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Abstract 

INTRODUCTION: Parkinson’s disease (PD) and Dementia with Lewy bodies (DLB) show 

heterogeneous brain atrophy patterns and common group-average analyses are limited in 

capturing individual differences. Neuroanatomical normative modelling overcomes this by 

comparing individuals to a large reference cohort. 

METHODS: We generated z-scores from T1w-MRI scans for each participant (108 PD; 61 

DLB) relative to normative regional cortical thickness and subcortical volumes, modelled in a 

reference cohort (n=58,836). Outliers (z<-1.96) were aggregated across 169 brain regions per 

participant. We examined total outlier counts between high versus low visual performance in 

PD; and PD versus DLB; and tested associations between these and cognition. 

RESULTS: We found greater total outlier counts in PD poor visual performers, compared to 

high; and in DLB versus PD. Outlier counts were associated with global cognition in DLB, 

and visuoperception in PD.  

DISCUSSION: Neuroanatomical normative modelling shows promise as a clinically 

informative technique in PD and DLB. 

  

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 4, 2023. ; https://doi.org/10.1101/2023.08.01.23293480doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.01.23293480
http://creativecommons.org/licenses/by/4.0/


4 

 

Introduction 

Cognitive impairment is a core diagnostic feature of Dementia with Lewy bodies (DLB) [1] 

and is common in Parkinson’s disease (PD) where almost half of patients develop dementia 

within ten years’ of diagnosis [2]. Conventional neuroimaging studies measuring cortical 

thickness and grey matter volume in DLB and PD patients, analysed at group level, have 

yielded heterogeneous findings [3, 4]. Previous work has failed to identify a consistent 

pattern of atrophy that predicts future cognitive decline [5-7] and correlates with symptom 

severity [4], thereby limiting the value of conventional neuroimaging measures as 

biomarkers.  

A key challenge of studying neurodegenerative diseases at group level is between-subject 

heterogeneity, which results from intrinsic biological differences as well as psychosocial and 

environmental factors independent of the presence of disease [8]. This has significant 

implications for conventional case-control neuroimaging studies that compare group means, 

which only allow inferences to be made for the ‘average subject’ and treat between-subject 

variability as noise [9].  

To improve our knowledge of the neural basis of neurodegenerative disorders such as PD and 

DLB, there is a need to understand between-patient heterogeneity. Neuroanatomical 

normative modelling is a recently established neuroimaging analysis framework that 

precisely maps individual patterns of variation from the expected norm for a given 

neuroimaging measure [9-11]. A recent endeavour has developed a robust neuroanatomical 

normative reference model from which individual-level predictions can be made [12]. 

Lifespan trajectories of cortical thickness and subcortical volumes were modelled using 

Bayesian Linear Regression based on a reference cohort of 58,836 healthy participants, 
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adjusting for age, sex and site. Leveraging this information, a new individual’s cortical and 

subcortical data can be plotted within each normative distribution, to quantify the extent they 

deviate from expected patterns. Predetermined values can be used to binarise z-scores, to 

quantify how many, and in which regions the individual is an outlier. The number of outliers 

can be aggregated to provide the total outlier count, a measure of overall neurodegeneration 

at individual-level. This may be a more effective biomarker of brain health, particularly in 

Lewy body disorders where patterns of atrophy are highly variable [3, 4].  

Neuroanatomical normative modelling has recently been successfully applied in Alzheimer’s 

disease (AD) [13-15]. As expected, patients with AD had more outlier regions than mild 

cognitive impairment (MCI) and healthy control groups [14], though neuroanatomical 

patterns of outliers were variable even within AD groups [14, 15]. Importantly, total outlier 

count correlated with poorer cognitive performance, fluid biomarker-measures of 

Alzheimer’s pathology, and predicted future conversion from MCI to dementia [13, 14]. 

Given that neuroimaging measures in AD may be more neuroanatomically homogenous than 

Lewy body disorders [16, 17], this approach may have even greater utility in Parkinson’s and 

DLB.  

Here, we leveraged this technique to investigate heterogeneity in Lewy body diseases and 

evaluate the potential of neuroanatomical normative modelling to provide useful measures of 

disease severity. In PD, previous work has shown that visual performance predicts future 

cognitive decline, with the distinction between high and poor visual performance found to 

represent risk of future dementia in PD [18, 19]. Here, we a) investigated differences in total 

outlier count between high and poor visual performers with PD, and compared it to 

conventional cortical thickness analysis; b) identified individual patterns of outliers in 

cortical thickness and subcortical volumes in PD and DLB; c) compared patterns of 
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dissimilarity between PD participants with high versus poor visual function; and between PD 

and DLB participants, and d) evaluated whether total outlier count correlated with cognitive 

severity in PD and DLB. We hypothesised that there would be significant differences in total 

number of regional outliers between high and poor visual performance PD groups; but that 

conventional case-control analysis of cortical thicknesses would not identify group 

differences. We further hypothesised greater dissimilarity in individual patients for low 

versus high visual performers in PD; and for DLB compared to PD. Finally, we predicted that 

greater total outlier count would be significantly associated with poorer cognitive 

performance in PD and DLB.  

Methods 

Participants 

Structural T1w-MRI data from two sites were used. The first site, at the Wellcome Centre for 

Human Neuroimaging, UCL, included 108 participants with PD, 36 with DLB and 38 healthy 

controls, who are part of the Vision in Parkinson’s disease study (PI: Dr Rimona Weil, NRES 

Queen Square Ethics Committee reference 15/LO/00476). The second site was the 

pseudoanonymised Alzheimer's Disease Research Center (ADRC) “8361” which contributes 

data to the National Alzheimer's Coordinating Center (NACC) database [20], and included 25 

participants with DLB and 127 healthy controls. Participants from the UCL site were 

recruited from the National Hospital for Neurology and Neurosurgery outpatient clinics and 

affiliated hospitals, or from patient and carer group bodies such as the Lewy Body Society 

and Rare Dementia Support. They were diagnosed as having PD or DLB if they satisfied the 

Queen Square Brain Bank PD diagnostic criteria [21] or the Dementia with Lewy Bodies 

Consortium Criteria [1] respectively, with exclusions if they had a history of traumatic brain 

injury, major co-morbid psychiatric or confounding neurological disorder. Additionally, all 
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UCL participants were assessed by a neurologist (RSW) to make a positive diagnosis of PD 

or DLB and to identify clinical features or signs on neurological examination that could be 

suggestive of an alternative atypical parkinsonian syndrome such as progressive supranuclear 

palsy or multisystem atrophy (e.g., supranuclear gaze palsy, cerebellar signs, prominent 

dysphagia, early and prominent urinary symptoms, severe autonomic involvement). Controls 

were recruited from spouses of patients taking part in the study or the UCL Institute of 

Cognitive Neuroscience volunteer databases. 

