1 Pharmacotherapy for Children and adolescents with overweight and obesity: a

2 systematic review and network meta-analysis of randomized controlled trials

3 Li Luo, ^{1,2,4,5#} Tingting Huang, ^{1,2,4,5#} HuiWang, ^{1,2,4,5} Jianglin Zhao, ^{1,2,4,5} Yunyun Qi, ^{1,2,4,5} Zijing Yan, ^{1,2,4,5} 4 Chunmei Zhu, ^{1,2,4,5} Chufeng Wang, ^{3,4,5} Na Su, ⁶ Ting Xu, ⁶ Shengzhao Zhang ^{1,2,4,5}* 5 6 7 ¹ Department of pharmacy, Karamay Central Hospital, Karamay, China ² Department of pharmacy, Karamay Hospital of Xinjiang Uygur Autonomous Region People's Hospital, 8 9 Karamay, China 10 ³ Department of Nephropathy and Rheumatology, Karamay Central Hospital, Karamay, China ⁴ Xinjiang Clinical Research Center for precision medicine of digestive system tumor, Karamay, China 11 12 ⁵ Xinjiang Key Laboratory of Clinical Genetic Testing and Biomedical Information, Karamay, China 13 ⁶ Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China 14 [#]These authors contributed equally to this work 15 * Corresponding author: Department of pharmacy, Karamay Central Hospital, Karamay, 834000, 16 China. 17 E-mail address: zsz90877@163.com (S Zhang) 18

19 Abstract

Background: Overweight and obesity are widespread among children and adolescents. We aimed to
 summarize the evidence for the pharmacotherapy as an adjunct to lifestyle interventions in overweight

22 or obese children and adolescents by comparing the benefits and harms.

Methods: RCTs (randomized controlled trials) were sourced from PubMed, Embase (using the OVID platform), the Cochrane Library (CENTRAL), as well as the trial registers ICTRP (WHO) and ClinicalTrials.gov. Searches were undertaken from inception to April 25, 2023. A network meta-analysis was performed using the frequentists framework based on random-effects model. We used GRADE (Grading of Recommendations Assessment, Development, and Evaluation) approach to evaluate the overall certainty of evidence and categorized the interventions.

Results: In total, 42 RCTs (n=3883) comparing 8 different pharmacotherapy strategies were included in this study. Evidence strongly suggested that phentermine-topiramate reduced BMI the most (the mean difference (MD) -4.83 [95% CI, -7.46 to -2.20] kg/m²) and weight (MD, -14.59 [95% CI, -19.37, -9.81] kg) in children and adolescents with overweight or obesity. Compared to lifestyle intervention alone, phentermine-topiramate was associated with an additional 557 events per 1000 person-years in terms of the proportion of participants achieving a BMI reduction of ≥5%, but there was no increased

- 35 harm in total gastrointestinal adverse effects and discontinuation due to adverse events.
- 36 Conclusions: Phentermine-topiramate was closely related to weight loss and showed a good
- 37 tolerability, proving to be the optimal treatment strategy for overweight or obese children and
- 38 adolescents.
- **Registration:** PROSPERO registry number: CRD42022329226
- 40 Keywords: network meta-analysis, overweight, obesity, weight management, pharmacotherapy,
 41 children, adolescents
- 42
- 43

56

44 Background

45 Overweight and obesity have profound implications for numerous children and adolescents, with 46 the data indicating a persistent upward trend in affected populations. Recent estimates by the World 47 Health Organization (WHO) indicate that in 2020, there were 39 million children under the age of 5 48 years who were affected by overweight or obesity[1]. Disturbingly, the global prevalence of obesity 49 among individuals aged 5-19 has experienced a notable surge between 1975 and 2020. Among girls, 50 the rates have escalated from less than 1% to 8%, while among boys, the rates have reached 10%[1-3]. 51 Beyond the heightened risk of physical health conditions[4-6], overweight and obesity also 52 significantly impact the societal and emotional well-being of the youth[7, 8]. Clearly, such 53 circumstances hinder the optimal growth and development of children and adolescents, emphasizing 54 the urgency of addressing this matter. 55 Lifestyle interventions serve as the cornerstone for managing excess weight in children and

57 such as making dietary adjustments, promoting physical activity, and fostering behavioral changes.[9,

adolescents grappling with overweight or obesity. These interventions encompass a range of measures,

58 10]. However, it is worth acknowledging the inherent challenges associated with modifying deeply

59	ingrained behavioral habits, especially among younger individuals[11]. The necessity for long-term
60	commitment further compounds the issue, often resulting in suboptimal patient compliance.
61	Consequently, treatment failures or rapid weight regain following initial progress become all too
62	common[12]. To address these obstacles and enhance outcomes, the incorporation of effective
63	pharmacotherapy strategies is crucial, acting as adjunctive therapy in the maintenance of weight
64	loss[13].
65	Despite numerous studies have explored pharmacological interventions for weight reduction in
66	adults, the availability of approved drugs for children and adolescents remains limited[14]. Evidence is
67	lacking on the optimal combination of drug therapy with lifestyle intervention for weight loss.
68	Consequently, there is a pressing need for further investigation to evaluate the efficacy and safety of
69	pharmacological approaches in the pediatric and adolescent population. In this network meta-analysis,
70	we aim to summarize the evidence for the use of drug as adjunctive therapy to lifestyle interventions in
71	overweight or obese children and adolescents by comparing the benefits and harms.
72	Methods
73	Study design
74	This network meta-analysis was conducted according to the Preferred Reporting Items for
75	Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines and the statement standards for
76	network meta-analysis (PRISMA-NMA)[15, 16]. The review was registered in the International
77	Prospective Register of Systematic Reviews, PROSPERO (CRD42022329226)

78 Eligibility criteria

79 We included randomized controlled trials (RCTs) of pharmacological monotherapy or combined

80 therapy for weight reduction in children and adolescents (aged \leq 18 years) with obesity or overweight,

- 81 regardless of the presence of the weight-related complications. Trials were excluded if they (1) enrolled
- 82 patients who were medication-induced obesity, pregnancy, or normal bodyweight; (2) enrolled patients
- 83 with malignant tumors or blood diseases; (3) were not published in English; (4) had no available results
- 84 related to weight loss.
- 85 Search strategy
- PubMed, Embase (using the OVID platform), and the Cochrane Library (CENTRAL) were conducted from inception to September 24, 2022 for the initial search. Due to the long interval, in order to avoid overlooking any newly published relevant studies during this period and ensure a comprehensive screening, these databases were re-searched, with the deadline set at April 25, 2023. Furthermore, to supplement the identified citations, we also searched International clinical trials registry platform (ICTRP) and ClinicalTrials.gov. Appendix 2 shows the detailed search strategy.
- 92 Study selection

93 The PRISMA flow diagram was applied to guide the process of study selection. The retrieved 94 studies were checked for duplication using Endnote X9, and duplicate records were removed. Two 95 independent researchers conducted initial screening based on article titles and abstracts and then 96 performed full-texts, excluding irrelevant studies. Discrepancies were resolved through mutual 97 discussion or consultation with a senior member.

98 Outcomes

99 Primary outcomes as determined by our assessment were change in BMI and weight from baseline, 100 as well as the percentage of participants achieving BMI reduction of at least 5%. Secondary outcomes 101 included changes in BMI z-score and BMI standard deviation score (SDS) from baseline, percentage of 102 participants achieving BMI reduction of at least 10%, and adverse outcome, such as total

103 gastrointestinal adverse events, discontinuation due to adverse events, serious adverse events, nausea

104 events, vomiting events and diarrhea events.

105 Data extraction and risk of bias assessment

- 106 Two reviewers independently extracted relevant data from the included studies and organized
- 107 them in an Excel spreadsheet, with any discrepancies resolved through discussion with a third reviewer.
- 108 The extracted information included study characteristics (first author, year of publication, intervention
- 109 measures), participant information (such as age, gender, sample size) and outcome indicators.
- 110 Risk of bias (ROB) for all included randomized controlled trials was assessed by two independent
- assessors with the Cochrane Risk of Bias 2 (ROB-2) tool[17] and categorized as "high," "low," or
- 112 "some concern," based on evaluations across five domains: (1) the randomization process, (2)
- deviations from intended interventions, (3) missing outcome data, (4) measurement of the outcome, (5)
- 114 selection of the reported result. Disagreements were resolved through discussion with a third assessor.
- 115 Publication bias

We employed funnel plots to assess the potential publication bias of included studies. The symmetry of the funnel plot was visually examined as an initial step. If the number of trials included in the analysis exceeded 10, Egger's test, Begg-Mazumdar test, and Thompson-Sharp test were conducted to further evaluate publication bias. A p-value greater than 0.05 in these tests indicates no significant publication bias.

