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ABSTRACT 
 
Background 
In this study, we utilize robust feature selection of quantitative encephalography (QEEG) 
features for inclusion into a deep learning (DL) model for short-range forecasting of neonatal 
seizure risk. 
 
Methods 
We used publicly available EEG seizure datasets with a total of 132 neonates. The Boruta 
algorithm with Shapley values was used for QEEG feature selection into a convolutional long 
short-term memory (ConvLSTM) DL model to classify preictal versus interictal states. 
ConvLSTM was trained and evaluated with 10-fold cross-validation. Performance was evaluated 
with varying seizure prediction horizons (SPH) and seizure occurrence periods (SOP). 
 
Results 
Boruta with Shapley values identified statistical moments, spectral power distributions, and RQA 
features as robust predictors of preictal states. ConvLSTM performed best with SPH 3 min and 
SOP 7 min, demonstrating 80% sensitivity with 36% of time spent in false alarm, AUROC of 
0.80, and AUPRC of 0.23. The model demonstrated ECE of 0.106, consistent with moderate 
calibration. Evaluation of forecasting skill with BSS under varying SPH demonstrated a peak 
BSS of 0.056 and a trend for decreasing BSS with increasing SPH.  
 
Conclusion 
Statistical moments, spectral power, and recurrence quantitative analysis are predictive of the 
preictal state. Short-range neonatal seizure forecasting is feasible with DL models utilizing these 
features. 
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MANUSCRIPT 
 
Introduction 
Neonatal seizures, with an incidence rate of one to three per 1000 life births, are associated with 
substantial long-term morbidity and mortality (1, 2). Prompt seizure treatment is critical for 
neonates, as a higher seizure burden is associated with increased treatment resistance and 
mortality (3, 4, 5, 6). A promising strategy to improve neonatal clinical outcomes has focused on 
identifying seizure-prone neonates using clinical and EEG features to reduce the time to seizure 
diagnosis and treatment (7, 8, 9, 10, 11).  
 
Recent studies have leveraged machine learning (ML) to predict seizures in neonatal 
encephalopathy (NE) with high accuracy utilizing long forecast horizons during the acute 
postnatal period (10, 11). Pavel et al. introduced a neonatal ML model utilizing clinical variables 
and quantitative EEG (QEEG) features shortly after birth to predict neonates with NE who later 
developed seizures, forecasting individual seizure risk over several days (10). Recently, McKee 
et al. developed a ML model on qualitative EEG and clinical features from the first day of life 
that could predict subsequent seizures during the acute monitoring period spanning days (11). 
While these and other prior studies have predicted seizure risk over an observation period 
spanning several days (7, 8, 9, 10, 11), short-range seizure risk forecasting, or forecasts with 
higher temporal resolution, remains unexplored in the neonatal population.  
 
In contrast to long-range forecasts, short-range forecasting provides more precise and timely 
information regarding the imminence of seizure onset (Figure 1a). The provision of short-range 
forecasts may facilitate the investigation of prophylactic interventions in higher seizure risk 
populations such as NE, and help optimize the allocation of monitoring resources, which in many 
environments is limited in accessibility to continuous EEG (12, 13, 14). Thus, our objective was 
to extend upon prior work in neonatal seizure forecasting, by investigating high-temporal-
resolution forecasting spanning minutes.  
 
Here, we develop a deep learning (DL) approach for QEEG-based neonatal seizure forecasting 
and utilize publicly available neonatal EEG datasets to evaluate model performance on short-
range forecasting of neonatal seizures. Considering the uncertainty into which specific QEEG 
features are most predictive of the preictal state in neonates, we integrated robust QEEG feature 
selection methods into our approach.  
 
Methods 
Subject Data: 
We utilized two publicly available EEG datasets from Helsinki University Hospital (HUH) and 
Cork University Maternity Hospital (Cork). The HUH dataset consists of multi-channel 256 Hz 
EEG recorded from 79 term neonates at the NICU in HUH, Helsinki, Finland, with total 60 
hours of recording (15). In the HUH dataset, the presence of seizures in the EEGs was annotated 
independently by three experts. The most common diagnosis in this dataset was birth asphyxia 
(35 patients). The Cork dataset from the INFANT Research Center, Cork University Maternity 
Hospital, contains EEG records from 53 neonates affected by HIE with total 169 hours total 
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recording (16). While the majority of HUH subjects contained ictal samples, only two Cork 
subjects have EEG records containing seizures in this dataset, thus providing relatively more 
balance between seizure-containing and non-seizure containing subjects. 
 