Participants from site “8361” were included and classed as having DLB if they had a 

structural MRI scan and met the following criteria based on clinical descriptors available in 

the NACC data file (June 2022 data freeze): 1) dementia diagnosis; 2) Primary, contributing, 

or non-contributing cause of cognitive impairment - Lewy body disease; 3) not classed as 

MCI; and 4) the absence of a diagnosis of Parkinson’s disease.   

Clinical assessment 

96 of the PD participants at the UCL site had been further divided into high (n=64) and low 

(n=32) visual performers based on their performance on two computerised visual tasks, the 

biological motion task and the Cats-and-dogs task, which have been described previously [18, 

22, 23] and have been shown to predict dementia and poor outcomes in Parkinson’s [18, 19, 

24]. In this way the low visual performers are thought to represent an at-risk group for 

conversion to Parkinson’s dementia.  

Clinical assessment included detailed neuropsychometric testing and disease specific 

measures of clinical severity. For this study, we primarily focused on a global measure of 

cognition: the Montreal Cognitive Assessment (MoCA) score [25], which is widely used 

clinically as a sensitive measure of global cognitive function in Parkinson’s disease [26, 27] 
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as well as a composite cognitive score [18, 19]. This composite score combined measures 

across five cognitive domains, using the averaged z-score for each of the following cognitive 

tests: Stroop colour time [28]; verbal fluency [29]; word recognition [30]; Hooper Visual 

Organisation Test [31] and MoCA [25]. Additionally, as visuo-perceptual ability is usually 

affected early in DLB [1], we also specifically examined performance in a visuo-perceptual 

cognitive test, the Hooper Visual Organisation Test [31].  

Disease specific measures included the Movement Disorder Society Unified Parkinson’s 

Disease Rating Scale (MDS-UPDRS) that measures impairment and disease severity in both 

motor and non-motor domains [32], part III of the MDS-UPDRS (MDS-UPDRS-III) to 

assess motor function [32], the University of Miami Hallucinations Questionnaire (UM-

PDHQ) to evaluate hallucinations [33] and depression severity was measured with the 

Hospital Anxiety and Depression Scale (HADS) [34]. 

MRI acquisition and processing 

Structural T1w-MRI scans at UCL were acquired on a single      3T Siemens Magnetom 

Prisma scanner with a 64-channel head coil. Structural magnetisation prepared rapid 

acquisition gradient echo (MPRAGE) data were acquired using the following parameters: 

1×1×1mm voxel, TE=3.34ms, TR=2530ms, flip angle=7°. Acquisition time for MPRAGE 

was approximately 9 minutes. Structural T1w-MRI scans from NACC ADRC “     8361” 

were acquired on 1.5T scanners manufactured by GE. Further information on individual scan 

parameters are available via the NACC database.  

The “recon-all” function in FreeSurfer v6.0.0 (http://www.freesurfer.net) was used to process 

all MRI data from both the UCL and NACC sites. Cortical thickness values of the Destrieux 

parcellation (lh.aparc.a2009s.stats, rh.aparc.a2009s.stats) [35] and subcortical volumes 
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(aseg.stats) were extracted. Cortical parcellations and subcortical segmentations were 

manually quality controlled by visually inspecting these segmentations superimposed on the 

corresponding structural T1-weighted image by a researcher who was blind to clinical status.  

Reference normative dataset 

Rutherford and colleagues [12] modelled normative lifespan trajectories for cortical 

thicknesses across 148 regions using the Destrieux parcellation and subcortical volumes 

derived from Freesurfer (v6.0.0), using a warped Bayesian Linear Regression with age and 

sex as covariates, and also accounting for site differences [36]. The employment of Bayesian 

linear regression with likelihood warping allows accurate modelling of non-Gaussian effects 

and upscaling of normative models to large cohorts [37]. Their reference cohort comprised 

58,836 subjects from 82 sites and this large number of participants across multiple sites 

further strengthened the reliability of the distribution estimates.  

Applying neuroimaging normative modelling to the study data 

The reference normative model was recalibrated to the specific datasets used in our study by 

using an adapted transfer learning approach [38]. This involved inputting healthy controls’ 

data from the two sites in our study into the reference normative model to generate stable 

parameters for cortical thicknesses and subcortical volumes, which the individuals within the 

disease groups could then be validly measured against. To do this, z-scores were generated 

for each individual with either DLB or PD for each cortical region and subcortical structure, 

relative to the recalibrated reference values. All modelling steps were performed using 

PCNToolkit (v0.20) and by applying freely available code via Google Colab [12].  

Statistical Analysis 

Total outlier count 
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From the z-scores for each cortical region and 21 subcortical structures (accumbens, 

amygdala, caudate, cerebellar cortex, cerebellar white matter, hippocampus, pallidum, 

putamen, thalamus, ventral diencephalon, all bilaterally, and the brain stem) generated from 

the normative modelling pipeline described above, outliers were defined as z-scores < -1.96. 

The total number of outliers across the 169 regions and structures was summed for each 

participant to provide a single metric per participant known as the total outlier count. Linear 

regressions, correcting for age and sex, were used to test for group differences in total outlier 

count between high and low visual performers with PD as well as between DLB and PD. 

Further, subgroup analyses compared DLB participants at the UCL site with the NACC site 

and PD and DLB participants only at the UCL site. Additionally, group comparisons for 

proportion of outliers at each region were conducted using a Mann-Whitney U test and 

corrected for multiple comparisons using the False Discovery Rate (FDR).  

Measuring dissimilarity within and between groups 

The Hamming distance metric is widely used in information theory and reflects the 

dissimilarity between two strings of equal length. At each point on the strings, a distance of 1 

is assigned if the symbols are different and a distance of 0 if the symbols are the same. This is 

then summed across the length of the string to give the total Hamming distance [39]. This 

metric was applied to the vector of binarised z-scores for outliers across 169 brain regions. 

Participants were compared pairwise within groups, so had n-1 Hamming distance scores 

ranging from 0-169, where n is the number of participants in their group. The median 

Hamming distance score for each participant was then calculated and between-group 

comparisons were made using the median Hamming distances, using a Mann-Whitney U test.  