121 Statistical analysis

122 The network meta-analyses in this study were performed using the frequentist framework, 123 employing a graph-theoretical method[18]. For dichotomous outcomes, odds ratios (ORs) were 124 calculated, while mean differences (MDs) were utilized for continuous outcomes. Both measures were

125	accompanied by 95% confidence intervals (CIs) to provide a range of estimated effect sizes. A
126	random-effects model was used to account for variability among the included studies. To assess
127	heterogeneity among the studies, Cochran's Q test was utilized, where a p-value greater than 0.05
128	indicated no significant heterogeneity. The transitivity assumption was assessed by comparing the
129	distribution of potential effect modifiers across different intervention comparisons. Factors such as
130	baseline age, gender proportion, and mean BMI at baseline were considered as effect modifiers. A
131	detailed description of this analysis can be found in Appendix 6.6. The node-splitting model was
132	applied to analyze the inconsistency between direct and indirect comparison results[19, 20].
133	In order to rank the performance of interventions in terms of weight loss and safety, we utilized a
134	metric called the P-score. This score is assigned to each intervention and falls within the range of 0 to 1.
135	A higher P-score indicates a greater likelihood of the intervention being ranked as the most effective
136	option.[21]. The absolute risk difference (RD) of the intervention versus lifestyle modification alone
137	was estimated from the relative effect and the estimate of baseline risk, see Appendix 3.3 for detailed
138	calculation formulas.
139	To ensure the robustness of the main analyses, six sensitivity analyses were conducted. These
140	sensitivity analyses aimed to explore the impact of different factors on the results obtained. The
141	following aspects were considered:
142	• Sequential exclusion of studies with fewer than 40 participants.
143	• Exclusion of studies without a placebo control.
144	• Exclusion of studies that did not report baseline BMI changes.
145	• Exclusion of studies with a drug treatment duration of less than three months.
146	• Exclusion of studies judged to have a high risk of bias.

- Network meta-analysis using a random-effects model within the Bayesian framework, as an
- alternative to the previously employed frequentist method.
- 149 To explore the potential influence of mean age, gender, mean BMI and weight at baseline, as well
- 150 as the duration of trial follow-up on the outcomes, a meta-regression analysis with the restricted
- 151 maximum likelihood estimator method (REML) was conducted.
- 152 All statistical analyses, including the sensitivity analyses and meta-regression, were performed
- using the R software version 4.2.2.

154 Quality of evidence (GRADE) and categorization of interventions

- 155 We assessed certainty of the evidence by applying the GRADE (Grading of Recommendations
- 156 Assessment, Development, and Evaluation) approach, thus reflecting the methodological reliability of
- 157 the network meta-analysis[22, 23]. We rated the certainty for each comparison and the network
- 158 estimate results as high, moderate, low, or very low, based on risk of bias, heterogeneity, publication
- bias, transitivity process, inconsistency, imprecision.
- 160 The minimal important differences (MID) of the primary outcomes were identified by searching
- 161 through previous research studies. We classified the interventions into four categories: among the best,
- 162 intermediate-possibly better, intermediate-possibly worse, and among the worst, based on whether the
- 163 effect estimate values were greater than or less than MID[24]. For the outcome of discontinuation due
- 164 to adverse events and total gastrointestinal events, we set three categories of effect class: among the
- 165 worst, intermediate, among the best, based on comparisons with other drugs and lifestyle interventions.
- 166 A detailed description is provided in Appendix 3.5.

167 **Result**

168 Characteristics of the included studies

169	We screened 2072 records from the databases (PubMed, Embase, the Cochrane Library), ICTRP
170	and ClinicalTrials.gov and 42 eligible trials were identified in this network meta-analysis, including 40
171	RCTs (published between 2001 and 2022) and 2 ongoing RCTs (without any publications, only results
172	available on clinical trial websites). The retrieval flow diagram is shown in Figure 1. A total of 3883
173	participants were included, with a mean age ranging from 8.1 to 16.1 years. The baseline mean BMI
174	ranged from 26.2 to 41.7 kg/m ² . Males accounted for 38.14% of the participants. The duration of drugs
175	intervention ranged from 1.25 to 28.2 months. Appendix 4 details the study characteristics.
176	Risk of bias assessment
177	A summary of the results on the risk of bias is presented in Appendix 5. One trial was rated as
178	having a high risk of bias using the Rob 2 tool, which was generated by the domain of randomization
179	process. 24 trials included in this network meta-analysis raised some concerns, primarily related to
180	deviations from intended interventions, the randomization process, and missing outcome data.
181	Network plots
182	We established networks involving 12 outcomes. The network plots of the primary outcome are
183	shown in Figure 2. Each circle represents an intervention, and the size of the circle is proportional to
184	the number of participants in that intervention. The line indicates that there is a direct comparison
185	between two interventions. The thickness of the line is proportional to the number of trials. Change in
186	BMI was included in 9 intervention measures, change in weight was included in 7 intervention
187	measures, and the percentage of participants achieving BMI reduction of at least 5% was included in 5
188	intervention measures. The network diagram for the secondary outcomes can be found in Appendix 6.1.
189	Primary outcomes

190 Thirty RCTs, involving 2,596 participants, reported the effects of the drugs on changes in BMI

191	from baseline. As shown in Figure 3, Glucagon-Like Peptide-1 (GLP-1) receptor agonists, metformin,
192	orlistat, and phentermine-topiramate showed better effects in reducing BMI compared to lifestyle
193	modification alone, with evidence graded from low to high. In comparison to other interventions,
194	except for fluoxetine and metformin combined with fluoxetine, the BMI reduction values for
195	phentermine-topiramate were as follows: -3.02 (MD, [95%CI, -5.99 to -0.05] kg/m ² , high-quality
196	evidence) compared to GLP-1 receptor agonists, -4.83 (MD, [95%CI, -7.46 to -2.20] kg/m ² ,
197	high-quality evidence) compared to lifestyle modification alone, -3.73 (MD, [95%CI, -6.45, to -1.01]
198	kg/m ² , moderate-quality evidence) compared to metformin, -3.17 (MD, [95%CI, -6.23 to -0.10] kg/m ² ,
199	low-quality evidence) compared to orlistat, -5.53 (MD, [95%CI, -9.29 to -1.77] kg/m ² , high-quality
200	evidence) compared to sitagliptin, -3.97 (MD, [95%CI, -7.91 to -0.03] kg/m ² , high-quality evidence)
201	compared to topiramate.
202	Twenty-four RCTs, involving 2,098 participants, reported the effects of the drugs on change in
203	weight from baseline. GLP-1 receptor agonists and phentermine-topiramate both demonstrated
203 204	weight from baseline. GLP-1 receptor agonists and phentermine-topiramate both demonstrated significant weight loss effects, with bodyweight reductions of -3.82 (MD, [95% CI, -6.47 to -1.16] kg)
204	significant weight loss effects, with bodyweight reductions of -3.82 (MD, [95% CI, -6.47 to -1.16] kg)
204 205	significant weight loss effects, with bodyweight reductions of -3.82 (MD, [95% CI, -6.47 to -1.16] kg) and -14.59 (MD, [95% CI, -19.37, -9.81] kg), respectively, compared to lifestyle modification alone.
204 205 206	significant weight loss effects, with bodyweight reductions of -3.82 (MD, [95% CI, -6.47 to -1.16] kg) and -14.59 (MD, [95% CI, -19.37, -9.81] kg), respectively, compared to lifestyle modification alone. The evidence quality for the two comparisons was rated as high. The MD of orlistat compared to
204 205 206 207	significant weight loss effects, with bodyweight reductions of -3.82 (MD, [95% CI, -6.47 to -1.16] kg) and -14.59 (MD, [95% CI, -19.37, -9.81] kg), respectively, compared to lifestyle modification alone. The evidence quality for the two comparisons was rated as high. The MD of orlistat compared to lifestyle modification alone was -4.28 [95%, -7.12 to -1.44] kg, which was evaluated as a low-quality
204 205 206 207 208	significant weight loss effects, with bodyweight reductions of -3.82 (MD, [95% CI, -6.47 to -1.16] kg) and -14.59 (MD, [95% CI, -19.37, -9.81] kg), respectively, compared to lifestyle modification alone. The evidence quality for the two comparisons was rated as high. The MD of orlistat compared to lifestyle modification alone was -4.28 [95%, -7.12 to -1.44] kg, which was evaluated as a low-quality evidence. Most worthy of mention was that phentermine-topiramate exhibited a stronger weight loss
204 205 206 207 208 209	significant weight loss effects, with bodyweight reductions of -3.82 (MD, [95% CI, -6.47 to -1.16] kg) and -14.59 (MD, [95% CI, -19.37, -9.81] kg), respectively, compared to lifestyle modification alone. The evidence quality for the two comparisons was rated as high. The MD of orlistat compared to lifestyle modification alone was -4.28 [95%, -7.12 to -1.44] kg, which was evaluated as a low-quality evidence. Most worthy of mention was that phentermine-topiramate exhibited a stronger weight loss effect, with a reduction of -10.77 (MD, [95% CI, -16.24, -5.30] kg, high-quality evidence) compared to

For the outcome of percentage of participants achieving a BMI reduction of at least 5%, low- to

213 moderate-quality evidence indicated no significant differences among the different drug therapies.