Preprocessing: 
We segmented EEG data into 20-second non-overlapping epochs with class labels of preictal, 
interictal, and ictal states. Ictal periods were defined as time periods in which at least 2 experts 
annotated a seizure. We defined preictal periods as between 6 min to 1 min prior to seizure onset 
and interictal periods as between 1 minute after end of seizure to 5 min prior to the next seizure. 
Right-censored periods in which it is unknown whether a seizure occurred within the prediction 
window at the end of data recordings were excluded. Prior to windowing and feature calculation, 
the raw EEG signal was band-pass filtered between 0.1 Hz and 20 Hz, and then resampled from 
the original 256 Hz to two times the Nyquist frequency, 40 Hz. For seizures that are less than the 
seizure prediction horizon (SPH) from the previous seizure, we consider them as a single seizure 
event. To increase model robustness and generalizability, we performed augmentation of the 
training dataset by translation invariant transforms; specifically, we transposed the raw EEG 
channels across the frontal-occipital and left-right axes. Candidate QEEG features from feature 
categories were calculated on non-overlapping 20-second EEG epochs.  
 
Feature Selection: 
Feature selection refers to the process of identifying the subset of features most pertinent to a 
prediction model's performance. Unlike automatic or emergent feature extraction methods, such 
as those used by convolutional neural networks, QEEG features may vary significantly in 
relevance and predictive power, necessitating a robust feature selection process. Increasing the 
number of features without bounds, or excessively high-dimensional QEEG data, may impair 
model performance due to increased data complexity, a concept broadly known in neuroscience 
and other domains as the 'curse of dimensionality' (17). Overfitting also becomes a concern, as 
models trained on a multitude of features may undermine generalizability to novel data. Feature 
selection, distilling the feature set down to those of true relevance, enhances model 
generalization, streamlines model training, and improves model interpretation (18).  
 
For feature selection, we utilized BorutaSHAP(19), which integrates the robustness of the Boruta 
algorithm feature selection strategy with the Shapley value feature importances derived from 
SHapley Additive exPlanations (20). The Boruta algorithm is a feature selection method used in 
ML, which is based on the random forest classification algorithm(21). It utilizes feature 
importances, such as SHAP or Gini, to measure to identify significantly predictive features in a 
dataset. These feature importances are iteratively compared with those of shadow features, which 
are generated from random shuffling of the real features to provide a reference. A threshold for 
feature selection is defined by the maximum importance score derived from the shadow features. 
Using this threshold, two-sided T-test is used to ascertain the relative significance of each 
feature—features significantly below the threshold are considered 'unimportant', while those 
significantly above the threshold are deemed 'important'. This feature importance ranking utilizes 
Shapley values, a game-theoretic method that determines individual feature contributions to 
model predictions, which provides consistent, accurate feature importance scores. Shapley values 
represent each feature's average marginal contribution to model prediction, across all possible 
combinations(20). Through this integrated BorutaSHAP procedure, we identified the top feature 
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categories consistently surpassing the threshold, thereby indicating significant correlation with 
the preictal or interictal state.  
 
Selected QEEG features from the top three feature categories are demonstrated in Supplementary 
Table 1 in more detail, which included standard summary statistics (mean, standard deviation, 
kurtosis, skew, the 10th percentile, and the 90th percentile), calculated across each montaged 
channel left-right pair, and power spectral features calculated at each montage channel (22). 
Other feature categories previously utilized for seizure prediction in prior studies that were 
evaluated included autocorrelation, entropy, detrended fluctuation analysis, and coherence (23). 
 
Model Design: 
We developed a custom convolutional long short-term memory neural network (ConvLSTM), an 
architecture that has previously been utilized for seizure prediction (24). An advantage of 
utilizing an LSTM-based architecture relative to conventional ML methods is their capability to 
learn underlying temporal dependencies from sequential data. The incorporation of the 
convolutional layer allows for local temporal feature extraction. Further details regarding 
ConvLSTM architecture are shown in Supplementary Figure 1. 
 
