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Abstract 

Background: Surveillance of communicable diseases typically relies on case counts for 

estimates of risk, and counts can be strongly influenced by testing rates.  In the 

Canadian province of Ontario, testing rates varied markedly by age, sex, geography 

and time over the course of the SARS-CoV-2 pandemic.  We applied a standardization-

based approach to test-adjustment to better understand pandemic dynamics from 

2020 to 2022, and to better understand when test-adjustment is necessary for 

accurate estimation of risk. 

Methods: SARS-CoV-2 case counts by age, sex, public health unit and week were 

obtained from Ontario’s Case and Contact Management system (CCM), which includes 

all SARS-CoV-2 cases from March 2020 to August 2022.  Complete data on testing 

volumes was obtained from the Ontario Laboratory Information System (OLIS).  Case 

counts were adjusted for under-testing using a previously published standardization-

based approach that estimates case numbers that would have been expected if the 

entire population was tested at the same rate as most-tested age and sex 

groups.  Logistic regression was used to identify threshold testing rates beyond which 

test-adjustment was unnecessary. 

Results:  Testing rates varied markedly by age, sex, public health unit and pandemic 

wave.  After adjustment for under-testing, overall case counts increased 

threefold.  Adjusted epidemic curves suggested, in contrast to reported case counts, 

that the first two pandemic waves were equivalent in size, and that there were three 

distinct pandemic waves in 2022, due to the emergence of Omicron variants.  Under-

reporting was greatest in children and young males, and varied significantly across 

public health units, with variation explained partly by testing rates and prevalence of 

multigenerational households.  Test adjustment resulted in little change in the 
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epidemic curve during pandemic waves when testing rates were highest; we found that 

test-adjustment did not increase case counts once weekly per capita testing rates 

exceeded 6.3%. 

Conclusions: Standardization-based adjustment for differential testing by age and 

sex, and for dynamic changes in testing over time, results in a different picture of 

infection risk during the SARS-CoV-2 pandemic in Ontario; test-adjusted epidemic 

curves are concordant with observed patterns of mortality during the pandemic and 

have face validity.  This methodology offers an alternative to sero-epidemiology for 

identification of true burden of infection when reinfection, sero-reversion, and non-

specificity of serological assays make sero-epidemiology challenging. 
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Introduction 

The 2019 emergence of SARS-CoV-2 resulted in a global pandemic with severe 

impacts on mortality, life expectancy, population health status, and economies (1-9).  

While the pandemic qua pandemic appears to have subsided, this highly virulent 

airborne pathogen remains endemic worldwide.  The true impact of the pandemic on 

population health continues to be debated, as does the likely impact of the virus’ 

ongoing endemic circulation.  Understanding the pathogen’s impact depends on a 

clear vision of disease epidemiology, which in turn depends on accurate analysis of 

public health surveillance data. 

Early in the pandemic we observed that the estimated incidence of SARS-CoV-2 

infection in Ontario, Canada, was strongly predicted by frequency of PCR testing; in 

other words, groups such as older adults, who were tested more intensively, appeared 

to have higher SARS-CoV-2 incidence than groups tested less frequently (such as 

young males and children of both sexes) (10).  We developed a simple, regression-

based approach that permitted adjustment for testing frequency, such that it became 

possible to estimate the incidence of infection that would have been observed in a 

given age/sex group had it been tested at the same rates as the most highly tested 

population group.  We found that adjusting for test frequency resulted in a very 

different view of the pandemic; one in which younger individuals (and in particular, 

males aged 20-29) represented a far larger share of infections than was observable in 

unadjusted data (10). 

Our earlier analysis was restricted to the period from initial SARS-CoV-2 

emergence in Ontario (which we dated to March 2020, when community transmission 

was first recognized) to December 2020 (10).  However, this early period preceded the 

widespread emergence of novel viral variants of concern (VOC) and use of vaccination 
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to control the pandemic.  Indeed, Mitchell et al. have divided Canada’s SARS-CoV-2 

into six distinct periods based on dominant circulating VOC and disease incidence, an 

approach which also partially captures the timing of SARS-CoV-2 vaccine roll-out in 

Canada (11). 