- However, compared to lifestyle modification alone, the proportion of participants who achieved a 5%
- 215 or more BMI reduction might increase when using phentermine-topiramate and GLP-1 receptor
- agonists, with odds ratios (OR) of 14.06 ([95% CI, 2.34 to 84.35], high-quality evidence) and 4.86 ([95%
- 217 CI, 1.93 to 12.24], moderate-quality evidence), respectively.
- 218 Secondary outcomes

219 The relative effects of secondary outcome measures are shown in the Appendix 6.2. For the 220 outcome of percentage of participants achieving a BMI reduction of at least 10%, high- and 221 moderate-quality evidence indicated phentermine-topiramate and GLP-1 receptor agonists were better 222 than lifestyle modification alone, respectively. Additionally, GLP-1 receptor agonists also showed a 223 strong effect on the change of BMI SDS from baseline. However, in terms of gastrointestinal adverse 224 effects (such as nausea events, vomiting events, diarrhea events), high-quality evidence demonstrated 225 that GLP-1 receptor agonists occurred significantly more frequently than lifestyle interventions. 226 Concerning the change in BMI z-score from baseline, metformin and orlistat resulted in greater 227 reductions than lifestyle modification alone (high-quality evidence). Furthermore, high-quality 228 evidence indicated that metformin had a higher incidence of nausea events compared to lifestyle 229 intervention and orlistat, while orlistat was associated with a higher incidence of diarrhea events 230 (high-quality evidence) and a higher likelihood of discontinuation due to any adverse events 231 (moderate-quality evidence) compared to lifestyle intervention. No significant differences were 232 observed between all drugs and lifestyle intervention concerning severe adverse events.

233 Categorization of interventions

The estimated values of the lifestyle intervention in a single arm trial were used as MID (minimal

235	important differences) for weight loss, which was -4 kg, and the MID for BMI change, which was -1.4
236	kg/m^2 [25]. The MID for the percentage of participants achieving BMI reduction of at least 5% was set
237	as approximately double the percentage of the lifestyle modification alone group (see Appendix 3.4).
238	The primary benefit outcomes were assessed according to the MID to determine clinical importance.
239	Additionally, we classified the harm outcomes of interventions into three categories: among the worst,
240	intermediate and among the best. These categorizations were based on the comparisons with lifestyle
241	modification alone and other drugs. Figure 4 illustrates the categorization of interventions.
242	For the outcomes of changes in BMI and weight from baseline, phentermine-topiramate was
243	evaluated as the most effective drug (high-quality evidence), with the upper limit of the 95% CI for its
244	estimated effect size was smaller than the MID. Considering the point estimate of orlistat is lower than
245	the MID and its 95% CI intersects with the MID, it was categorized as might be better than lifestyle
246	modification alone (low-quality evidence). GLP-1 receptor agonists proved to be intermediate-possibly
247	better in terms of BMI change (high-quality evidence). But in terms of weight change, GLP-1 receptor
248	agonists proved to be intermediate-possibly worse as the 95% CI intersected with the MID and the
249	point estimate was greater than the MID (high-quality evidence).
250	We calculated the absolute effects for dichotomous outcomes (see Figure 4 and Appendix 6.3).
251	Lifestyle modification alone resulted in 141 achieving a BMI reduction of at least 5% per 1000
252	person-years. Phentermine-topiramate had 557 more events per 1000 person-years with high-quality
253	evidence, followed by GLP-1 receptor agonists with 303 more events (moderate-quality evidence).
254	They were respectively evaluated as among the best and intermediate-possibly better.
255	Regarding discontinuation due to adverse events, except for orlistat (had 557 more events per
256	1000 person-years than lifestyle modification alone), there were no significant differences observed

between the other drugs and lifestyle modification alone. For total gastrointestinal adverse events, both

- 258 GLP-1 receptor agonists and orlistat were evaluated as more harmful than lifestyle modification alone
- and some other drugs.

260 Assessment of heterogeneity, transitivity, inconsistency and publication bias

- Heterogeneity, transitivity, and inconsistency of the network meta-analysis were evaluated. The heterogeneity assessment results are described in Appendix 6.5. For transitivity, there was no significant differences in the distribution of the possible effect modifiers across intervention comparisons were observed in all networks (Appendix 6.6). The node-splitting method indicated that there was no inconsistency between indirect and direct estimates in the outcome of BMI change from
- baseline (Appendix 6.7). The funnel plots appeared quite symmetrical, suggesting the absence of
- 267 publication bias for all the outcomes (Appendix 6.8).

268 Meta-regression and sensitivity analyses

269 Meta-regression analysis revealed a significant correlation between age and change in BMI from

baseline (coefficient: 0.4455, 95%CI: 0.1201 to 0.7708, p-value: 0.0073). The weight loss was

proportional to the duration of the intervention (coefficient: 0.3456, 95%CI: 0.0938 to 0.5975, p-value:

272 0.0071). In meta-regression models, participants' age, BMI and weight at baseline, gender, and length

273 of drug therapy were not associated with the percentage of participants achieving BMI reduction of at

274 least 5%. Appendix 9 details other outcomes. Sensitivity analyses showed that the trend of MD and OR

275 values were consistent with the primary results, confirming the robustness of our findings (Appendix

276 10).

277 **Discussion**

278 Based on 42 trials and 3883 participants, a frequentist network meta-analysis was performed to

279	evaluate the efficacy and safety for eight drugs targeting overweight or obese children and adolescents.
280	Compared to lifestyle modification alone, GLP-1 receptor agonists, metformin, orlistat, and
281	phentermine-topiramate all showed significant benefits in terms of BMI reduction and bodyweight loss
282	(high-to low-quality evidence). Phentermine-topiramate was proved to be the optimal treatment
283	strategy for weight management in overweight or obese children and adolescents to manage body
284	weight, with the greatest impact on BMI reduction, weight loss, and the proportion of participants who
285	achieved a reduction in BMI \geq 5%. Moreover, it was not more harmful than lifestyle modification
286	alone in terms of gastrointestinal adverse effects.
287	However, our study found some heterogeneity. For the terms of BMI change and weight change
288	from baseline, heterogeneity was observed when comparing lifestyle modification alone with
289	metformin and orlistat. Several factors may contribute to the heterogeneity. Ozkan B 2004[26],
290	assessed as having a high risk of bias due to issues with the randomization process, was included in the
291	orlistat trials to analysis the outcomes of change in BMI and weight, which may be a source of
292	heterogeneity. The inclusion of non-blinded studies in the network meta-analysis may lead to an
293	increase in heterogeneity of the results. Similarly, some trials were assessed with some concerns
294	regarding the randomization process, deviations from the intended intervention and missing outcome
295	data, which were included in the metformin trials. The small sample sizes may also lead to a lower
296	power to detect differences in the outcomes. Additionally, meta-regression indicated an association
297	between age and BMI changes, as well as between study duration and weight changes, suggesting that
298	the heterogeneity is likely a result of differences in study duration and age of participant. In the
299	percentage of participants who achieved a BMI reduction of at least 5%, there was also heterogeneity
300	when comparing GLP-1 receptor agonists to lifestyle modification alone. The heterogeneity may be