Model Training: 
As described above, the data used to train the model consisted of three classes, preictal, inter-
ictal, and ictal. The loss function used to train the model was formulated as a multi-class cross-
entropy function that disregarded performance on the ictal class while penalizing mislabeling 
those members of preictal and interictal classes. The pytorch and pytorch-lightning libraries were 
used to evaluate models(25). Grid-search optimization was used to tune ConvLSTM and 
demonstrated best-performance with a learning rate of 5e-5, a maximum of 100 training epochs, 
and early stopping of training conditioned on validation loss delta of 1e-6. For each fold of the 
10-fold cross-validation, the entire dataset was split into one train/validation set consisting of 
90% of the data and one test set consisting of 10% of the data. The train/validation set was then 
further split into a training set and a validation set, with the training set taking 75% of the 
train/validation set and the validation set taking the remaining 25%. All splits were created with 
inter-subject stratification, ensuring that data from a given subject was either solely in the train 
set or solely in the test set. 
 
Model Performance Evaluation:  
We employed the seizure alarm framework, which utilizes the seizure prediction horizon (SPH) 
and seizure occurrence period (SOP) (26). In this framework, a minimum SPH is designated to 
ensure sufficient lead time preceding a seizure to allow for timely intervention strategies to be 
employed. Concurrently, a maximum SOP is set to the desired temporal resolution suited to the 
duration of applicability of a given forecast. If the predicted risk is above the designated 
threshold, an alarm is triggered, lasting the combined duration of SPH and SOP. Details 
regarding the definitions of SPH and SOP are shown in Supplementary Figure 2. We evaluated 
area under the ROC curve (AUROC), area under the precision-recall curve (AUPRC), Expected 
Calibration Error (ECE), and Brier-Skill Score (BSS). PR-AUC illustrates the trade-off between 
precision (the proportion of true positives among all predicted positives) and recall (the 
proportion of true positives among all actual positives). It is advantageous in imbalanced datasets 
such as in this case, where the number of interictal periods (negative class) significantly exceeds 
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preictal periods (positive class), as it focuses on the model’s performance concerning the positive 
class. ECE is evaluated to measure the reliability of the model's predicted probabilities and is 
commonly used to evaluate neural network performance (27). It assesses the discrepancy 
between the predicted and true probabilities of the outcomes, which is important in determining 
whether the model is well-calibrated. The BSS assesses the model's forecasting skill relative to a 
reference random classifier model. The BSS considers both calibration and discrimination of the 
model. A positive BSS indicates that the model performs better than the reference model, while a 
negative BSS signifies the opposite. For the BSS calculation, we utilized the standard 
climatology reference, which accounts for the prevalence of the positive class (preictal states). 
For comparison of ConvLSTM to conventional ML methods, including Support Vector Machine 
(SVM), K-Nearest Neighbors (KNN), Logistic Regression, and random forest (RF) classifiers, 
we additionally evaluated F1 score and Matthew Correlation Coefficient (MCC). 
 
 
RESULTS 
 
Study Subjects 
The HUH EEG dataset consists of 79 subjects with median age 40 weeks (interquartile range: 
39.4 - 40.7) with 39 (49%) subjects with total of 516 across all subjects (28). The Cork EEG 
dataset consists of 53 subjects with median age 39.5 (37.8-40.5) weeks with two subjects (4%) 
who had seizures (16). The average duration per subjects of the HUH and Cork datasets were 1.2 
(1.1-1.6) hrs and 3 (2-4) hours.  
 
The study overview is demonstrated in Figure 1b, including all feature categories considered for 
feature selection. Feature selection with Boruta algorithm utilizing Shapley value feature 
importances demonstrated that the top three feature categories included statistical moments, 
spectral power, and RQA features (Figure 2). These features were identified as consistently 
demonstrating importance scores exceeding the threshold (Supplementary Figure 3), indicating 
their predictive relevance. QEEG features from the top three feature categories (Supplementary 
Table 1) were incorporated into ConvLSTM. Examples of the resulting time-varying seizure risk 
forecasts for individual neonates with seizures are shown in Figures 3. In these examples, periods 
containing heightened seizure risk occur with varying lead times prior to the seizure occurrences 
(red lines). In comparison, the selected examples from neonates with no seizures show no peaks 
indicative of preictal state (Figure 4). 
 
