing using the optimized threshold,
walking bouts were compared to a single test recording
with all walking bouts carefully annotated with 1-
second resolution. This comparison showed an F1 score
of 0.84 per area and 0.83 per event considering any
overlap as true positives as shown in Table 2.

As shown in Fig.2, the method has a good agreement
with self-reported walking. Although, there are cases of
both false negatives and false positives as compared to
self-reported walking. In comparison to the visual anno-
tation of walking in the test recording, the annotations
match better, of which an example is shown in Fig.3 .
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Figure 3. Visual comparison of walking score with self-
reported walking activity. The shaded regions indicated the
manually marked walking bouts.

Table 2. Walking bout detector performance compared to the
visual annotation of walking.

Precision Recall F1 Score
Per Area 0.93 0.77 0.84
Per Event 0.90 0.77 0.83

The cadence and arm swing amplitude were quan-
tified from detected walking bouts and analyzed for
walking bouts with a duration longer than 60 seconds
and cadence between 60 — 199 steps/min (Fig.4). The
average cadence clearly varies between participants
(p=1.19- 10~ 1%, however, the standard deviation within
walking bouts was stable constant between participants
(p = 0.38). Moreover, the mean and within bout stan-
dard deviation of arm swing amplitude varied between
participants (p = 4.83-10"%and p =8.49-107?, respec-
tively).

IV. DISCUSSION

This study proposes a walking bout detection and char-
acterization algorithm based on the tri-axial accelerom-
eter data obtained passively, in free-living conditions
through wrist actigraphy data. The results showed that
a gait detection model could achieve good performance,
and in particular, high precision in detecting walk-
ing bouts. This experiment represents the first step in
a systematic analysis of movement characteristics of
parkinsonism, which in patients with RBD would signal
a high risk of progression to PD.

In comparison to the test recording with high-resolution
walking annotations, the detector displayed high preci-
sion, which suggests that derived walking characteristics
reflect actual walking rather than other movement be-
haviors. This preliminary pipeline shows the feasibility
of automated detection and characterization of gait in
free-living conditions using wrist actigraphy. A certain
level of false negatives and false positives was to be
expected due to imperfect ground truth. False negatives
can in part be explained by self-reported walking bouts
that in reality included multiple short bouts with breaks
in between. False positives can in part be explained by
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a partial report of walking bouts, particularly shorter
ones.

Wrist actigraphy devices are cheap, easily accepted
by patients, and allow continuous monitoring during
prolonged periods of days to weeks without the need
for recharging. Our work supports the feasibility of
remote monitoring of gait as a daily behavior expected
to show features of parkinsonism, dispensing the need
for in-clinic testing or invasive sets of sensors. If proved
accurate, this approach may be implemented in large
patient cohorts, RBD registries, and large available
datasets, such as the UK Biobank.

There are limitations to our study as it was only
validated in a small sample without any participants
with RBD or PD. Moreover, we did not explicitly test
whether and how various external conditions (varying
terrain or walking with a phone or bag in one or two
hands) could affect the algorithm or derived character-
istics. Therefore, future work should include validation
in a patient population in various controlled and free-
living conditions. Ideally, it should also be compared to
a more accurate ground truth, such as video recordings
of gait scored by blinded expert clinicians.

Moreover, we showed the feasibility of measuring arm
swing amplitude; however other features of gait asso-
ciated with Parkinsonism should be explored, including
U-turns, hesitancy over initiation of gait, and impaired
coordination of walking movements.

V. CONCLUSIONS

Detection and characterization of walking bouts is es-
sential for developing a convenient and scalable method
for detecting early signs of neurodegenerative diseases,
such as PD. Actigraphy has the ability to passively
collect data for extended periods of time, non-invasively,
and in the patients natural living environment. This
paper presents an algorithm that uses single-wrist actig-
raphy to detect and characterize walking bouts in free-
living conditions, which is the first step toward devel-
oping an early detection algorithm for motor changes
due to PD. The algorithm can be implemented in larger
data cohorts, such as the UK Biobank, which includes
actigraphy data for the prediction of health outcomes.
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