301	attributed to Diene G 2022[27], because of its relatively small sample size and some concerns
302	regarding randomization process. Despite the presence of these heterogeneities, transitivity assessment
303	yielded favorable results in this network meta-analysis. To ensure the reliability of our findings, we
304	downgraded the quality of evidence for comparisons with heterogeneity and risk of bias during the
305	GRADE rating. Additionally, sensitivity analyses conducted by excluding trials from different
306	perspectives also confirmed the robustness of the results.
307	Phentermine-topiramate received its pediatric first approval on 20 July, 2022 by the FDA (Food
308	and Drug Administration), as an adjunct to a dietary habit modification and increased physical activity,
309	for chronic weight management in pediatric obese patients aged \geq 12 years[28, 29]. This indication
310	was supported by a 56-week, double-blind, placebo-controlled trial[30], which was included in our
311	study. Of note, this medication is not approved for use by the EMA (The European Medicines Agency).
312	Phentermine as a noradrenaline reuptake inhibition can reduce appetite and induce a feeling of
313	satiety[31]. Topiramate reduces caloric intake by enhancing the activity of GABA (γ -aminobutyric acid)
314	neurotransmitter and inhibiting carbonic anhydrase[32]. The complementary mechanisms of both
315	medications allow for reducing the dosage of each drug while achieving weight loss, thereby enhancing
316	safety and tolerability[33, 34]. We are the first to include phentermine-topiramate in a network
317	meta-analysis of pediatric drug therapy. Compared to various intervention measures,
318	phentermine-topiramate exhibited satisfactory results in terms of reducing BMI and promoting weight
319	loss. It is widely acknowledged that lifestyle intervention is the primary weight management strategy
320	for overweight or obese children and adolescents. Importantly, high-quality evidence suggested that
321	compared to lifestyle intervention alone, phentermine-topiramate was associated with an additional 557
322	events per 1000 person-years in terms of the proportion of participants achieving a BMI reduction of \geq

323	5% in our analysis. A previous study in adult populations had also suggested a significant beneficial
324	effect on weight loss[35]. The difference was that phentermine-topiramate had a higher incidence of
325	gastrointestinal adverse effects and discontinuation due to any adverse event than lifestyle modification
326	alone in adult populations, which was not observed in children and adolescent patients.
327	GLP-1 receptor agonists, which stimulate postprandial insulin secretion and inhibit glucagon
328	secretion in a glucose-dependent manner, were originally used to treat T2DM (type 2 diabetes mellitus)
329	[36]. Additionally, this anti-diabetic drug was shown to benefit weight loss in subsequent
330	studies[37-40]. Its mechanism involves targeting receptors in the hypothalamus to suppress appetite,
331	controlling body weight through both a direct effect of reducing food intake and an indirect effect of
332	slowing gastric emptying[41]. Currently, two GLP-1 receptor agonists, liraglutide and semaglutide,
333	have been approved by the FDA and EMA for weight management in adolescents[42-45]. Review
334	previous studies on weight loss in children and adolescents, Ryan PM 2021 identified an effect size of
335	-1.24 (MD, [95% CI, -1.71 to -0.77] kg/m ² , 5 trials) on BMI reduction and -1.50 (MD, [95% CI, -2.50
336	to 0.50] kg, 7 trials) on weight loss for GLP-1 receptor agonists compared with placebo[46], In Chadda
337	KR 2021, GLP-1 agonist therapy resulted in a reduction in body weight of -2.74 (MD, [95% CI, -3.77
338	to -1.70] kg, 6 trials) and a decrease in BMI of -1.25 (MD, [95% CI, -1.70 to -0.80] kg/m ² , 4 trials) [47].
339	The observed smaller effects in both of these reviews compared to our findings may be attributed to the
340	differences in the number of included studies. In addition to the favorable changes in BMI and weight,
341	we found that 303 more participants per 1000 person-years experienced a 5% decrease in BMI
342	compared to lifestyle modification alone. This result is slightly inferior to phentermine-topiramate. Of
343	note, it is associated with a higher incidence of gastrointestinal adverse effects.
244	Orlistat is summartly the only weight loss drug approved by the EDA for the long term treatment

344 Orlistat is currently the only weight-loss drug approved by the FDA for the long-term treatment

345	of obesity in individuals 12 years or older[48]. By inhibiting gastrointestinal lipase, it reduces the
346	absorption of approximately 30% of dietary fats. However, its frequent gastrointestinal side effects,
347	such as urgency of bowel movements, increased frequency of bowel movements, and oily stools, limit
348	treatment compliance[49, 50]. Our study also provided evidence of a higher incidence of
349	gastrointestinal adverse events and poorer tolerance. For BMI reduction, a systematic review of
350	treatment for pediatric obesity estimated an effect size of -0.7 (MD, [95% CI, -1.2 to -0.3] kg/m ²)
351	compared to placebo[51]. Similar findings were reported in three additional studies, with the observed
352	reduction in BMI of -0.83 (MD, [95% CI, -1.19 to-0.47] kg/m ² , 2 trials)[52], -0.79 (MD, [95% CI,
353	-1.08 to -0.51] kg/m ² , 2 trials and 1 ongoing study)[53], and -0.76 (MD, [95% CI, -1.07 to -0.44] kg/m ² ,
354	2 trials)[54], respectively. In our study, we included the additional orlistat trials and performed a
355	comprehensive pooling of four studies (3 trials and 1 ongoing study), which yielded a point estimate of
356	-1.66 (MD, [95%CI, -3.23 to -0.09] kg/m ²). Consistent with our findings, a meta-analysis
357	encompassing 3 orlistat trials also demonstrated the estimate of -1.67 (MD, [95% CI, -3.52 to -0.18]
358	kg/m^2)[55], thereby reinforcing the validity and reliability of our results.

359 Metformin, a biguanide medication, is also an FDA-approved drug for T2DM in children aged 10 360 years and older, but not approved for weight loss. Its potential appetite-suppressing and 361 weight-reducing effects make it popular among obese children and adolescents[56, 57]. Mead E 2016 362 conducted a review that pooled 8 trials studying the effect of metformin on BMI reduction and reported 363 the MD value of -1.35 [95% CI, -2 to -0.69] kg/m²[53]. Our network meta-analysis yielded comparable results, with the MD of -1.10 ([95%CI, -1.79 to -0.41] kg/m², 18 trials). As a treatment for T2DM, the 364 365 BMI-reducing effect of metformin is relatively mild; however, it is safer. A study conducted in a 366 real-world clinical setting supports this result, showing that metformin as a weight loss aid in youth

367 with obesity provides modest benefits and generally well tolerated[58].

368	As far as we know, this network meta-analysis represents the most comprehensive evidence
369	base to date on pharmacological treatment in overweight or obese children and adolescents, and the
370	findings are not limited by unpublished trials. We employed comprehensive statistical methods to
371	analyze each outcome, including heterogeneity, inconsistency, and transitivity. The multi-faceted
372	sensitivity analyses and GRADE assessments further validated the reliability of our results. In addition,
373	we calculated the absolute effects, and classified interventions according to minimal important
374	differences.
375	We acknowledge several limitations of this review. Firstly, the number of included studies was
376	limited, and the available data were insufficient to evaluate the effects of each individual drug within
377	the GLP-1 receptor agonist class. Due to the same reasons, a dose-response analysis was not conducted.
378	Secondly, the focus of our analysis was exclusively on gastrointestinal-related adverse events, as there
379	were insufficient studies to support including adverse reactions from other organ systems as outcome
380	measures. Thirdly, due to fewer studies included in our analysis reported the extent of long-term weight
381	maintenance after discontinuing drug treatment, it was not possible to analyze the possibility of weight
382	gain after discontinuation.

383 Conclusions

In conclusion, this network meta-analysis summarized and compared the pharmacological treatments for overweight or obese children and adolescents, providing information for clinical decision-making. The evidence suggests that phentermine-topiramate as an adjunct medication to lifestyle interventions is closely related to weight management and has fewer adverse effects, although this needs larger studies in a range of young clinical populations to verify the effectiveness and

389 long-term maintenance of weight loss.

390 **Declaration**

- 391 Availability of data and materials
- 392 The data can be obtained by contacting the corresponding author.
- **393** Competing interests
- 394 All authors declare that they have no competing interests.
- 395 Funding
- 396 This study is sponsored by Natural Science Foundation of Xinjiang Uygur Autonomous Region
- **397** (Grant Number 2022D01B194).

398 Authors' contributors

- 399 LL and TH contributed equally. SZ, LL, TH and JZ conceived and designed the study. LL, TH
- 400 and HW screened articles, LL, TH and CZ extracted the data. YQ, ZY, CW assessed ROB. LL, TH,
- 401 HW, TX, NS contributed to the statistical analysis. SZ obtained funding for this study, and supervised
- 402 the work. LL, TH and SZ rated the certainty of evidence. LL, TH, YQ and ZY drafted the manuscript.
- 403 TH, LL, TX, NS and SZ contributed to the revision and discussed the fnal edition. All authors read and
- 404 approved the final manuscript.