Our objectives were: to extend our earlier analysis, to evaluate the differences 

between epidemic curves generated using unadjusted and test-adjusted case counts, 

both for the pandemic overall and for distinct, individual waves that occurred between 

March 2020 and September 2022; and to generate age- and sex-specific epidemic 

curves, to quantify the degree to which cases are likely to have been under-recognized 

due to under-testing in different age and sex groups.  We also sought to identify 

testing thresholds above which test adjustment made little difference to perceived 

epidemic activity. 
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Data Sources 

We evaluated disease incidence using population-based SARS-CoV-2 infection 

data from the Ontario Case and Contact Management System (CCM), a data system 

used by Ontario’s 34 public health units for public health management of notifiable 

diseases (10).  The case definition for SARS-CoV-2 during the period under evaluation 

required a positive nucleic acid amplification test assay (e.g., real time PCR) from an 

accredited laboratory (12).  CCM included data on age (10-year intervals) and sex of 

case patients and date a positive SARS-CoV-2 PCR was reported; as this last data 

element was complete, we used it as a surrogate for case date (10). Laboratory testing 

volumes were obtained from the Ontario Laboratories Information System (OLIS), 

which includes testing and reporting dates for all PCR tests performed in the province, 

including tests performed in the public health laboratory system, hospital system and 

private laboratories.  As such OLIS is believed to be a complete record of SARS-CoV-2 

PCR testing in Ontario during the period under study. We counted the first test record 

when a person had multiple tests on a given day; however, subsequent testing of that 

person could be incorporated into test counts (10).  

Classification of Waves 

We classified the SARS-CoV-2 pandemic in Ontario by slightly modifying the 

approach of Mitchell et al., who identified six distinct waves based on disease activity 

and  dominant circulating viral variant of concern: waves 1 and 2 (wild-type dominant, 

with wave 1 ending on August 31, and wave 2 from September 1 2020 to February 28, 

2021; wave 3 (mixed Alpha/Beta/Gamma variants, March 1 to June 30, 2021); wave 4 

(Delta variant dominant, from July 1 to December 25, 2021); and Omicron dominant 

waves 5 and 6 (from December 26 2021 to March 19, 2022, and after March 20, 2022, 
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respectively) (11).  For each of these waves, we evaluated overall per capita testing by 

age and sex, and identified the most tested group during each wave. 

Adjustment for Under-testing 

We used meta-regression-based methods to adjust case counts in other age and 

sex groups for under-testing, estimating the case rates that would have been expected 

if these groups were tested at the same rate the most tested group.  This method is 

described in detail elsewhere (10), but briefly requires that a standardized infection 

ratio (SIR), and standardized testing ratio (STR), be estimated weekly, by public health 

unit, for each age- and sex-group, with incidence and testing rates in the most tested 

group used in the denominator of these ratios.  For most waves, the most tested group 

was females aged 80 and over; however, for wave 4, the most tested group was male 

children under 10 years of age, and this group was used as the referent for that 

period. 

Using wave-specific SIR and STR, it is possible to create age- and sex-specific 

meta-regression models using log-transformed of i age and sex groups, E(ln(SIRi)) = a + 

b(ln(STRi)).  As ln(STRi) is zero when a given age and sex group is tested at the same 

rate as the most tested group, the model intercept a can be interpreted as the 

standardized infection ratio that would be expected in the presence of equal testing.  

This SIR can then be multiplied by observed infection incidence in the most tested 

group, to generate an estimate of test-adjusted incidence.  Weekly test-adjusted case 

estimates by age and sex for each public health unit were generated in this way.  

Overall test-adjusted epidemic curves were created by summing adjusted case 

numbers. 

Analysis 
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We compared the crude epidemic curve for Ontario, and test-adjusted epidemic 

curves graphically, and we also evaluated the ratio of reported cases to test-adjusted 

case estimates by age group, sex, public health unit, and time period.  We denoted 

this ratio a “reporting ratio” (denoted ReR to avoid confusion with “relative risk”).  As 

overall ReR were < 1 (i.e., test-adjusted cases exceeded reported cases we calculated 

the standard error of ln(URR) as the square root of ((1/reported cases)+(1/(test-

adjusted cases - reported cases))).   