To qualitatively visualise spatial patterns of cortical thickness outliers per group, the 

proportion of participants within each group who were outliers based on their z-score (<-
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1.96) for each cortical region was calculated. This was mapped using the Destrieux atlas via 

the R package ggseg [40]. 

Association of total outlier count and clinical features 

Linear regressions adjusting for age and sex were used to test the association between total 

outlier count and a composite cognitive score (see above), MoCA and visuoperception, 

measured using the Hooper Visual Organisation Test. In a secondary analysis, we also tested 

the association with disease specific measures including a global measure of severity (MDS-

UPDRS), motor symptoms (MDS-UPDRS-III), hallucination severity (UM-PDHQ) and 

depression score (HADS). The association was tested in the PD and DLB groups separately, 

and for the DLB group we only included data from UCL where clinical severity data had 

been robustly collected.  

Statistical analyses for normative modelling data were performed in R (v4.2.2). 

Potential outliers in total outlier count measure 

There was one participant from the PD group and one from each of the DLB groups at the 

UCL and NACC site, who had a much higher total outlier count than the other participants in 

the group (45, 50 and 53, respectively). Their brain imaging was initially quality controlled 

by one of the authors, RB, and then further scrutinised by additional authors (RSW and JHC). 

The participants were deemed to not warrant exclusion as there was not a clear acquisition or 

processing error leading to the total outlier count. Further, the individuals’ total outlier counts 

are biologically plausible and where the authors (RB and RSW) had clinically examined the 

two participants at the UCL site, their diagnoses were unambiguous based on clinical 

examination and neuroimaging. We present results with and without the inclusion of these 

participants in analyses below.  
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Conventional cortical thickness analysis 

We also evaluated whether there were regional differences in cortical thickness at a group 

level between high and low visual performers with PD and between PD and DLB using a 

conventional General Linear Model (GLM) (Freesurfer Version 6.0). This incorporated 

Monte Carlo correction for multiple comparisons with a threshold of p <0.05, with age and 

sex as covariates.  

Results 

Participants 

Table 1. Demographics and total outlier counts  

 

Overall PD vs DLB 

 PD (n=108) DLB (n=61) Statistic 

Mean age (SD), y  64.1 (7.8) 73.8 (6.5) t=-9.2; P<0.01 

Male, n (%) 51 (48) 55 (90) χ2=27.9; P<0.01 

Mean tOC (SD) 3.6 (6.0) 8.7 (11.3) β= -5.60 (SE=1.74); P<0.01* 

    

High vs Low visual Performers with PD 

 High (n=62) Low (n=34) Statistic 

Mean age (SD), y  61.5 (7.1) 68.1 (8.0) t=-4.02; P<0.01 

Male, n (%) 31 (50) 14 (41) χ2=0.38; P=0.54 

Mean tOC (SD) 2.3 (3.5) 4.1 (5.2) β= -4.73 (SE=1.30); P<0.01* 

    

DLB by site (UCL vs NACC participants) 

 UCL (n=36) NACC (n=25) Statistic 

Mean age (SD), y  72.9 (5.5) 75.1 (6.3) t=-1.41; P=0.17 
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Male, n (%) 33 (92) 22 (88) χ2=0.001; P=0.97 

Mean tOC (SD) 6.3 (9.3) 12.1 (13.2) β= -6.02 (SE=3.00); P=0.048* 

    

PD vs DLB at UCL 

site only 

   

 PD (n=108) DLB (n=36) Statistic 

Mean age (SD), y 64.1 (7.8) 72.9 (5.5) t= -7.54; P<0.01 

Male, n (%) 51 (48) 33 (92) χ2=19.4; P<0.01 

Mean tOC (SD) 3.6 (6.0) 6.3 (9.3) β= -3.13 (SE=1.61); P=0.054* 

PD, Parkinson’s disease; DLB, Dementia with Lewy bodies; tOC, total outlier count; UCL, University 

College London; NACC, National Alzheimer’s Co-ordinating Centre 

*P values were analysed by a linear regression adjusting for age and sex 

BOLD signifies statistically significant difference 

 

108 participants with PD were included (all from the UCL site); 61 people with DLB were 

included, with 36 from the UCL site, and 25 from the NACC site. A total of 165 controls 

were included, 38 from UCL and 127 from the NACC database (ADRC “8361”), these 

control participants were used to calibrate the datasets to the Rutherford and colleagues’ 

reference dataset (n=58,836) [12]. Age and sex for respective groups and differences between 

them are shown in Table 1. We adjusted for age and sex in subsequent analyses and also note 

that an important strength of the neuroanatomical normative modelling pipeline is that it has 

been modelled to account for age, sex and site differences.  
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Differences in total outlier count between DLB and PD 

Mean total outlier count was significantly higher in the overall DLB group (n=61; mean=8.7 

(SD=11.3)) compared to the PD group (n=108; mean=3.60 (SD=6.0)) after adjusting for age 

and sex (PD vs DLB: β= -5.60 (SE=1.74); t=-3.23; P<0.01). It was also higher in the low 

(n=34; mean=5.4 (SD=8.7)) compared to high (n=62; mean=2.3 (SD=3.5)) visual performer 

group after adjusting for age and sex (β= -4.73 (SE=1.30); t=-3.64; P<0.01). The DLB 

participants from the NACC site (n=25) had significantly higher numbers of outliers 

compared to those from the UCL site (n=36) after adjustment for age and sex (UCL vs. 

NACC: β= -6.02 (SE=2.97); t=-2.02; P=0.050). At the UCL site alone, there was a 

numerically higher number of outliers in the DLB (n=36) compared to PD group (n=108) but 

this did not reach statistical significance (PD vs DLB at UCL site: β= -3.13 (SE=1.61); t=-

1.95; P=0.054) (Table 1).  

Heterogeneity in patterns of outliers found between PD at-risk of dementia groups and 

between DLB and PD 

Dissimilarity as measured by individual median Hamming distance scores metric was 

significantly higher in PD participants who were low visual performers (n=34; mean=7.1 

(SD=8.4)) compared to high visual performers (n=62; mean=3.3 (SD=3.4), W=522.5; 

P<0.01). The Hamming distance matrices for each group and a density plot of Hamming 

distances are shown in Figure 1A-C.  

The individual median Hamming distances score was significantly higher in DLB (n=61; 

mean=12.6 (SD=10.3)) compared to PD (n=108; mean=4.6 (SD=6.0), (W=5649; P<0.01). 