405 Authors' information

- 406 ¹ Department of pharmacy, Karamay Central Hospital, Karamay, China
- 407 ² Department of pharmacy, Karamay Hospital of Xinjiang Uygur Autonomous Region People's Hospital,
- 408 Karamay, China
- 409 ³ Department of Nephropathy and Rheumatology, Karamay Central Hospital, Karamay, China
- 410 ⁴ Xinjiang Clinical Research Center for precision medicine of digestive system tumor, Karamay, China

- 411 ⁵ Xinjiang Key Laboratory of Clinical Genetic Testing and Biomedical Information, Karamay, China
- 412 ⁶ Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
- 413 [#]These authors contributed equally to this work
- 414 * Corresponding author: Department of pharmacy, Karamay Central Hospital, Karamay, 834000,
- 415 China.
- 416 E-mail address: <u>zsz90877@163.com</u> (S Zhang)
- 417
- 418
- 419
- 420
- 421
- 422
- 423
- 424
- 425

426	Figure	Legends

427 Fig. 1 PRISMA flow diagram of the study selection process.

428

429 Fig. 2 Network meta-analysis plots

(A) Change in BMI from baseline, (B) Change in weight from baseline, (C) Percentage of participants
achieving BMI reduction of at least 5%. Each circle represents an intervention, and the size of the
circle is proportional to the number of participants in that intervention. The line indicates that there is a
direct comparison between two interventions. The thickness of the line is proportional to the number of

434 trials.

435

Fig. 3 The league table for results of network meta-analysis(A) Change in BMI from baseline (mean differences, 95% CI), (B) Change in weight from baseline (mean differences, 95% CI), (C) Percentage of participants achieving BMI reduction of at least 5% (odd ratios, 95% Cl). The league tables showed the relative effects for each primary outcome, with colors representing different levels of evidence (high, moderate, low and very low). Bold text indicates statistical significance. White numbers in the dark blue boxes are P-score. The league table is arranged from left to right in descending order of P-score.

443

444 Fig. 4 Relative effects and absolute effects of interventions on benefit and harm outcomes. According 445 to MID and effect estimate values, we classified the effectiveness of interventions into four categories: 446 among the best, intermediate-possibly better, intermediate-possibly worse, and among the worst. For 447 the outcome of discontinuation due to adverse events and total gastrointestinal events, we set three 448 categories of effect class: among the worst, intermediate, among the best, based on comparisons with 449 other drugs and lifestyle interventions.

450

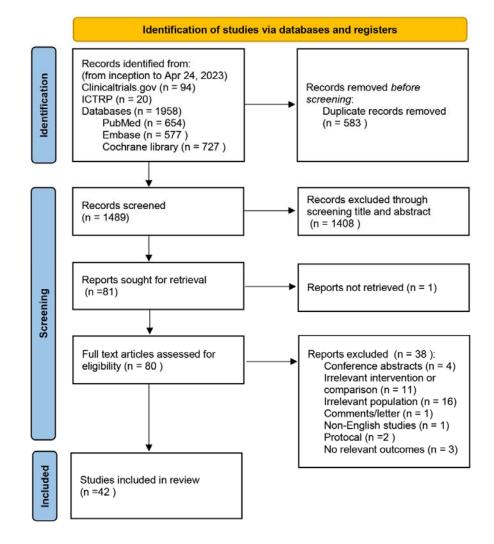
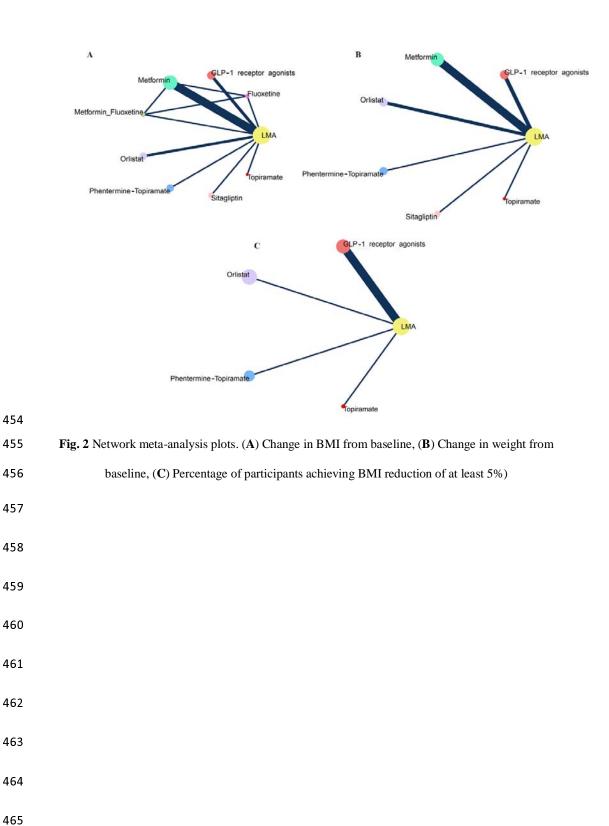



Fig. 1 PRISMA flow diagram of the study selection process.

453

- 465
- 466
- 467

-score = 0.9787							Certaint	y of evidence
Phentermine- Fopiramate	P-score = 0.6482			Sort in descen	ding order by P-s	core	High	_
2.83 (-6.33, 0.66)	Metformin combined with Fluoxetine	P-score = 0.6286		_			Low	Very low
3.02 (-5.99, -0.05)		GLP-1 receptor agonists	P-score – 0.5877					
3.17 (-6.23, -0.10)	-0.33 (-3.12, 2.45)	-0.14 (-2.23, 1.95)	Orlistat	P-score = 0.5786		1		
3.13 (-6.63, 0.36)	-0.30 (-2.92, 2.32)	-0.11 (-2.79, 2.57)	0.03 (-2.75, 2.82)	Fluoxetine	P-score - 0.4287			
3.73 (-6.45, -1.01)	-0.90 (-3.20, 1.40)	-0.71 (-2.25, 0.83)	-0.57 (-2.28, 1.15)	-0.60 (-2.90, 1.70)	Metformin	P-score - 0.3956		
3.97 (-7.91, -0.03)	-1.14 (-4.87, 2.59)	-0.95 (-4.20, 2.30)	-0.80 (-4.14, 2.53)	-0.84 (-4.57, 2.89)	-0.24 (-3.26, 2.78)	Topiramate	P-score = 0.1402	
4.83 (-7.46, -2.20)	-2.00 (-4.30, 0.30)	-1.81 (-3.19, -0.43)	-1.66 (-3.23, -0.09)	-1.70 (-4.00, 0.60)	-1.10 (-1.79, -0.41)	-0.86 (-3.80, 2.08)	Lifestyle modification alone	P-score = 0.1138
5.53 (-9.29, -1.77)	-2.70 (-6.24, 0.84)	-2.51 (-5.53, 0.51)	-2.36 (-5.48, 0.75)	-2.40 (-5.94, 1.14)	-1.80 (-4.57, 0.98)	-1.56 (-5.54, 2.42)	-0.70 (-3.39, 1.99)	Sitagliptin

P-score = 0.9998			Sort in descendi	ing order by P-score		
Phentermine-Topiramate	P-score – 0.6874					
-10.31 (-15.87, -4.75)	Orlistat	P-score = 0.6369				
-10.77 (-16.24, -5.30)	-0.46 (-4.35, 3.42)	GLP-1 receptor agonists	P-score = 0.4731		*	
12.02 (-17.08, -6.96)	-1.71 (-5.00, 1.58)	-1.25 (-4.38, 1.89)	Metformin	P-score – 0.4597		
12.16 (-19.91, -4.41)	-1.85 (-8.57, 4.88)	-1.39 (-8.04, 5.26)	-0.14 (-6.46, 6.18)	Topiramate	P-score = 0.1644	
14.59 (-19.37, -9.81)	-4.28 (-7.12, -1.44)	-3.82 (-6.47, -1.16)	-2.57 (-4.23, -0.91)	-2.43 (-8.53, 3.67)	Lifestyle modification alone	P-score - 0.0787
16.39 (-23.24, -9.54)	-6.08 (-11.75, -0.41)	-5.62 (-11.20, -0.03)	-4.37 (-9.55, 0.81)	-4.23 (-12.06, 3.60)	-1.80 (-6.71, 3.11)	Sitagliptin

P-score = 0.9276		Sort in descending	order by P-score	
Phentermine-Topiramate	P-score = 0.6939			
2.89 (0.39, 21.68)	GLP-1 receptor agonists	P-score – 0.3940		_
7.03 (0.38, 129.65)	2.43 (0.20, 28.96)	Topiramate	P-score = 0.3673	
7.47 (0.77, 72.87)	2.58 (0.48, 13.90)	1.06 (0.07, 15.74)	Orlistat	P-score = 0.1172
14.06 (2.34, 84.35)	4.86 (1.93, 12.24)	2.00 (0.20, 19.93)	1.88 (0.46, 7.68)	Lifestyle modification alone

468

469 Fig. 3 Relative effect sizes of pharmacotherapy and GRADE Rating. (A) Change in BMI from

470 baseline (mean differences, 95% CI), (**B**) Change in weight from baseline (mean differences, 95% CI),

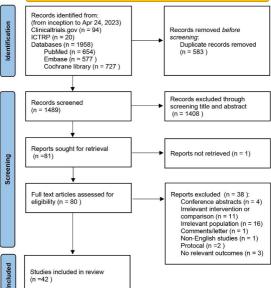
471 (C) Percentage of participants achieving BMI reduction of at least 5% (odd ratios, 95% Cl).