We quantified the relative magnitude of ReR by age, sex, period and public 

health unit, and evaluated statistical significance for differences between groups, 

using negative binomial regression models, using reported cases as the dependent 

variable, and adjusted case estimates as model offsets.  Models included linear, 

quadratic and cubic time trend terms, as well as fast Fourier transforms (FFT) to 

capture disease seasonality.  Age groups were treated as indicator variables, with the 

oldest age group (80+) used as the referent.  Public health units were also included as 

indicator variables, with the public health unit with the median ReR (Kingston) used 

as the referent.  Interaction between age and sex was evaluated using multiplicative 

interaction terms.  Such a model produces “incidence rate ratios” which can be 

interpreted as a relative ReR (RReR) by age, sex, period, etc.   

Heterogeneity in reporting ratios across public health units was evaluated using 

meta-analytic methods, with meta-regression used to quantify the extent to which 

such heterogeneity could be explained by variation in test rates, health resources, 

vaccine uptake, urbanicity, and socioeconomic and demographic characteristics of 

public health units.  We used non-long-term care hospital beds per capita for each 

public health unit as a surrogate for local health resources; these were obtained from 

the Canadian Institute for Health Information (13).  Vaccination coverage was defined 
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as total cumulative SARS-CoV-2 vaccine doses per capita over the period under study; 

vaccination data were obtained from COVAXON as described elsewhere (14, 15).  

Urbanicity effect was evaluated by comparing effects within the “Greater 

Toronto/Hamilton Area” (GTHA), the province’s largest population concentration, to 

effects outside the GTHA.  Socioeconomic and demographic characteristics of each 

public health unit were obtained from Statistics Canada’s 2021 Census data (16); 

these included mean population age; proportion of population over age 64; proportion 

of multigenerational households; income inequality (Gini coefficient based on after tax 

household income); percent visible minorities; percent of residents identifying as 

Indigenous; percent of residents who are new immigrants; percent of residents who 

own a home; unemployment rate; proportion of residents with low income; median 

after tax household income; proportion of residents with educational attainment less 

than high school graduation; and proportion of residents who are Canadian citizens.  

The associations between each of these public health unit-level characteristics and 

reporting ratios were evaluated with univariable meta-regression models; factors with 

P < 0.20 were evaluated in a multivariable meta-regression model built using 

backwards elimination. 

We noted that although adjusted case counts were, overall, higher than crude 

case counts, test adjustment resulted in little change in the overall epidemic curve 

during periods when testing rates were high, and in some age- and sex- groups, and 

time periods adjusted case counts were, in fact, lower than crude reported case 

counts.  We evaluated the relationship between this phenomenon (test adjustment 

resulting in decreased cases counts) and group-specific testing rates using logistic 

regression models.  All analyses were performed in Stata version 15.  The study was 

approved by the Research Ethics Board of the University of Toronto. 
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Results 

Between March 1, 2020 and September 4, 2022, 22.82 million PCR tests were 

performed for SARS-CoV-2 in the province of Ontario with 1,377,146 (6.03%) of these 

tests positive.  Testing rates varied over time, with two distinct peaks: from December 

2020 to March 2021, when per capita test rates were above 2% per week; and in 

December 2021 and January 2022, when per capita testing rates approached 3% per 

week (Figure 1.A.).  Females aged 80 and over were the most-tested group over the 

study time period and were tested at a rate of 2.7% per week; males aged 10-19 were 

tested at the lowest rates (0.7% per week) (Figure 1.B.).  When we evaluated testing by 

age and sex for each pandemic wave, we found that for 5 of 6 identified waves, females 

aged 80 and over were the most tested group; however, for wave 4 (Delta-variant 

dominant) the most tested group was males aged < 10 years (Figure 1.C.). 