The Hamming distance matrices for DLB and PD, and a density plot of Hamming distances is 

shown in Figure 1D-F.
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Figure 1. Outlier Heterogeneity. Outlier Hamming distance matrices for PD-low visual performers (A) and PD-high visual performers (B). Kernel 

density estimates (Y-axis) for a given Hamming distance score (X-axis) show that PD-low visual performers had more dissimilarity as evidenced by the 

shorter peak and longer tail compared to PD-high visual performers (C). Outlier Hamming distance matrices for the DLB (D) and PD (E) groups. Kernel 

density estimates (Y-axis) for a given Hamming distance score (X-axis) show that DLB participants had more dissimilarity as evidenced by the shorter 

peak and longer tail compared to the overall PD group (F). 

In A, B, D, E: dark blue / indigo represents the lower end of hamming distance scores whereby two participants are relatively similar to one another in 

terms of regional distribution of outliers whereas yellow represents higher hamming distance scores signifying greater dissimilarity. The more yellow in 

the plot, the greater the dissimilarity between individuals in the groups.  

PD, Parkinson’s disease; DLB, Dementia with Lewy bodies 
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The proportion of regional outliers were mapped by group (Figure 2) and indicated that for 

low compared to high visual performers with PD, and for DLB compared to PD, there are 

increased number of regions in which there are outliers, suggesting greater heterogeneity and 

more widespread atrophy.  

In the low visual performers PD group, 99 out of the 169 brain regions showed at least one 

patient with an outlier. This compares with 77/169 regions having at least one outlier in the 

high visual performers group. The maximum number of participants who were an outlier in 

any one region was 6 (12.9%) for the high visual performers and 8 (17.6%) for low visual 

performers, both being in the in left Paracentral lobule and sulcus region (Supplementary 

Table 1). Further information on the proportion of outliers in each region, and where 

significant regional differences between groups exist, are shown in the supplementary 

material (Supplementary Table 1; Supplementary Figure 1).  

In the PD group as a whole, 125 regions out of 169 had at least one patient with an outlier. 

This compares with 147/169 regions in the DLB group. The region with the highest number 

of participants who were an outlier was the left Paracentral lobule and sulcus region (n=15, 

13.9%). For the DLB group the region with the highest number of outliers was the right 

Posterior-dorsal part of the cingulate gyrus (dPCC), which had 15 people (24% of the group) 

with outlier scores for this region.(Supplementary Table 1; Supplementary Figure 1).  

Total outlier counts are associated with cognitive performance in DLB and with 

visuospatial processing in PD 

There were significant differences in several clinical measures, including composite cognitive 

score, MoCA, Hooper Visual Organisation Test, MDS-UPDRS, MDS-UPDRS motor 
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symptom subscale, UM-PDHQ and HADS depression scores, between PD and DLB groups, 

with the latter more severely affected (Table 2). 

 

 

 

 

 

 

 

Figure 2. Regional maps of outliers. Mapped are the proportion of participants who are outliers in a 

particular cortical region. 

A.  Low visual performers (who are at-risk of Parkinson’s dementia) compared to high visual 

performers with PD (at lower risk of Parkinson’s dementia). Qualitatively, more regions 

have a higher proportion of participants with outliers in the low visual performer group. 

B. PD and DLB. Qualitatively, more regions have higher proportions of participants with 

outliers in DLB than PD. Of note, there is no one region with more than 25% of participants 

being outliers, highlighting the heterogeneity in cortical atrophy in DLB and PD.. 

Grey represents regions with 0-2.5% outliers. 

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 4, 2023. ; https://doi.org/10.1101/2023.08.01.23293480doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.01.23293480
http://creativecommons.org/licenses/by/4.0/


18 

 

 

Table 2. Clinical Features of PD and DLB groups from UCL site  

 PD (n=108) DLB (n=36) Statistic 

Age, y  64.1 (7.8) 72.5 (5.6) t=6.76; P<0.01 

Male, n (%) 51 (48) 29 (91) χ2=16.89; P<0.01 

Disease Duration (years) 4.1 (2.5) 3.7 (2) W=2103, P=0.46 

Composite cognitive score -0.27 (0.76) -2.93 (1.88) W=268; P<0.01 

MoCA  28.0 (1.9) 20.8 (5.8) W=385.5; P<0.01 

HVOT 24.4 (3.1) 16.4 (6.5) W=476; P<0.01 

MDS-UPDRS 45.5 (21.4) 66.6 (27.5) W=2953; P<0.01 

MDS-UPDRS motor  19.7 (13.6) 34.9 (15.7) W=3075.5; P<0.01 

UM-PDHQ 0.7 (1.8) 4.3 (3.0) W=3250; P=<0.01 

HADS depression 4.0 (2.9) 5.7 (3.2) W=2553; P<0.01 

All data shown are mean (SD) except sex.  

Significant differences are highlighted in bold. 

PD, Parkinson’s disease; DLB, Dementia with Lewy bodies; MoCA, Montreal Cognitive Assessment; 

Hooper Visual Organisation Test, Hooper Visual Organisation Test; HADS, Hospital Anxiety and 

Depression Scale; MDS-UPDRS, Movement Disorders Society Unified Parkinson’s Disease Rating Scale; 

UM-PDHQ, University of Miami Hallucinations; Questionnaire; HADS, Hospital Anxiety and Depression 

Scale 
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 Figure 3. Relationship between total outlier count and cognitive measures in DLB and PD. Regression plots for the association between total outlier 

count (independent variable) and the following dependent variables: Composite Cognitive score, MoCA and Hooper Visual Organisation Test, in DLB 

(A, B, C , respectively) and PD (D, E, F, respectively). β coefficient values, corrected for age and sex, are presented along with P values. * denotes 

significant association.  