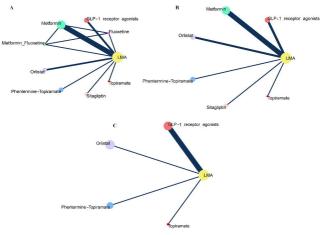
- 472
- 473
- 474
- 475
- 476

	Interventions	Change in BMI from baseline (MD, 95% CI)	Change in Weight from baseline (MD, 95% CI)	Participants achieving BMI reduction of at least 5% (RD)	Total gastrointestinal adverse events (RD)	Discontinuation due to adverse events (RD)
	GLP-1 receptor agonists	-1.81 (-3.19, -0.43)	-3.82 (-6.47, -1.16)	303 more (100 more to 527 more)	218 more (120 more to 323 more)	10 more (2 fewer to 42 more)
	Metformin	-1.10 (-1.79, -0.41)	-2.57 (-4.23, -0.91)	-	57 more (22 fewer to 158 more)	9 more (3 fewer to 42 more)
	Orlistat	-1.66 (-3.23, -0.09)	-4.28 (-7.12, -1.44)	95 more	726 more	23 more (1 more to 91 more)
	Phentermine-Topiramate	-4.83 (-7.46, -2.20)	-14.59 (-19.37, -9.81)	(71 fewer to 417 more) 557 more	(299 more to 806 more) 11 fewer	5 fewer
		0.70 (-1.99, 3.39)	1.80 (-3.11, 6.71)	(137 more to 729 more)	(109 fewer to 170 more)	(9 fewer to 23 more) 20 more
	Sitagliptin	Martin and a state of the		- 106 more		(7 fewer to 237 more)
	Topiramate	-0.86 (-3.80, 2.08)	-2.43 (-8.53, 3.67)	(109 fewer to 625 more)		
	Fluoxetine	-1.70 (-4.00, 0.60)		<u>.</u>	<u>.</u>	
	Metformin_Fluoxetine	-2.00 (-4.30, 0.30) reference	•	-	-	-
	Litestyle insulfication alone		reference mefit outcomes	141 per 1000 patients	185 per 1000 patients Harm outco	10 per 1000 patients
	Hirbs		ce Low or very low certain	ity evidence High or m	oderate certainty evidence	Low or very low certainty evidence
	Among the best Definit modifi liate—possibly better Possib modifi liate—possibly worse Possib modifi Among the worst Definit	ely better than lifestyle [cation alone ly better than lifestyle [cation alone ly no better than lifestyle [cation alone	May be better than lifesty modification alone Might be better than lifes modification alone Might be no better than li modification alone	le No more h modificatio tyle More harm modificatio festyle than other style More harm	armful than lifestyle on alone aful than lifestyle on alone, but no worse interventions	 No more harmful than lifestyle modification alone More harmful than lifestyle modification alone, but no worse than other interventions More harmful than lifestyle modifica alone and some other interventions
477						
478 F	ig. 4 Relative effe	ects and absolu	ute effects of in	nterventions on	benefit and h	arm outcomes.
479						
480						
481						
482						
483						
484						
485						
486						
487						
488						
489						
490						
491						

492 **References**

493	1.	The Lancet Public H: Childhood obesity beyond COVID-19. Lancet Public Health. 2021;
494		6(8):e534.


- 495 2. Di Cesare M, Sorić M, Bovet P, Miranda JJ, Bhutta Z, Stevens GA, Laxmaiah A, Kengne AP,
 496 Bentham J: The epidemiological burden of obesity in childhood: a worldwide epidemic
 497 requiring urgent action. BMC Med. 2019; 17(1):212.
- 4983.WorldObesityFederation.WorldObesityAtlas2023.499[https://data.worldobesity.org/publications/?cat=19]
- Peinado Fabregat MI, Saynina O, Sanders LM: Obesity and Overweight Among Children
 With Medical Complexity. Pediatrics. 2023; 151(1).
- 5. Kumar S, Kelly AS: Review of Childhood Obesity: From Epidemiology, Etiology, and
 Comorbidities to Clinical Assessment and Treatment. Mayo Clin Proc. 2017; 92(2):251-265.
- Lanigan J, Sauven N: Treatment of childhood obesity: a multidisciplinary approach. Clinics in Integrated Care. 2020; 3:100026.
- Rao W-W, Zong Q-Q, Zhang J-W, An F-R, Jackson T, Ungvari GS, Xiang Y, Su Y-Y, D'Arcy
 C, Xiang Y-T: Obesity increases the risk of depression in children and adolescents: Results
 from a systematic review and meta-analysis. J of Affective Disorders. 2020; 267:78-85.
- Halfon N, Larson K, Slusser W: Associations Between Obesity and Comorbid Mental Health,
 Developmental, and Physical Health Conditions in a Nationally Representative Sample of US
 Children Aged 10 to 17. Acad Pediatr. 2013; 13(1):6-13.
- 512 9. Calcaterra V, Rossi V, Mari A, Casini F, Bergamaschi F, Zuccotti GV, Fabiano V: Medical
 513 treatment of weight loss in children and adolescents with obesity. Pharmacol Res. 2022;
 514 185:106471.
- 515 10. Ebbeling CB, Pawlak DB, Ludwig DS: Childhood obesity: public-health crisis, common sense
 516 cure. The Lancet. 2002; 360(9331):473-482.
- 517 11. Sothern MS: EXERCISE AS A MODALITY IN THE TREATMENT OF CHILDHOOD
 518 OBESITY. Pediatr Clin N Am. 2001; 48(4):995-1015.
- 519 12. Varkevisser RDM, van Stralen MM, Kroeze W, Ket JCF, Steenhuis IHM: Determinants of
 520 weight loss maintenance: a systematic review. Obes Rev. 2019; 20(2):171-211.
- 521 13. Steinbeck KS, Lister NB, Gow ML, Baur LA: Treatment of adolescent obesity. Nat Rev
 522 Endocrinol. 2018; 14(6):331-344.
- 523 14. Güngör NK: Overweight and obesity in children and adolescents. J Clin Res Pediatr
 524 Endocrinol. 2014; 6(3):129-143.
- Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, Ioannidis JP, Straus
 S, Thorlund K, Jansen JP et al: The PRISMA extension statement for reporting of systematic
 reviews incorporating network meta-analyses of health care interventions: checklist and
 explanations. Ann Intern Med. 2015; 162(11):777-784.
- 529 16. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L,
 530 Tetzlaff JM, Akl EA, Brennan SE et al: The PRISMA 2020 statement: an updated guideline
 531 for reporting systematic reviews. Bmj. 2021; 372:n71.
- 532 17. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, Cates CJ, Cheng HY,
 533 Corbett MS, Eldridge SM et al: RoB 2: a revised tool for assessing risk of bias in randomised
 534 trials. Bmj. 2019; 366:14898.