To assess the performance of ConvLSTM over varying short-range forecast horizons, we 
evaluated area under the ROC curve and area under the AUPRC varying SOP and SPH between 
1 to 7 minutes (Figure 5). Peak AUROC was 0.80 with SPH of 3 minutes and SOP of 7 minutes, 
and at these SPH and SOP settings, with ROC threshold adjusted to correspond with 80% 
sensitivity, there was a corresponding 36% time spent during false alarm. The peak AUPRC was 
0.23 with SPH of 1 minute and SOP of 7 minutes. For any given SPH, increasing the SOP led to 
improved AUROC and AUPRC, reflective of increased ease of forecasting at lower temporal 
resolutions.  
 
The calibration of the ConvLSTM model was evaluated using the reliability plot and Expected 
Calibration Error (ECE) metrics. The reliability plot, (Figure 6a), demonstrates the relationship 
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between the predicted probabilities and the observed frequency of the preictal class. There is a 
clustering of points below the diagonal, which signifies that ConvLSTM was occasionally 
overconfident in its predictions for the preictal class at these probabilities. Additionally, isolated 
points distant from the diagonal occurred at the lowest and highest probability bins, consistent 
with respective isolated underconfident and overconfident forecasts at these bins. Concordant to 
the reliability plot findings, the ECE value of 0.106 is consistent with a moderately well-
calibrated model. The value of 0.106 is slightly above the general desirable range for a strongly 
calibrated model, considered less than 0.1 (zero indicates perfect calibration, and one is the 
maximum value indicative of weak calibration). 
 
To evaluate the forecasting skill of ConvLSTM, we examined the impact of forecasting horizon 
and resolution utilizing the Brier Skill Score (BSS), which measures the difference between the 
accuracy of the model's predictions and the accuracy of a reference forecast. The effect of 
varying SPH and SOP on BSS is shown in Figure 6b. The highest BSS was 0.056 obtained with 
a SPH of 1 minute and SOP of 10 minutes. We find that for all SOP, as the SPH increases, then 
model performance concomitantly decreases. This follows the intuition that forecasting farther 
into the future is inherently more difficult. Similarly, as the SOP temporal resolution becomes 
finer, model performance also decreases, suggesting that forecasting with increased temporal 
resolution is also more difficult.   
 
Lastly, we compared ConvLSTM performance to conventional ML methods. ConvLSTM model 
achieved higher AUROC, AUPRC, and F1 scores than SVM, KNN, logistic regression, and 
random forest classifiers at the classification of preictal versus interictal states (Supplementary 
Table 2). 
 
 
DISCUSSION 
 
In this study, we utilized the Boruta algorithm and Shapley values for robust selection of QEEG 
features, identifying statistical moments, spectral power, and RQA features as most predictive of 
interictal and preictal states. We incorporated these features into ConvLSTM and demonstrated 
the accuracy of providing short-term forecasts of neonatal seizures. Forecasting horizons as brief 
as 5 minutes has been reported in adult patients with long-term chronic intracranial EEG 
recordings (23, 29). However, to our knowledge, this is the first study to demonstrate short-range 
forecasting in the neonatal population. Short-range forecasting in the neonates at high risk of 
impending seizure may enable time-sensitive interventions in higher seizure risk populations, 
such as in neonatal encephalopathy, and help optimize the allocation of monitoring resources. 
 
Notably, recent ML approaches at predicting neonatal seizure risk have utilized a combination of 
QEEG features with clinical features with ensemble ML methods such as gradient boosted 
decision trees and random forests to estimate seizure risk accurately (10, 11). In contrast to these 
prior works, which estimate neonatal seizure risk over several days, our approach focuses on 
short-term forecasting with a time resolution of minutes.  
 