After adjustment for under-testing based on most-tested group in each wave, 

we were able to construct a test-adjusted epidemic curve and compare it graphically to 

the reported epidemic curve.  Test adjustment resulted in a different appearance to the 

epidemic curve at the beginning and end of the pandemic, when testing per capita was 

at its lowest (Figure 2.A.).  In particular, the first wave of the pandemic in spring 

2020, and the second wave that autumn, appeared equivalent in magnitude after test 

adjustment.  Test adjustment also markedly increased the apparent magnitude of the 

first wave caused by Omicron variant emergence and identified two subsequent large 

waves of infection caused by Omicron in spring and summer of 2022.  By contrast, 

test-adjusted and unadjusted curves, for the mid-pandemic period when testing was 

most intense, were almost identical.  Graphical comparison of the test adjusted 

epidemic curve to a plot of SARS-CoV-2 attributed deaths by week appeared to provide 

validation for the test-adjusted epidemic curve, with almost identical magnitudes in 
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spring and autumn 2020 (waves 1 and 2 respectively), and three distinct waves of 

mortality after Omicron variant emergence (Figure 2B). 

Directly calculated ReR by age, sex, and time-period are presented graphically 

in Appendix Figure 1; ReR were highest in females aged 20-59 but below 1 in all age 

and sex groups.  ReR approached 1 during the third and fourth pandemic waves.  

Negative binomial models identified significant (P < 0.001) interaction between age 

group and sex in relative under-reporting, with relative ReR higher (i.e., closer to 1) in 

females than in males.  Patterns of relative reporting, adjusted for age, sex, period and 

geography, were similar in negative binomial models to patterns identified via 

calculation of crude ReR (Table 1). 

Overall, ReR across public health units ranged from 0.11 (in Timiskaming) to 

0.69 (in Peel); the overall pooled ReR was 0.31, with significant heterogeneity (P < 

0.001) (Figure 3 and Appendix Figure 2).  In univariable meta-regression models, 

testing rate, fraction of multigenerational households, percent of population 

identifying as Indigenous, and non-long term care hospital beds per capita were each 

associated with URR with P < 0.20.  Only testing rate and multi-generational 

households remained in our final multivariable meta-regression model due to our use 

of backwards elimination.  We found that each percentage increase in the proportion 

of the population tested resulted in a 2.55-fold increase in the ReR, while each 

percentage increase in multigenerational households resulted in a 1.08-fold increase 

in ReR (Table 2 and Appendix Figure 3). 

We evaluated the relationship between adjusted case counts equal to, or lower 

than, crude reported case counts and testing rates using logistic regression.  For every 

one percent increase in per capita weekly testing, the odds of adjusted case counts 

being less than or equal to crude case counts increased by 39% (95% CI 37% to 41%, 
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P < 0.001).  The weekly per capita test rate at which adjusted case counts were equally 

likely to be higher or lower than reported case counts was 6.26% (95% CI 6.08% to 

6.47%) (Figure 4). 
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Discussion 

 While case counts are the mainstay of public health surveillance systems, it is 

often forgotten that case counts are heavily influenced by testing volume.  The 

tendency to focus testing on individuals and groups at highest risk for severe 

outcomes during the SARS-CoV-2 pandemic led us to develop a standardization-based 

approach to test adjustment, which captures non-linear relationships between testing 

rates and case rates, by indexing them to incidence in highly tested age and sex 

groups (10).  In applying this method across the duration of the SARS-CoV-2 

pandemic in Ontario, we find that test-adjustment results in a changed picture of risk 

during the pandemic, particularly during early and late pandemic periods when test 

volumes were low. 

 Notably, we found that the apparent differences in the magnitude of the first 

two pandemic waves likely reflected changing testing volumes rather than changing 

disease epidemiology, consistent with the similarity in mortality associated with each 

of these waves.  Test adjustment also made it clear that Ontario experienced three 

distinct waves of illness due to Omicron variants (BA1, BA4, and BA5) from winter to 

summer of 2022.  The latter two waves were obscured by falling testing rates from 

January 2022 onwards, but again, the test-adjusted epidemic curve is consistent with 

three distinct waves of SARS-CoV-2 death present in Ontario’s data. 