535	18.	Shim SR, Kim SJ, Lee J, Rücker G: Network meta-analysis: application and practice using R
536	10.	software. Epidemiol Health. 2019; 41:e2019013.
537	19.	Jiang N, Rao F, Xiao J, Yang J, Wang W, Li Z, Huang R, Liu Z, Guo T: Evaluation of different
538		surgical dressings in reducing postoperative surgical site infection of a closed wound: A
539		network meta-analysis. Int J Surg. 2020; 82:24-29.
540	20.	Higgins JP, Jackson D, Barrett JK, Lu G, Ades AE, White IR: Consistency and inconsistency
541	20.	in network meta-analysis: concepts and models for multi-arm studies. Res Synth Methods.
542		2012; 3(2):98-110.
543	21.	Rücker G, Schwarzer G: Ranking treatments in frequentist network meta-analysis works
544		without resampling methods. BMC Med Res Methodol. 2015; 15:58.
545	22.	Puhan MA, Schünemann HJ, Murad MH, Li T, Brignardello-Petersen R, Singh JA, Kessels
546		AG, Guyatt GH: A GRADE Working Group approach for rating the quality of treatment effect
547		estimates from network meta-analysis. Bmj. 2014; 349:g5630.
548	23.	Brignardello-Petersen R, Bonner A, Alexander PE, Siemieniuk RA, Furukawa TA, Rochwerg
549	-01	B, Hazlewood GS, Alhazzani W, Mustafa RA, Murad MH et al: Advances in the GRADE
550		approach to rate the certainty in estimates from a network meta-analysis. J Clin Epidemiol.
551		2018; 93:36-44.
552	24.	Zeng L, Brignardello-Petersen R, Hultcrantz M, Siemieniuk RAC, Santesso N, Traversy G,
553		Izcovich A, Sadeghirad B, Alexander PE, Devji T et al: GRADE guidelines 32: GRADE offers
554		guidance on choosing targets of GRADE certainty of evidence ratings. J Clin Epidemiol. 2021;
555		137:163-175.
556	25.	Chen AK, Roberts CK, Barnard RJ: Effect of a short-term diet and exercise intervention on
557		metabolic syndrome in overweight children. Metabolism. 2006; 55(7):871-878.
558	26.	Ozkan B, Bereket A, Turan S, Keskin S: Addition of orlistat to conventional treatment in
559		adolescents with severe obesity. Eur J Pediatr. 2004; 163(12):738-741.
560	27.	Diene G, Angulo M, Hale PM, Jepsen CH, Hofman PL, Hokken-Koelega A, Ramesh C, Turan
561		S, Tauber M: Liraglutide for Weight Management in Children and Adolescents With
562		Prader-Willi Syndrome and Obesity. J Clin Endocrinol Metab. 2022; 108(1):4-12.
563	28.	Dhillon S: Phentermine/Topiramate: Pediatric First Approval. Paediatr Drugs. 2022;
564		24(6):715-720.
565	29.	FDA Approves Treatment for Chronic Weight Management in Pediatric Patients Aged 12
566		Years and Older
567		[https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-treatment-chronic-weight
568		-management-pediatric-patients-aged-12-years-and-older]
569	30.	Kelly AS, Bensignor MO, Hsia DS, Shoemaker AH, Shih W, Peterson C, Varghese ST:
570		Phentermine/Topiramate for the Treatment of Adolescent Obesity. NEJM Evid. 2022; 1(6).
571	31.	Heal DJ, Gosden J, Smith SL: What is the prognosis for new centrally-acting anti-obesity
572		drugs? Neuropharmacology. 2012; 63(1):132-146.
573	32.	Astrup A, Toubro S: Topiramate: a new potential pharmacological treatment for obesity. Obes
574		Res. 2004; 12 Suppl:167s-173s.
575	33.	Gadde KM, Allison DB, Ryan DH, Peterson CA, Troupin B, Schwiers ML, Day WW: Effects
576		of low-dose, controlled-release, phentermine plus topiramate combination on weight and
577		associated comorbidities in overweight and obese adults (CONQUER): a randomised,
578		placebo-controlled, phase 3 trial. Lancet. 2011; 377(9774):1341-1352.

- 70	24	
579	34.	Garvey WT, Ryan DH, Look M, Gadde KM, Allison DB, Peterson CA, Schwiers M, Day WW,
580		Bowden CH: Two-year sustained weight loss and metabolic benefits with controlled-release
581		phentermine/topiramate in obese and overweight adults (SEQUEL): a randomized,
582		placebo-controlled, phase 3 extension study. Am J Clin Nutr. 2012; 95(2):297-308.
583	35.	Shi Q, Wang Y, Hao Q, Vandvik PO, Guyatt G, Li J, Chen Z, Xu S, Shen Y, Ge L et al:
584		Pharmacotherapy for adults with overweight and obesity: a systematic review and network
585		meta-analysis of randomised controlled trials. Lancet. 2022; 399(10321):259-269.
586	36.	Fruci B, Giuliano S, Mazza A, Malaguarnera R, Belfiore A: Nonalcoholic Fatty liver: a
587		possible new target for type 2 diabetes prevention and treatment. Int J Mol Sci. 2013;
588		14(11):22933-22966.
589	37.	Drucker DJ: GLP-1 physiology informs the pharmacotherapy of obesity. Mol Metab. 2022;
590		57:101351.
591	38.	Basolo A, Burkholder J, Osgood K, Graham A, Bundrick S, Frankl J, Piaggi P, Thearle MS,
592		Krakoff J: Exenatide has a pronounced effect on energy intake but not energy expenditure in
593		non-diabetic subjects with obesity: A randomized, double-blind, placebo-controlled trial.
594		Metabolism. 2018; 85:116-125.
595	39.	Wadden TA, Walsh OA, Berkowitz RI, Chao AM, Alamuddin N, Gruber K, Leonard S,
596		Mugler K, Bakizada Z, Tronieri JS: Intensive Behavioral Therapy for Obesity Combined with
597		Liraglutide 3.0 mg: A Randomized Controlled Trial. Obesity (Silver Spring). 2019;
598		27(1):75-86.
599	40.	Wadden TA, Hollander P, Klein S, Niswender K, Woo V, Hale PM, Aronne L: Weight
600		maintenance and additional weight loss with liraglutide after low-calorie-diet-induced weight
601		loss: the SCALE Maintenance randomized study. Int J Obes (Lond). 2013; 37(11):1443-1451.
602	41.	Vergès B, Bonnard C, Renard E: Beyond glucose lowering: glucagon-like peptide-1 receptor
603		agonists, body weight and the cardiovascular system. Diabetes Metab. 2011; 37(6):477-488.
604	42.	Food and Drug Administration. FDA Approves Weight Management Drug for Patients
605	Aged	12 and Older
606	8	[https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-weight-management-dru
607		g-patients-aged-12-and-older]
608	43.	MedwireNews. EMA Approves Liraglutide for Teenagers with Obesity
609	151	[https://diabetes.medicinematters.com/en-GB/liraglutideobesity-/adolescents/ema-approves-]
610		iraglutide-for-teenagers-with-obesity/19028106]
611	44.	MedwireNews. FDA Approves High-dose Semaglutide for Adolescents with Obesity
612		[https://diabetes.medicinematters.com/en-GB/semaglutide/obesity/us-fda-children-obesity/239
613		02216]
614	45.	European Medicines Agency. Union Register of Medicinal Products for Human Use
615	45.	[https://ec.europa.eu/health/documents/community-register/html/h1608.htm]
	46.	Ryan PM, Seltzer S, Hayward NE, Rodriguez DA, Sless RT, Hawkes CP: Safety and Efficacy
616 617	40.	
617 618		of Glucagon-Like Peptide-1 Receptor Agonists in Children and Adolescents with Obesity:
618 610	47	A Meta-Analysis. J Pediatr. 2021; 236:137-147.e113.
619 620	47.	Chadda KR, Cheng TS, Ong KK: GLP-1 agonists for obesity and type 2 diabetes in children:
620	40	Systematic review and meta-analysis. Obes Rev. 2021; 22(6):e13177.
621	48.	Sherafat-Kazemzadeh R, Yanovski SZ, Yanovski JA: Pharmacotherapy for childhood obesity:
622		present and future prospects. Int J Obesity. 2013; 37(1):1-15.