Recent seizure forecasting studies in the pediatric population have utilized subject-specific 
feature engineering and model training for their analyses (30, 31, 32, 33). Notably, Tsiouras et al. 
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achieved 100% sensitivity with an FPR of 0.06/hr on the full CHB-MIT set by using a subject-
specific neural network with a long short-term memory (LSTM) architecture (34). Our approach 
is distinct from these prior works in that we developed a subject-independent model instead of a 
subject-specific model. Although our performance metrics are moderately lower than those 
attained in prior patient-specific models, the subject-independent approach presented obviates 
the need for subject-specific training. This is particularly clinically advantageous for neonates 
who are often at immediate elevated risk of seizure after birth, such as in cases of neonatal 
encephalopathy, where subject-specific training data may not be immediately available before 
the first seizure. Furthermore, subject-independent models facilitate efficient resource allocation, 
as it can be readily implemented at different sites without fine-tuning, reducing the need for 
specialized expertise and computational resources. 
 
Concerning our modeling approach, we utilized a convolutional LSTM that demonstrated overall 
improved performance compared to conventional ML methods. ConvLSTM incorporates 
strengths of both convolutional neural network (CNN) and LSTM architectures: the 
convolutional module can efficiently downsample the input signal while extracting local 
temporal features predictive of seizure risk, whereas the LSTM module effectively learns long-
range temporal dependencies. Prior studies in seizure prediction have previously utilized CNN 
(33, 35, 36), LSTM (34, 37), and CNN-LSTM(24). In contrast to the previously published CNN-
LSTM method, which utilized CNN-LSTM on short-time Fourier-transformed (STFT) EEG 
signal, we incorporated other QEEG features predictive of preictal states in addition to spectral 
power changes, including statistical moments and RQA features.  
 
Regarding the limitations of our study, we recognize that we utilized a relatively low number of 
subjects and did not utilize a held-out or independent evaluation dataset. Thus, validation on 
larger and independent datasets are necessary to confirm our findings. Additionally, our model 
demonstrated a relatively higher false alarm rate and lower sensitivity than prior studies, which 
have predominantly utilized the CHB-MIT dataset (Supplementary Table 3), which may be 
attributed to our subject-independent approach. In addition, the relatively lower performance 
seen in this study may reflect the usage of shorter-range SOP and SPH, as forecasting with 
increasingly higher temporal resolution is considered more difficult in complex systems, such as 
in seismology or meteorology, and this has also been suggested for seizure forecasting (38, 39, 
40).  
 
In conclusion, we demonstrate the potential of applying ML approaches to enable time-
dependent neonatal seizure forecasting, facilitating more precise timing and temporal 
understanding of neonatal seizure susceptibility.  
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FIGURES 
 
Figure 1 
a. The left panel illustrates differences between short- and long-range forecasting. Short-range 
forecasts may be updated frequently (indicated by dynamics in the dashed line), which enables 
these forecasts to be revised regularly as new data becomes available. Current neonatal long-
range seizure forecasting typically provide time-invariant, or static forecasts. The right panel 
illustrates the relation between forecast information content and forecasting lead time, following 
analogous forecasting definitions previously developed in meteorology (41). Here, information 
content may pertain to the degree of accuracy, certainty, and overall applicability of the 
forecasts. There is a downward trend in information content in the theoretical limit of 
predictability, short- and long-range forecast curves reflecting that in a complex and chaotic 
systems such as the brain, there is an inevitable increase in uncertainty as one attempts to 
forecasts further into the future with increasing lead time, or SPH. The short-range forecast may 
potentially contain higher information content than long-range forecasts during short lead times 
because it is based on more up to date observations. However, as the SPH becomes longer, for 
both short- and long-range forecasts, the information content decreases due to increased 
uncertainty and a reduction in the accuracy of forecasts. The long-range forecast curve starts 
after one hour after birth reflecting current long-range forecasting models that are based on 
information obtained from at least the first hour of EEG information.  
b. Starting from a broad selection of features across different categories, feature selection 
utilizing the Boruta algorithm utilizing Shapley value feature importances was performed to 
identify features most predictive of interictal and preictal states. Feature categories in which had 
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significant importance were incorporated into ConvLSTM to estimate time-varying, short-range 
seizure risk.  
Feature Abbreviations: Recurrence quantification analysis (RQA), Detrended Fluctuation 
Analysis (DFA), Autoregressive Modeling (AR), Statistical Moments (Stat Moments) 
Metric Abbreviations: Area Under Receiver Operator Characteristic Curve (AUROC), Area 
Under Precision Recall Curve (AUPRC) 
 
Figure 2 
Boruta analysis was performed to identify the QEEG feature categories most predictive at 
classifying interictal and preictal states. The top feature categories included features from 
statistical moments (e.g. Standard deviation (STD) asymmetric index (AI)), spectral power 
distributions in different frequency bands, and RQA feature categories such as RQA recurrence 
rate. Features are ranked in accordance by their Shapley feature importance scores, which were 
utilized in the Boruta analysis. Abbreviations and formulations for features from the top 3 feature 
categories are defined in Supplementary Table 1.  
 