 We found that testing rates resulted in substantial heterogeneity in the extent 

to which cases were under-reported by age-group and sex.  Overall, cases in females 

were more likely to be identified than cases in males, not only because of intensive 

testing in the oldest females who represented the majority population in the province’s 

long-term care facilities.  We also found that there was less under-reporting in younger 
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adult females (ages 20 to 59), which may reflect different health (17), but may also 

reflect the demographics of Ontario’s female-majority healthcare workforce.  By 

contrast, reporting ratios were notably low in children and younger male adults over 

the study period, despite higher rates of testing in schools in pandemic wave 4, 

suggesting that infection was under-recognized in these groups.   

We also found considerable heterogeneity in under-reporting by health units; 

this heterogeneity was partially explained by variation in testing rates across health 

units, but increased prevalence of multi-generational households in a health unit was 

also associated with a significant narrowing of the gap between reported and test-

adjusted case counts.  This finding has considerable face validity: if public health 

practice throughout the pandemic was to advise testing of household contacts of 

SARS-CoV-2 cases, occurrence of cases in multi-generational households would, by 

definition, have resulted in enhanced testing across age groups. 

While we found that adjustment for under-testing created a different view of the 

pandemic than that apparent with reported cases, our analysis was also able to 

identify thresholds for population testing frequency beyond which adjustment for 

differential testing was not needed.  During the middle of the pandemic, test rates 

were high, and we found little difference between epidemic curves generated using 

reported cases, and those generated using test-adjusted cases, in pandemic waves 3 

and 4.  This suggests an approach for more accurate evaluation of infection risk 

during epidemics or pandemics of novel infectious diseases, with test-adjustment 

applied during periods of under-testing, while crude case counts can be considered 

representative of disease epidemiology during periods of high testing. 
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Our approach represents an advance over traditional approaches to adjust for 

testing volumes in public health surveillance systems.  This is typically achieved by 

incorporating test volumes as denominators, such that disease risk is presented based 

on percentage positivity of tests; the Canadian FluWatch system, which is a 

laboratory-based surveillance system for influenza, uses such an approach (18).  While 

percentage positivity normalizes case counts for testing volumes, such an approach 

has limitations as an index of risk: the relationship between testing volume and test 

positivity is not fixed, but appears to be bidirectional (i.e., increasing risk or awareness 

of risk results in increased testing, while increased testing identifies increasing 

numbers of cases, albeit cases with varying risk profiles).   

It might be argued that true understanding of the burden of infection (rather 

than disease) caused by SARS-CoV-2 should depend on sero-epidemiological methods 

rather than adjusted PCR testing.  However, in the context of SARS-CoV-2 in Ontario, 

serological data have a number of important limitations, including (i) the lack of 

sensitivity and specificity of lone serological assays (19); (ii) dependence on potentially 

non-representative populations such as blood donors (19); (iii) loss of antibody 

positivity via seroreversion (19, 20); (iv) challenges in distinguishing seropositivity due 

to infection from seropositivity due to vaccination (19, 21); and (v) challenges 

associated with ubiquitous infection and repeated infection. 

As with any observational research our work has limitations.  In particular, we 

are not able to directly validate our test-adjusted case counts, given the limitations of 

sero-epidemiological data as noted above.  However, the concordance of our test-

adjusted waves with death waves during periods of under-reporting is suggestive of 

the validity of our approach.  We are also not able to evaluate the generalizability of 
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our approach outside Ontario or Canada, and are limited to the period prior to 

September 2022, as relevant data became unavailable after this time (22). 

In summary, we applied a standardization-based approach to population-based 

case data from the SARS-CoV-2 pandemic in Ontario, Canada, and found that test-

adjustment resulted in a different view of the pandemic during periods when testing 

rates were low.  In particular, test adjustment was helpful in understanding the 

distribution of deaths over time by demonstrating that low case counts early and late 

in the pandemic represented under-testing rather than low incidence of infection.  

Further refinement of this approach by incorporation of testing data into public health 

surveillance may be possible through application to other disease processes (23) and 

in other jurisdictions. 
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Table 1. Adjusted Relative Reporting Ratios for SARS-CoV-2 by Age, Sex 

and Time Period.  Estimates are derived from a negative binomial regression 

model, with reported case counts used as dependent variable and test-adjusted 

counts used as model offsets.  Models are also adjusted for public health unit 

and time trends.  Male and female estimates are presented separately due to 

significant interaction between age and sex. 