MoCA, Montreal Cognitive Assessment; HVOT, Hooper Visual Organisation Test; DLB, Dementia with Lewy bodies; PD, Parkinson’s disease. 
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In DLB, there were significant associations between greater total outlier count and worse 

performance in cognitive scores, with both the composite cognitive score (β=-2.01 

(SE=0.79); t=-2.54; P=0.02) and MoCA (β=-0.55 (SE=0.27), t=-2.04, P=0.05), when 

covarying for age and sex. However, there was no significant association with a test of 

visuoperceptual ability, the Hooper Visual Organisation Test (β=-0.45 (SE=0.24); t=-1.89; 

P=0.068) (Figure 3). There were also no significant associations with other measures of 

Lewy body disease severity (MDS-UPDRS score), motor symptoms (MDS-UPDRS-III 

Table 3. Association of total outlier count with measures of cognitive performance and other disease specific 

measures 

 PD (n=108) DLB (n=36) 

Attribute beta  SE t P valuea  beta SE  t P valuea 

Cognitive performance 

Composite Cognitive Score -1.19  0.79  -1.51 0.14 -2.01 0.79  -2.54 0.016 

MoCA  -0.17 0.31  -0.55 0.58 -0.55 0.27  -2.04 0.050 

HVOT -0.67 0.19  -3.59 <0.01 -0.45 0.24  -1.89 0.068 

Disease-specific measures 

MDS-UPDRS  0.03  0.03  1.01 0.31 0.03  0.03  0.74 0.47 

MDS-UPDRS Motor Score  -0.05  0.04  -1.18 0.24 0.06  0.06  0.95 0.35 

UM-PDHQ 0.44 0.32  -1.38 0.17 0.30 0.53  0.56 0.58 

HADS depression 0.05  0.19  0.26 0.80 -0.39  0.32  -1.23 0.23 

PD, Parkinson’s disease; DLB, Dementia with Lewy bodies; MoCA, Montreal Cognitive Assessment; HVOT, 

Hooper Visual Organisation Test; HADS, Hospital Anxiety and Depression Scale; MDS-UPDRS, Movement 

Disorders Society Unified Parkinson’s Disease Rating Scale; UM-PDHQ, University of Miami Hallucinations; 

Questionnaire; HADS, Hospital Anxiety and Depression Scale. 

aP values were analysed using linear regressions adjusting for age and sex. 

In bold results showing statistically significant associations 
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score), hallucination severity (UM-PDHQ) or depression (HADS depression score) (Table 

3).  

In the PD group, the only significant association was with visuoperceptual ability, the Hooper 

Visual Organisation Test (β=-0.67 (SE=0.19); t=-3.59; P<0.01), with no association seen for 

the other cognitive scores. Similar to DLB, no associations were found in PD between other 

disease measures and total outlier count. 

In the PD and DLB groups, one participant in each group had a markedly larger number of 

total outliers than the other participants in the same group, with 45 and 50 total outliers 

respectively. Though biologically plausible and not erroneously measured, we performed an 

additional sensitivity analysis by testing the association of total outlier counts with cognitive 

measures without these individuals included. In the DLB group, the effects of greater total 

outlier count with poorer composite cognitive score ((β=-0.94 (SE=0.51); t=-1.83; P=0.078) 

and MoCA (β=-0.33 (SE=0.16); t=-2.01; P=0.053) were weakened, and were now below the 

level of statistical significance. In the PD group, the significant association with the Hooper 

Visual Organisation Test (β=-0.38 (SE=0.15); t=-2.59; P=0.011) remained (Supplementary 

Figure 2). 

Group-level cortical thickness analysis is less sensitive to differences in cortical atrophy 

between groups 

A conventional GLM approach using Monte Carlo correction for multiple comparisons, 

thresholded to significance level of P<0.05, did not find any significant clusters of differences 

in cortical thickness between high and low visual performers in PD. Comparing the overall 

PD group with DLB, there were two significant clusters in the left precentral region and one 

significant cluster in both the superior frontal and precentral regions on the right, signifying 
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reduced cortical thickness in DLB compared with PD in these regions (Supplementary 

Table 2). 

Discussion  

We used neuroanatomical normative modelling to examine heterogeneity in brain atrophy at 

the level of the individual in PD and DLB to reveal new insights into patterns of brain 

atrophy in these conditions. Strikingly, we found limited overlap of outlier patterns in both 

PD and DLB, with increased inter-individual dissimilarity and more widespread outlier 

patterns in low compared to high visual performers with PD, and in DLB compared to the 

overall PD group. We also found that the total outlier count was significantly higher in 

patients at higher risk of developing dementia (revealed by low visual performance), 

compared to PD patients who were high visual performers (and therefore at low risk of 

dementia). Patients with DLB showed higher total outlier counts than patients with PD 

overall. Finally, total outlier count was significantly associated with severity of clinically 

relevant cognitive measures in both PD and DLB. Overall, this suggests that the total outlier 

count derived from neuroanatomical normative modelling may have utility as a novel 

neuroimaging measure in Parkinson’s and DLB. 

Importantly, we were able to detect differences in the total outlier count, especially between 

dementia risk groups in Parkinson’s, where more conventional group-level GLM analysis of 

regional cortical thicknesses could not detect group differences. This is because the total 

outlier count is agnostic to the regional location of cortical atrophy, whereas GLM 

approaches require cortical atrophy to be in similar locations between individuals. In 

conditions such as Parkinson’s and Lewy Body Disorders, where there are greater inter-
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individual differences in patterns of atrophy [3, 41], the total outlier count is likely to be a 

more sensitive measure of overall cortical atrophy. 

We were able to detect these differences in total outlier count in patients at different stages in 

progression to dementia, in a Parkinson’s at-risk group (where patients did not yet have 

dementia); as well as in DLB. This suggests that measures such as the total outlier count, and 

approaches such as neuroanatomical normative modelling may have clinical utility as a 

prognostic neuroimaging measure of the risk of disease progression in Lewy body disorders, 

as has been shown in Alzheimer’s disease previously [13, 14]. Importantly for its potential 

application in clinical contexts, the total outlier count can be calculated based on cortical 

thicknesses and subcortical volume read-outs generated by applying an automated software 

pipeline, available in the FreeSurfer package, to structural T1w-MRI data. Total outlier count 

has the added potential of being a translational, cost-effective, and generalisable 

neuroimaging measure as T1w-MRI is routinely collected in clinical practice.  

Higher total outlier count was significantly associated with lower composite cognitive score 

and the MoCA in DLB but not a lower score on a measure of visuoperceptual processing. In 

contrast, in PD, we did not find a relationship between cognitive scores and the total outlier 

count; whereas we did find a relationship between total outlier count and visuoperception. It 

is possible that the lack of a linear relationship between cognitive measures and the total 

outlier count in PD was due to ceiling effects in the MoCA and combined cognitive scores. 