Figure 3 
Examples from 3 subjects with seizures are shown. Prior to seizure occurrences, there are 
increases in estimated preictal state probability. There are also elevations in preictal state 
probability not associated with immediate seizure. 
 
Figure 4 
Examples from 3 subjects without seizures are shown. There are no significant elevations in 
preictal state probability seen. 
 
Figure 5 
Area under the ROC and PR curve analyses are demonstrated for ConvLSTM model. A) shows 
respective AUROC’s for SOP and SPH varied between 1 and 7 minutes. The best AUROC was 
0.80 at SOP of 7 minutes and SPH of 3 minutes. B) shows respective AUPRC’s for SOP and 
SPH varied between 1 and 7 minutes. The best AUPRC was 0.23 at SOP of 7 minutes and SPH 
of 3 minutes.  
 
Figure 6 
6a demonstrates ConvLSTM calibration evaluation using a reliability plot and Expected 
Calibration Error (ECE) metric. The ECE plot An ECE (e) value of 0.106 indicates a 
moderately-well calibrated model. 
6b demonstrates the influence of varying SPH and SOP on forecasting skill as evaluated by the 
Brier Skill Score (BSS). The best BSS occurred with SPH of 1 minute and SOP of 10 minutes.  
An increase in SPH correlates with a decline in BSS, and analogously, as the SOP decreases, 
model performance also decreases, indicating that forecasting with increasing lead-times and 
increasing temporal resolution becomes more challenging. 
 
 
Supplementary Figure 1 
The ConvLSTM architecture consisted of a convolutional layer with 256 output filters, followed 
by a batch normalization layer, then followed by an LSTM module with 256 cells and one 
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hidden layer with size of 32, followed by a rectified linear unit (ReLU), followed by a 50% 
dropout layer, a fully connected linear layer (FCN), and then a final ReLU layer as final output. 
A softmax function was applied to the final ReLU layer to yield probabilistic predictions for 
each output class. For visualization purposes only 64 filters/cells are shown as opposed to 256.  
 
Supplementary Figure 2 
The seizure prediction horizon (SPH) and seizure occurrence period (SOP) evaluation 
framework considers that there should be a minimum SPH to provide ample lead time before a 
seizure to allow for intervention and that the alarm should have SOP selected to align forecast 
duration with the specified clinical observation period. The system triggers an alarm, lasting the 
combined duration of SPH and SOP, if the designated seizure threshold is met. At time t, a true 
positive alarm occurs if a seizure initiates between t+SPH and t+SPH+SOP; otherwise, a false 
positive is marked. A false negative occurs if a seizure occurs at time ts and no alarm is activated. 
A true negative occurs when no alarm is triggered and no seizure occurs. 
 
Supplementary Figure 3 
Boruta analysis was performed to identify the most predictive QEEG features at each channel. In 
the top 20 features the mean Shapley values were predominantly from statistical moments, 
spectral power distribution, and RQA feature categories. Abbreviations for these top 3 feature 
categories are defined in Supplementary Table 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 6, 2023. ; https://doi.org/10.1101/2023.08.01.23293285doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.01.23293285


 

 

SUPPLEMENTARY TABLES 
 
Supplementary Table 1 
 

Family Abbreviation Description 

Recurrence Quantification 
Analysis 

RQA We utilized features derived from 
Recurrence Quantification Analysis 
(RQA), a nonlinear data analysis 
technique based upon the recurrence plot, 
which is a plot of the recurrence of states 
or patterns in a time series (42). In each 
20-second window, a recurrence plot was 
calculated for each montaged channel. 
The RQA features below (e.g. recurrence 
rate, determinism, laminarity, trapping 
time) were calculated on each per-channel 
recurrence plot. 