623	49.	Chanoine JP, Hampl S, Jensen C, Boldrin M, Hauptman J: Effect of orlistat on weight and
624		body composition in obese adolescents: a randomized controlled trial. Jama. 2005;
625		293(23):2873-2883.
626	50.	Davidson MH, Hauptman J, DiGirolamo M, Foreyt JP, Halsted CH, Heber D, Heimburger DC,
627		Lucas CP, Robbins DC, Chung J et al: Weight control and risk factor reduction in obese
628		subjects treated for 2 years with orlistat: a randomized controlled trial. Jama. 1999;
629		281(3):235-242.
630	51.	McGovern L, Johnson JN, Paulo R, Hettinger A, Singhal V, Kamath C, Erwin PJ, Montori
631		VM: Clinical review: treatment of pediatric obesity: a systematic review and meta-analysis of
632		randomized trials. J Clin Endocrinol Metab. 2008; 93(12):4600-4605.
633	52.	Viner RM, Hsia Y, Tomsic T, Wong IC: Efficacy and safety of anti-obesity drugs in children
634		and adolescents: systematic review and meta-analysis. Obes Rev. 2010; 11(8):593-602.
635	53.	Mead E, Atkinson G, Richter B, Metzendorf MI, Baur L, Finer N, Corpeleijn E, O'Malley C,
636		Ells LJ: Drug interventions for the treatment of obesity in children and adolescents. Cochrane
637		Database Syst Rev. 2016; 11(11):Cd012436.
638	54.	Oude Luttikhuis H, Baur L, Jansen H, Shrewsbury VA, O'Malley C, Stolk RP, Summerbell CD:
639		Interventions for treating obesity in children. Cochrane Database Syst Rev. 2009;
640		(1):Cd001872.
641	55.	Czernichow S, Lee CM, Barzi F, Greenfield JR, Baur LA, Chalmers J, Woodward M, Huxley
642		RR: Efficacy of weight loss drugs on obesity and cardiovascular risk factors in obese
643		adolescents: a meta-analysis of randomized controlled trials. Obes Rev. 2010; 11(2):150-158.
644	56.	Day EA, Ford RJ, Smith BK, Mohammadi-Shemirani P, Morrow MR, Gutgesell RM, Lu R,
645		Raphenya AR, Kabiri M, McArthur AG et al: Metformin-induced increases in GDF15 are
646		important for suppressing appetite and promoting weight loss. Nat Metab. 2019;
647		1(12):1202-1208.
648	57.	Malin SK, Kashyap SR: Effects of metformin on weight loss: potential mechanisms. Curr
649		Opin Endocrinol Diabetes Obes. 2014; 21(5):323-329.
650	58.	Kyler KE, Kadakia RB, Palac HL, Kwon S, Ariza AJ, Binns HJ: Use of Metformin for Weight
651		Management in Children and Adolescents With Obesity in the Clinical Setting. Clin Pediatr
652		(Phila). 2018; 57(14):1677-1685.
653		
654		

							Certaint	y of evidence
Phentermine- Fopiramate	P-score = 0.6482			Sort in descen	ding order by P-	score	High	_
2.83 (-6.33, 0.66)	Metformin combined with Fluoxetine	P-score = 0.6286					Low	Very low
3.02 (-5.99, -0.05)	-0.19 (-2.87, 2.49)	GLP-1 receptor agonists	P-score - 0.5877					
3.17 (-6.23, -0.10)	-0.33 (-3.12, 2.45)	-0.14 (-2.23, 1.95)	Orlistat	P-score - 0.5786		~		
3.13 (-6.63, 0.36)	-0.30 (-2.92, 2.32)	-0.11 (-2.79, 2.57)	0.03 (-2.75, 2.82)	Fluoraetine	P-score = 0.4287			
3.73 (-6.45, -1.01)	-0.90 (-3.20, 1.40)	-0.71 (-2.25, 0.83)	-0.57 (-2.28, 1.15)	-0.60 (-2.90, 1.70)	Metformin	P-score = 0.3956		
3.97 (-7.91, -0.03)	-1.14 (-4.87, 2.59)	-0.95 (-4.20, 2.30)	-0.80 (-4.14, 2.53)	-0.84 (-4.57, 2.89)	-0.24 (-3.26, 2.78)	Topiramate	P-score = 0.1402	
4.83 (-7.46, -2.20)	-2.00 (-4.30, 0.30)	-1.81 (-3.19, -0.43)	-1.66 (-3.23, -0.09)	-1.70 (-4.00, 0.60)	-1.10 (-1.79, -0.41)	-0.86 (-3.80, 2.08)	Lifestyle modification alone	P-score = 0.1135
5.53 (-9.29, -1.77)	-2.70 (-6.24, 0.84)	-2.51 (-5.53, 0.51)	-2.36 (-5.48, 0.75)	-2.40 (-5.94, 1.14)	-1.80 (-4.57, 0.98)	-1.56 (-5.54, 2.42)	-0.70 (-3.39, 1.99)	Sitagliptin

?-score = 0.9998			Sort in desce	nding order by P-scor	re	
Phentermine-Topiramate	P-score - 0.6874					
10.31 (-15.87, -4.75)	Orlistat	P-score = 0.6369				
10.77 (-16.24, -5.30)	-0.46 (-4.35, 3.42)	GLP-1 receptor agonists	P-score = 0.4731		7	
12.02 (-17.08, -6.96)	-1.71 (-5.00, 1.58)	-1.25 (-4.38, 1.89)	Metformin	P-score = 0.4597		
12.16 (-19.91, -4.41)	-1.85 (-8.57, 4.88)	-1.39 (-8.04, 5.26)	-0.14 (-6.46, 6.18)	Topizamate	P-score = 0.1644	
14.59 (-19.37, -9.81)	-4.28 (-7.12, -1.44)	-3.82 (-6.47, -1.16)	-2.57 (-4.23, -0.91)	-2.43 (-8.53, 3.67)	Lifestyle modification alone	P-score – 0.0787
16.39 (-23.24, -9.54)	-6.08 (-11.75, -0.41)	-5.62 (-11.20, -0.03)	-4.37 (-9.55, 0.81)	-4.23 (+12.06, 3.60)	-1.80 (-6.71, 3.11)	Sitagliptin

score – 0.9276		Sort in de	scending order by P-score	
heutermine-Topiramate	P-score = 0.6939			
2.89 (0.39, 21.68)	GLP-1 receptor agonists	P score – 0.3940		
.03 (0.38, 129.65)	2.43 (0.20, 28.96)	Topizamate	P-score = 0.3673	
7.47 (0.77, 72.87)	2.58 (0.48, 13.90)	1.06 (0.07, 15.74)	Orlistat	P-score = 0.1172
4.06 (2.34, 84.35)	4.86 (1.93, 12.24)	2.00 (0.20, 19.93)	1.88 (0.46, 7.68)	Lifestyle modification alone

	Change in BMI from baseline (MD, 95% CI)	Change in Weight from baseline (MD, 95% CI)	Participants achieving BMI reduction of at least 5% (RD)	Total gastrointestinal adverse events (RD)	Discontinuation due to adverse events (RD)
GLP-1 receptor agonists	-1.81 (-3.19, -0.43)	-3.82 (-6.47, -1.16)	303 more (100 more to 527 more)	218 more (120 more to 323 more)	10 more (2 fewer to 42 more)
Metformin	-1.10 (-1.79, -0.41)	-2.57 (-4.23, -0.91)	~	57 more (22 fewer to 158 more)	9 more (3 fewer to 42 more)
Orlistat	-1.66 (-3.23, -0.09)	-4.28 (-7.12, -1.44)	95 more (71 fewer to 417 more)	726 more (299 more to 806 more)	23 more (1 more to 91 more)
Phentermine-Topiramate	-4.83 (-7.46, -2.20)	-14.59 (-19.37, -9.81)	557 more (137 more to 729 more)	11 fewer (109 fewer to 170 more)	5 fewer (9 fewer to 23 more)
Sitagliptin	0.70 (-1.99, 3.39)	1.80 (-3.11, 6.71)			20 more (7 fewer to 237 more)
Topiramate	-0.86 (-3.80, 2.08)	-2.43 (-8.53, 3.67)	106 more (109 fewer to 625 more)		
Fluoxetine	-1.70 (-4.00, 0.60)		-	-	×
Metformin_Fluoxetine	-2.00 (-4.30, 0.30)	-	-		-
Lifestyle modification alone	reference	reference	141 per 1000 patients	185 per 1000 patients	10 per 1000 patients
	Br	enefit outcomes		Harm outco	ames
Among the best Definite modific diate—possibly better Possibly modifici	cation alone ly better than lifestyle E cation alone	May be better than lifestyl modification alone Might be better than lifest modification alone	de No more h modificati nyle More hann modificati	nful than lifestyle ion alone, but no worse	Low or very low certainty evid No more harmful than lifestyle modification alone More harmful than lifestyle modification alone, but no worse
modific Among the worst Definite	ly no better than lifestyle cation alone tely no better than lifestyle cation alone	 Might be no better than life modification alone May be no better than life modification alone 	estyle 🔲 More harm	interventions nful than lifestyle modification some other interventions	than other interventions More harmful than lifestyle mod alone and some other interventic