On the other hand, the Hooper test of visual organisation, which measures visuoperception, 

may be a particularly sensitive measure of cognitive impairment in PD because 

visuoperceptual ability (together with visuospatial deficits) are early and key cognitive 

domains affected in PD [42, 43]. As a result, this measure may be less prone to ceiling 

effects. Our findings are in keeping with previous work that showed an association of higher 
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total outlier count with worse cognitive performance in memory and executive functioning 

domains across participants with AD and mild cognitive impairment as well as healthy 

controls [14].  

There was increased inter individual heterogeneity in low compared to high visual performers 

with PD, and in DLB compared to PD. In both comparisons, the group associated with poorer 

cognitive functioning showed increased heterogeneity. This is consistent with previous work 

that found increased heterogeneity in Alzheimer’s compared to mild cognitive impairment 

and controls [14]. The differences between PD and DLB may relate to greater cortical 

involvement in DLB [44]. Our work is the first to objectively quantify inter individual 

heterogeneity in atrophy measures in PD and DLB and highlights the challenges associated 

with interpretation of group level analyses in neurodegenerative disorders which fail to 

address this. 

There are some limitations associated with this work. Firstly, the reference normative model 

does not factor in biological differences in neuroanatomy influenced by ethnicity, and we 

have not adjusted for this in our analyses as this data was not available. This limits the 

generalisability of our findings to broader populations. An aspiration for the development of 

future reference normative models will be to better capture intrinsic biological differences in 

brain atrophy driven by ethnicity. Secondly, whilst the total outlier count metric has potential 

utility as a neuroimaging biomarker, outliers were calculated as cortical thickness z-scores <-

1.96. Therefore, this metric may fail to capture lesser degrees of cortical neurodegeneration 

which are potentially relevant but do not reach the threshold required to be classed as an 

outlier. A further limitation is that there are inherent differences between sites from which 

DLB participant data was collected. The data from the UCL site was collected in a bespoke 

prospective fashion with our study aims in mind, whereas the NACC data is from a large 
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relational database. This meant that some relevant data for our work relating to 

neuropsychological testing and clinical features were unavailable. Though there were no 

significant age and sex differences between these subgroups, the participants from the NACC 

site had significantly increased total outlier counts, which may suggest a more advanced 

disease stage. This may in part be due to differences in study inclusion criteria between sites, 

as well as testing demands on participants at the UCL site, leading to possible selection bias 

of those who are less functionally impaired at the UCL site. 

Future work should also be adequately powered to capture individual level differences in 

DLB subgroups and to investigate whether there are different patterns of heterogeneity and 

total outlier counts between such subgroups. This could include, for example, DLB patients 

who are depressed versus non-depressed. Additionally, longitudinal data would enable 

individual z-score trajectories to be evaluated over time and this could be crucial in 

confirming the utility of the total outlier count as a prognostic measure; and as a measure of 

disease progression.  

Conclusion 

We used neuroanatomical normative modelling to examine differences in brain atrophy 

patterns between PD patients with good and poor vision, who are in differing risk groups for 

PD dementia, and between patients with PD and DLB. We showed that PD patients with poor 

visual function have a greater degree of loss of cortical thickness and subcortical volumes, 

measured as total outlier counts; and that patients with DLB had greater total outlier count 

than those with PD. We further showed that total outlier count was significantly associated 

with global cognitive performance in DLB; and with visuoperception in PD. 

Neuroanatomical normative modelling is therefore a useful approach for degenerative 

conditions such as PD and DLB with more variable patterns of atrophy and one of the key 
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metrics that is derived, the total outlier count, holds significant promise as a clinically useful 

measure of disease progression.  

 

Author Contributions 

Rohan Bhome, Rimona S Weil and James H Cole conceived the study. Rohan Bhome, 

Ivelina Dobreva and Naomi Hannaway collected data. Rohan Bhome, Serena Verdi, Sophie 

A Martin, Neil P Oxtoby and Gonzalo Castro Leal contributed to data processing and      

statistical analysis. Rohan Bhome wrote the first draft of the manuscript and all authors edited 

and agreed to the final version of the manuscript. 

 

Acknowledgements 

The authors thank all the participants for their time.  

Rohan Bhome. is supported by a Wolfson-Eisai Clinical Research Training Fellowship.      

Naomi Hannaway is supported by a grant by the Rosetrees and Stoneygate Trusts. Neil P 

Oxtoby and Gonzalo Castro Leal acknowledge support from a UKRI Future Leaders 

Fellowship (MR/S03546X/1) and the National Institute for Health Research University 

College London Hospitals Biomedical Research Centre. A.F. Marquand gratefully 

acknowledges funding from the Dutch Organization for Scientific Research via a VIDI 

fellowship (grant number 016.156.415). Rimona S Weil is supported by a Wellcome Clinical 

Research Career Development Fellowship (205167/Z/16/Z).   

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 4, 2023. ; https://doi.org/10.1101/2023.08.01.23293480doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.01.23293480
http://creativecommons.org/licenses/by/4.0/


27 

 

The NACC database is funded by NIA/NIH Grant U24 AG072122. NACC data are 

contributed by the NIA-funded ADRCs: P30 AG062429 (PI James Brewer, MD, PhD), P30 

AG066468 (PI Oscar Lopez, MD), P30 AG062421 (PI Bradley Hyman, MD, PhD), P30 

AG066509 (PI Thomas Grabowski, MD), P30 AG066514 (PI Mary Sano, PhD), P30 

AG066530 (PI Helena Chui, MD), P30 AG066507 (PI Marilyn Albert, PhD), P30 AG066444 

(PI John Morris, MD), P30 AG066518 (PI Jeffrey Kaye, MD), P30 AG066512 (PI Thomas 

Wisniewski, MD), P30 AG066462 (PI Scott Small, MD), P30 AG072979 (PI David Wolk, 

MD), P30 AG072972 (PI Charles DeCarli, MD), P30 AG072976 (PI Andrew Saykin, PsyD), 

P30 AG072975 (PI David Bennett, MD), P30 AG072978 (PI Neil Kowall, MD), P30 

AG072977 (PI Robert Vassar, PhD), P30 AG066519 (PI Frank LaFerla, PhD), P30 

AG062677 (PI Ronald Petersen, MD, PhD), P30 AG079280 (PI Eric Reiman, MD), P30 

AG062422 (PI Gil Rabinovici, MD), P30 AG066511 (PI Allan Levey, MD, PhD), P30 

AG072946 (PI Linda Van Eldik, PhD), P30 AG062715 (PI Sanjay Asthana, MD, FRCP), 

P30 AG072973 (PI Russell Swerdlow, MD), P30 AG066506 (PI Todd Golde, MD, PhD), 

P30 AG066508 (PI Stephen Strittmatter, MD, PhD), P30 AG066515 (PI Victor Henderson, 

MD, MS), P30 AG072947 (PI Suzanne Craft, PhD), P30 AG072931 (PI Henry Paulson, MD, 

PhD), P30 AG066546 (PI Sudha Seshadri, MD), P20 AG068024 (PI Erik Roberson, MD, 

PhD), P20 AG068053 (PI Justin Miller, PhD), P20 AG068077 (PI Gary Rosenberg, MD), 

P20 AG068082 (PI Angela Jefferson, PhD), P30 AG072958 (PI Heather Whitson, MD), P30 

AG072959 (PI James Leverenz, MD). 