RR Recurrence rate 

DET Determinism 

LAM Laminarity 

L_max Longest diagonal line 

L_entr Entropy of diagonal lines 

L_mean Average diagonal line 

TT Trapping time 

Asymmetry Indices  For each corresponding pair of channels, 
L and R, mirrored across the vertical axis, 
we calculate an asymmetry index utilizing 
the following formula: |fn(L) - fn(R)| / 
(fn(L) + fn(R)); 'fn' denotes a set of 
functions below (fn_mean, fn_std, 
fn_kurt, etc…) In this formula, 'fn' 
signifies a set of functions — (fn_mean) 
mean, standard deviation (fn_std), 
kurtosis (fn_kurt), skewness (fn_skew), 
the tenth percentile (fn_ten), and the 
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ninetieth percentile (fn_ninety) — each of 
which is applied independently to the 
values of channels L and R. We then 
calculate the average of these function 
outcomes for each corresponding pair of 
channels. The goal is to quantify the 
differences between these mirrored (L/R) 
EEG channels. 

Asymm_mean Mean (fn_mean) 

Asymm_std Standard deviation (fn_std) 

Asymm_kurt Kurtosis (fn_kurt) 

Asymm_skew Skewness (fn_skew) 

Asymm_p10 10th percentile (fn_ten) 

Asymm_p90 90th percentile (fn_ninety) 

Spectral power Power_delta Relative spectral power between 0.1 and 
4 Hz 

Power_theta Relative spectral power between 4 and 8 
Hz 

Power_alpha Relative spectral power between 8 and 12 
Hz 

Power_beta Relative spectral power between 12 and 
40 Hz 

 
Supplementary Table 2 
  AUROC AUPRC MCC F1 
ConvLSTM 0.678 ±0.041 0.218 ±0.059 0.255 ±0.054 0.334 ±0.050 
Random Forest 0.612 ±0.021 0.147 ±0.023 0.141 ±0.024 0.252 ±0.030 
Support Vector Machine 0.613 ±0.037 0.163 ±0.030 0.144 ±0.030 0.262 ±0.031 
Logistic Regression 0.598 ±0.025 0.163 ±0.027 0.112 ±0.023 0.243 ±0.027 
K-Nearest Neighbors 0.633 ±0.022 0.112 ±0.013 0.151 ±0.023 0.255 ±0.029 

 
Data reported as average performance across all cross-validation folds (10) with ± standard error 
mean. Abbreviations: Matthew Correlation Coefficient (MCC). F1 score (F1). 
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Supplementary Table 3 
 

Year Authors Dataset Feats CLF Same 
Cal 

# Sz Sens 
(%) 

FPR 
(/h) 

SOP 
(min) 

SPH 
(min) 

2016 Zhang & Parhi MIT, 17 
patients 

power spectral 
density ratio 

SVM no 80 98.68 0.05 50 0** 

2017 Alotaiby et al MIT, 23 
patients 

CSP LDA yes 170 81 0.47 60 0 

2018 Khan et al MIT, 15 
patients 

wavelet transform CNN yes 18 83.33 0.15 10 0** 

2018 Truong et al MIT, 13 
patients 

short-time Fourier 
transform 

CNN yes 64 81.2 0.16 30 5 

2018 Tsiouras et al MIT, 23 
patients 

time domain, 
frequency domain, 
graph theory 
features, 
correlation 
features 

LSTM no 185 100 0.06 30 0** 

2019 Daoud & 
Bayoumi 

MIT, 8 
patients 

DCAE + Bi-
LSTM 

 yes 43 99.6 0.004 60 0** 

 
**SPH implicitly set to 0 in these works 
Abbreviations: Features (Feats), Classifier (CLF), Seizures (Sz), Sensitivity (Sens), Same 
Feature engineering (FE), Same Calibration (Cal) denotes studies which were calibrated on the 
same dataset used for training. 
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Performance metrics

Feature selection with Shapley values

QEEG Candidate Feature Categories

Figure 1
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Figure 2
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Figure 3

Subjects with seizures
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Subjects without seizures

Figure 4
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Figure 5

a   AUROC Scores under varying SOP and SPH

b   AUPRC Scores under varying SOP and SPH
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Reliability Plot and Expected Calibration Error (𝞮)

Figure 6

b
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Supplementary Figure 2
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