Covariate Adjusted 

Relative 

Reporting 

Ratio 

95% 

Confidence 

Intervals 

P-value 

Age, Male 
   

0 to 9 0.43 0.41-0.46 <0.001 

10 to 19 0.49 0.47-0.52 <0.001 

20 to 29 0.84 0.80-0.88 <0.001 

30 to 39 0.88 0.84-0.92 <0.001 

40 to 49 0.79 0.75-0.83 <0.001 

50 to 59 0.79 0.75-0.83 <0.001 

60 to 69 0.82 0.78-0.86 <0.001 

70 to 79 0.78 0.74-0.82 <0.001 

80 and over 1.06 1.01-1.12 <0.001 

Age, Female 
   

0 to 9 0.48 0.45-50 <0.001 
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10 to 19 0.61 0.58-0.64 <0.001 

20 to 29 1.35 1.29-1.41 <0.001 

30 to 39 1.33 1.27-1.40 <0.001 

40 to 49 1.20 1.15-1.26 <0.001 

50 to 59 1.07 1.02-1.12 0.006 

60 to 69 0.91 0.87-0.96 <0.001 

70 to 79 0.68 0.65-0.71 <0.001 

80 and over (referent) 1.00 --- --- 

Time Period (Pandemic Wave) 

   
1 (referent) 1.00 --- --- 

2 0.86 0.81-0.92 <0.001 

3 1.43 1.32-1.56 <0.001 

4 1.30 1.15-1.48 <0.001 

5 1.05 0.92-1.20 0.488 

6 0.58 0.50-0.67 <0.001 
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Table 2. Univariable and Multivariable Meta-regression Models of Variation in 

Relative Reporting Ratio by Public Health Unit 

Predictors with P-values less than or equal to 0.20 in univariable meta-regression 

models were included as candidate predictors in a final multivariable model, which 

was reduced using backwards elimination; only weekly testing rate and proportion of 

multigenerational households were retained in the final model.  

 
Univariable models Multivariable model 

Variable RReR* 95% CI P-value RReR* 95% CI P-value 

Weekly testing rate 1.93 0.99-

3.77 

0.054 2.55 1.31-4.94 0.007 

Hospital beds per 

capita 

0.98 0.96-

1.01 

0.128 --- --- --- 

Cumulative 

vaccination 

0.98 0.76-

1.26 

0.872 --- --- --- 

Mean age 0.98 0.93-

1.03 

0.418 --- --- --- 

Proportion of 

population over 64 

0.99 0.96-

1.02 

0.411 --- --- --- 

Household size 1.33 0.78-

2.27 

0.289 --- --- --- 
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Proportion of 

multigenerational 

households 

1.05 0.98-

1.12 

0.164 1.08 1.01-1.16 0.019 

Gini coefficient 0.22 0.00-

67.93 

0.598 --- --- --- 

Proportion visible 

minority 

1.00 0.99-

1.01 

0.607 --- --- --- 

Proportion 

identifying as 

Indigenous 

1.01 1.00-

1.03 

0.166 --- --- --- 

Proportion 

immigrants 

1.00 0.99-

1.01 

0.572 --- --- --- 

Proportion 

homeowners 

1.00 0.98-

1.02 

0.816 --- --- --- 

Unemployment 

rate 

1.04 0.98-

1.10 

0.219 --- --- --- 

Prevalence of low 

income 

0.99 0.93-

1.04 

0.577 --- --- --- 

Log of median 

household income 

1.17 0.30-

4.65 

0.813 --- --- --- 

Proportion of 

residents with less 

than high school 

education 

1.00 0.97-

1.04 

0.804 --- --- --- 
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Proportion 

Canadian citizens 

0.99 0.96-

1.02 

0.503 --- --- --- 
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Figures 

Figure 1.  Weekly Rates of Testing for SARS-CoV-2 in Ontario, Canada, March 

2020 to August 2022 

(A) Overall weekly per capita test rates by date of test report.  Shading and numbers 

denote distinct pandemic waves as defined by Mitchell et al. (11).  (B) Average per 

capita weekly test rates by age group for males and females over the entire study 

period.  (C) Average per capita weekly test rates for males (left panel) and females 

(right panel) by pandemic wave .  Colors of curves correspond to individual age 

groupings; for all waves except wave 4 the most tested group is females aged 80 and 

over; in wave 4 the most tested group was 0- to 10-year-old males. 