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 4, 2023. ; https://doi.org/10.1101/2023.08.01.23293480doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.01.23293480
http://creativecommons.org/licenses/by/4.0/


28 

 

Conflict of interest 

R.Bhome, S. Verdi,  S.A. Martin, N. Hannaway, I. Dobreva, N.P. Oxtoby G.Castro Leal, S. 

Rutherford and A.F Marquand report no disclosures relevant to the manuscript. 

R.S. Weil has received speaker honoraria from GE Healthcare, consulting fees from 

Therakind, and honoraria from Britannia.      

J.H. Cole is a scientific consultant to and shareholder in BrainKey and Claritas HealthTech. 

 

  

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 4, 2023. ; https://doi.org/10.1101/2023.08.01.23293480doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.01.23293480
http://creativecommons.org/licenses/by/4.0/


29 

 

References 

1. McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor JP, Weintraub D, et al. Diagnosis 

and management of dementia with Lewy bodies Fourth consensus report of the DLB Consortium. 

Neurology. 2017;89(1):88-100. 

2. Williams-Gray CH, Mason SL, Evans JR, Foltynie T, Brayne C, Robbins TW, et al. The 

CamPaIGN study of Parkinson's disease: 10-year outlook in an incident population-based cohort. J 

Neurol Neurosurg Psychiatry. 2013;84(11):1258-64. 

3. Weil RS, Hsu JK, Darby RR, Soussand L, Fox MD. Neuroimaging in Parkinson's disease 

dementia: connecting the dots. Brain Commun. 2019;1(1):fcz006. 

4. Oppedal K, Ferreira D, Cavallin L, Lemstra AW, Ten Kate M, Padovani A, et al. A signature 

pattern of cortical atrophy in dementia with Lewy bodies: A study on 333 patients from the European 

DLB consortium. Alzheimers Dement. 2019;15(3):400-9. 

5. Weintraub D, Dietz N, Duda JE, Wolk DA, Doshi J, Xie SX, et al. Alzheimer's disease 

pattern of brain atrophy predicts cognitive decline in Parkinson's disease. Brain. 2012;135(Pt 1):170-

80. 

6. Lee JE, Cho KH, Song SK, Kim HJ, Lee HS, Sohn YH, et al. Exploratory analysis of 

neuropsychological and neuroanatomical correlates of progressive mild cognitive impairment in 

Parkinson's disease. J Neurol Neurosurg Psychiatry. 2014;85(1):7-16. 

7. Gasca-Salas C, Garcia-Lorenzo D, Garcia-Garcia D, Clavero P, Obeso JA, Lehericy S, et al. 

Parkinson's disease with mild cognitive impairment: severe cortical thinning antedates dementia. 

Brain Imaging Behav. 2019;13(1):180-8. 

8. Cohen-Mansfield J. Heterogeneity in dementia: challenges and opportunities. Alzheimer Dis 

Assoc Disord. 2000;14(2):60-3. 

9. Verdi S, Marquand AF, Schott JM, Cole JH. Beyond the average patient: how neuroimaging 

models can address heterogeneity in dementia. Brain. 2021;144(10):2946-53. 

10. Marquand AF, Rezek I, Buitelaar J, Beckmann CF. Understanding Heterogeneity in Clinical 

Cohorts Using Normative Models: Beyond Case-Control Studies. Biol Psychiatry. 2016;80(7):552-61. 

11. Marquand AF, Kia SM, Zabihi M, Wolfers T, Buitelaar JK, Beckmann CF. Conceptualizing 

mental disorders as deviations from normative functioning. Mol Psychiatry. 2019;24(10):1415-24. 

12. Rutherford S, Fraza C, Dinga R, Kia SM, Wolfers T, Zabihi M, et al. Charting brain growth 

and aging at high spatial precision. Elife. 2022;11. 

13. Verdi S, Rutherford S, Fraza C, Tosun D, Altmann A, Raket LL, et al. Personalising 

Alzheimer’s Disease progression using brain atrophy markers. medRxiv. 2023:2023.06.15.23291418. 

14. Verdi S, Kia SM, Yong KXX, Tosun D, Schott JM, Marquand AF, et al. Revealing Individual 

Neuroanatomical Heterogeneity in Alzheimer Disease Using Neuroanatomical Normative Modeling. 

Neurology. 2023. 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 4, 2023. ; https://doi.org/10.1101/2023.08.01.23293480doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.01.23293480
http://creativecommons.org/licenses/by/4.0/


30 

 

15. Flavia L, Serena V, Seyed Mostafa K, Aleksandar D, Haneen H, Anna F, et al. Examining 

real-world Alzheimer’s disease heterogeneity using neuroanatomical normative modelling. medRxiv. 

2022:2022.11.02.22281597. 

16. Scheltens P, Korf ES. Contribution of neuroimaging in the diagnosis of Alzheimer's disease 

and other dementias. Curr Opin Neurol. 2000;13(4):391-6. 

17. Mak E, Su L, Williams GB, O'Brien JT. Neuroimaging characteristics of dementia with Lewy 

bodies. Alzheimers Res Ther. 2014;6(2):18. 

18. Zarkali A, McColgan P, Leyland LA, Lees AJ, Weil RS. Visual Dysfunction Predicts 

Cognitive Impairment and White Matter Degeneration in Parkinson's Disease. Mov Disord. 

2021;36(5):1191-202. 

19. Hannaway N, Zarkali A, Leyland LA, Bremner F, Nicholas JM, Wagner SK, et al. Visual 

dysfunction is a better predictor than retinal thickness for dementia in Parkinson's disease. J Neurol 

Neurosur Ps. 2023. 