 

 

 

Figure 2. Reported and Test-Adjusted Epidemic Curves, and Correspondence 

with SARS-CoV-2 Mortality in Ontario, Canada 
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(A) Reported (blue) and test-adjusted (red) case counts over the course of the SARS-

CoV-2 pandemic. Early and late pandemic waves are far larger with test adjustment, 

reflecting low overall rates of testing.  (B) SARS-CoV-2 deaths in Ontario over time. 

Similar numbers of deaths in the first and second waves, and three distinct waves of 

deaths with emergence of Omicron variants at the end of the pandemic, correspond 

with patterns seen in the test-adjusted epidemic curve, but not with patterns seen in 

the reported case epidemic curve. 
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Figure 3. Reporting Ratios and Average Weekly Testing Rates in Ontario Public 

Health Units 

(A) Reporting ratios by health unit in Southern Ontario (entire province is presented in 

inset).  Higher (darker) regions have higher reporting ratios, meaning that unadjusted 

case counts are relatively closer to test-adjusted case counts than in other health 

units.  Lighter regions have lower reporting ratios, indicating a larger relative gap 

between reported case counts and test-adjusted case counts.  (B) Average weekly 

SARS-CoV-2 testing rates by health unit. Darker regions had higher rates of testing. 

 

 

Figure 4. Testing Frequency and Likelihood of Test-Adjusted Case Counts Less 

Than or Equal To Reported Case Counts 

Solid (point estimate) and dashed (95% confidence intervals) curves show the 

relationship between per capita weekly test rate (X-axis) and the probability that test-

adjusted cases in a given stratum are less than or equal to reported case counts (left-

hand Y-axis).  If test adjustment does not increase case counts, test adjustment is not 

helpful in understanding disease epidemiology.  It can be seen that when per capita 
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testing rate exceeds 6.3% per adjusted case counts are more likely than not to be 

equivalent to, or less than, reported case counts.  Circles show proportion of per 

capita weekly test rates (right sided Y-axis) by age, sex and public health unit strata, 

for each testing rate (X-axis).  It can be seen that most testing during the study period 

was at rates below the threshold rate of 6.3% per week. 
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Appendix 

Appendix Figure 1. Reporting Ratios by Age, Sex and Time Period 

Panel A (left) shows reporting ratios (Y-axis), defined as the ratio of reported cases to 

test-adjusted cases, over the study period by age-grouping (X-axis) and sex.  Red bars 

represent females; blue bars represent males.  Whiskers represent confidence bounds.  

Higher reporting ratios indicate a smaller relative gap between reported cases and test-

adjusted cases.  Panel B (right) shows reporting ratios for the population as a whole in 

each of six distinct pandemic waves.  During waves 3 and 4, in the presence of high 

rates of testing, reporting ratios were close to 1. 
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Appendix Figure 2. Forest Plot of Reporting Ratios by Ontario Health Unit 

Health unit names are listed on the left size of the figure; reporting ratios (“effect size”, 

or “ES”) are listed on the right with 95% confidence intervals.  Box sizes are inversely 

proportional to variance of estimates.  Ratios range from 0.11 in Timiskaming to 0.69 

in Peel, with a mean reporting ratio of 0.31 across all health units, and substantial 

between health unit heterogeneity. 
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Appendix Figure 3. Observed and Predicted Reporting Ratios and Per Capita 

Testing 

Circles represent observed (red) and predicted (blue) reporting ratios for SARS-CoV-2 

by Ontario public health unit.  Predicted reporting ratios are derived from a meta-

regression model, which also adjusts for prevalence of multi-generational households 

by public health unit.  Size of circles is inversely proportional to the variance of the 

estimate.  Straight lines are lines of best fit for observed (red) and predicted (blue) 

estimates. 
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