20. Beekly DL, Ramos EM, Lee WW, Deitrich WD, Jacka ME, Wu J, et al. The National 

Alzheimer's Coordinating Center (NACC) database: the Uniform Data Set. Alzheimer Dis Assoc 

Disord. 2007;21(3):249-58. 

21. Daniel SE, Lees AJ. Parkinson's Disease Society Brain Bank, London: overview and research. 

J Neural Transm Suppl. 1993;39:165-72. 

22. Weil RS, Pappa K, Schade RN, Schrag AE, Bahrami B, Schwarzkopf DS, et al. The Cats-

and-Dogs test: A tool to identify visuoperceptual deficits in Parkinson's disease. Mov Disord. 

2017;32(12):1789-90. 

23. Weil RS, Schwarzkopf DS, Bahrami B, Fleming SM, Jackson BM, Goch TJC, et al. 

Assessing cognitive dysfunction in Parkinson's disease: An online tool to detect visuo-perceptual 

deficits. Mov Disord. 2018;33(4):544-53. 

24. Hamedani AG, Abraham DS, Maguire MG, Willis AW. Visual Impairment Is More Common 

in Parkinson's Disease and Is a Risk Factor for Poor Health Outcomes. Movement Disord. 

2020;35(9):1542-9. 

25. Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I, et al. The 

Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am 

Geriatr Soc. 2005;53(4):695-9. 

26. Hoops S, Nazem S, Siderowf AD, Duda JE, Xie SX, Stern MB, et al. Validity of the MoCA 

and MMSE in the detection of MCI and dementia in Parkinson disease. Neurology. 

2009;73(21):1738-45. 

27. Dalrymple-Alford JC, MacAskill MR, Nakas CT, Livingston L, Graham C, Crucian GP, et al. 

The MoCA Well-suited screen for cognitive impairment in Parkinson disease. Neurology. 

2010;75(19):1717-25. 

28. Stroop JR. Studies of interference in serial verbal reactions. J Exp Psychol. 1935;18:643-62. 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 4, 2023. ; https://doi.org/10.1101/2023.08.01.23293480doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.01.23293480
http://creativecommons.org/licenses/by/4.0/


31 

 

29. Lezak MD. Verbal Fluency. In: Lezak M.D. HDBaLDW, editor. Neuropsychological 

assessment. UK: Oxford University Press; 2004. 

30. Warrington EK. Recognition Memory Test: Manual. Berkshire, UK: NFER-Nelson; 1984. 

31. Hooper HE. The Hooper Visual Organization Test manual. Los Angeles, USA: Western 

Psychological Services; 1958. 

32. Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, et al. 

Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale 

(MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008;23(15):2129-70. 

33. Papapetropoulos S, Katzen H, Schrag A, Singer C, Scanlon BK, Nation D, et al. A 

questionnaire-based (UM-PDHQ) study of hallucinations in Parkinson's disease. BMC Neurol. 

2008;8:21. 

34. Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand. 

1983;67(6):361-70. 

35. Destrieux C, Fischl B, Dale A, Halgren E. Automatic parcellation of human cortical gyri and 

sulci using standard anatomical nomenclature. Neuroimage. 2010;53(1):1-15. 

36. Bayer JMM, Dinga R, Kia SM, Kottaram AR, Wolfers T, Lv J, et al. Accommodating site 

variation in neuroimaging data using normative and hierarchical Bayesian models. Neuroimage. 

2022;264:119699. 

37. Fraza CJ, Dinga R, Beckmann CF, Marquand AF. Warped Bayesian linear regression for 

normative modelling of big data. Neuroimage. 2021;245:118715. 

38. Kia SM, Huijsdens H, Rutherford S, de Boer A, Dinga R, Wolfers T, et al. Closing the life-

cycle of normative modeling using federated hierarchical Bayesian regression. PLoS One. 

2022;17(12):e0278776. 

39. Hamming RW. Numerical methods for scientists and engineers. Second, ed2018. 

40. Mowinckel AM, Vidal-Piñeiro D. Visualization of Brain Statistics With R Packages ggseg 

and ggseg3d. Advances in Methods and Practices in Psychological Science. 2020;3(4):466-83. 

41. Lanskey JH, McColgan P, Schrag AE, Acosta-Cabronero J, Rees G, Morris HR, et al. Can 

neuroimaging predict dementia in Parkinson's disease? Brain. 2018;141:2545-60. 

42. Chastan N, Bair WN, Resnick SM, Studenski SA, Decker LM. Prediagnostic markers of 

idiopathic Parkinson's disease: Gait, visuospatial ability and executive function. Gait Posture. 

2019;68:500-5. 

43. Curtis AF, Masellis M, Camicioli R, Davidson H, Tierney MC. Cognitive profile of non-

demented Parkinson's disease: Meta-analysis of domain and sex-specific deficits. Parkinsonism Relat 

Disord. 2019;60:32-42. 

44. Tsuboi Y, Dickson DW. Dementia with Lewy bodies and Parkinson's disease with dementia: 

are they different? Parkinsonism Relat Disord. 2005;11 Suppl 1:S47-51. 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 4, 2023. ; https://doi.org/10.1101/2023.08.01.23293480doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.01.23293480
http://creativecommons.org/licenses/by/4.0/


32 

 

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 4, 2023. ; https://doi.org/10.1101/2023.08.01.23293480doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.01.23293480
http://creativecommons.org/licenses/by/4.0/

	Abstract
	Introduction
	Methods
	Participants
	Clinical assessment
	MRI acquisition and processing
	Reference normative dataset
	Applying neuroimaging normative modelling to the study data
	Statistical Analysis
	Total outlier count
	Measuring dissimilarity within and between groups
	Association of total outlier count and clinical features
	Potential outliers in total outlier count measure
	Conventional cortical thickness analysis


	Results
	Participants
	Differences in total outlier count between DLB and PD
	Heterogeneity in patterns of outliers found between PD at-risk of dementia groups and between DLB and PD
	Total outlier counts are associated with cognitive performance in DLB and with visuospatial processing in PD
	Group-level cortical thickness analysis is less sensitive to differences in cortical atrophy between groups

	Discussion
	Conclusion

	Author Contributions
	Acknowledgements
	Rohan Bhome. is supported by a Wolfson-Eisai Clinical Research Training Fellowship.      Naomi Hannaway is supported by a grant by the Rosetrees and Stoneygate Trusts. Neil P Oxtoby and Gonzalo Castro Leal acknowledge support from a UKRI Future Leader...

	Conflict of interest
	References

