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Abstract 

Aims/hypothesis: To examine the dose-response associations between device-

measured physical activity types and posture (sitting and standing time) with 

cardiometabolic health. 

Methods:  An individual participant harmonised meta-analysis of 12,095 adults 

(mean age±SD= 54.5±9.6 years; Female=54.8%) from 6 cohorts with thigh-worn 

accelerometry. Associations of average daily duration of walking, stair climbing, 

running, standing and sitting with composite cardiometabolic health score (based on 

standardised z-scores) and individual cardiometabolic markers (body mass index, 

waist circumference, triglycerides, high-density lipoprotein cholesterol, glycated 

haemoglobin, and total cholesterol) were examined cross-sectionally using 

generalised linear modelling and cubic splines. 

Results: We observed more favourable composite cardiometabolic health (i.e. z-

score <0) at approximately 64 minutes/day walking (z-score [95%CI] = -0.14 [-0.25, -

0.02]) and 5 minutes/day stair climbing (-0.14 [-0.24, -0.03]). We observed an 

equivalent magnitude of association at 2.6 hours/day standing. Any amount of 

running was associated with better composite cardiometabolic health. We did not 

observe an upper limit to the magnitude of the dose-response associations for any 

activity type or standing. There was an inverse dose-response association between 

sitting time and composite cardiometabolic health that became markedly less 

favourable when daily durations exceeded 12.1 hours/day. Associations for sitting 

time were no longer significant after excluding participants with prevalent 

cardiovascular disease or medication use. The dose-response pattern was generally 
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consistent between activity and posture types and individual cardiometabolic health 

markers.  

Conclusions/interpretation: In the first activity-type specific analysis of device-

based physical activity, ~64 minutes/day of walking and ~5.0 minutes/day of stair 

climbing, was associated with a favourable cardiometabolic risk profile. The 

deleterious associations of sitting time were fully attenuated after exclusion of 

participants with prevalent cardiovascular disease and medication use. Our findings 

on cardiometabolic health and durations in different activity-types and posture may 

inform clinicians and future interventions to provide personalised prescription 

options.
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Introduction: 

Cardiometabolic risk factors tend to cluster through abnormal metabolic, lipid, and 

non-lipid profiles leading to increased risk of the development and progression of 

cardiovascular disease (CVD). It is estimated that more than a quarter of the world 

population will have impaired glucose tolerance by 2045 with 10.9% diagnosed with 

diabetes1. Currently, more than a third of the population is living with hypertension2, 

approximately one quarter are classified as overweight, and an additional 13% as 

obese3 4. Low physical activity and high sedentary time are leading behavioural risk 

factors5 6 for cardiometabolic diseases, but there is a dearth of information on the 

dose-response relationships of daily time spent in different physical activity types 

and posture (sitting, standing) with key cardiometabolic outcomes. The latest 

American Heart Association6 and European Society for Cardiology5 reports have 

identified the need to improve physical activity prescription through accessible forms 

of daily physical activity. Likewise, the 2020 World Health Organisation Guidelines 

Development Group highlighted the paucity of evidence on the dose-response 

relationship of physical activity types with health outcomes and emphasised the 

value of device-based measurement7 captured in everyday life in real-world 

environments. 

Research on the health effects of physical activity has predominantly focused on 

amounts of intensity-specific physical activity, usually measured through 

questionnaires. Self-reported physical activity measures are limited due to 

measuring only continuous physical activity blocks lasting a minimum of 10-15 

minutes, the inability to accurately measure posture (e.g., standing time), and 

susceptibility to recall and social desirability bias8. Previous device-based methods 

relied on acceleration magnitude cut-points to classify activity by intensity, but these 
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cannot determine activity type or posture (e.g. sitting versus standing). Studies using 

advanced device data curation techniques, which were able to quantify movement 

and posture at a very high resolution, have identified “micropatterns” of physical 

activity associated with lower mortality9 10 and disease incidence11 12 risk. Although 

these wrist-device based outcomes are a significant advance over previous 

evidence, these studies are limited in assessing associations of posture and physical 

activity types, including activities of daily living such as stair climbing and running, 

with health outcomes. Thigh-worn accelerometry, in addition to measuring 

ambulatory activity type, can differentiate between sitting and standing postures 

using the tilt angle of the thigh with a high degree of accuracy and consistency13 14. 

Interventions, using thigh-worn accelerometers, have shown that increased standing 

and reductions in sitting time can improve cardiometabolic health outcomes under 

structured and controlled conditions15-17. However, the translatability of these 

interventions to real-world environments and comparability to ambulatory activity 

types remains largely unknown. 

Using data from the largest pooled thigh-worn accelerometry resource to date, we 

conducted a harmonised individual participant meta-analysis of six cohorts to 

examine the cross-sectional, dose-response associations of device-measured 

physical activity types (walking, stair climbing, running) and posture (sitting, 

standing) with cardiometabolic health markers.   

Methods: 

Studies 

The Prospective Physical Activity, Sitting, and Sleep (ProPASS) Consortium is a 

data resource and research methods development platform that brings together 
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existing and future observational studies of device-measured movement 

behaviours18 19. The current analyses included pooled individual participant data from 

six ProPASS cohorts: the Australian Longitudinal Study on Women’s Health20 21, 

1970 British Cohort Study (BCS70)22, Danish Physical Activity Cohort (DPhacto)23, 

Finnish Retirement and Aging Study (FIREA)24, Nijmegen Exercise Study25, and The 

Maastricht Study26. In total, 15,168 participants had ≥1 day of valid accelerometer 

data27 (≥20 hours of wear time and ≥3 hours of sleep). We excluded participants with 

missing covariate data, or missing outcomes (Supplemental Figure 1). 

Harmonisation of physical activity type and posture 

Participants in each cohort were instructed to wear a tri-axial accelerometer 

capturing raw signal data on their thigh for 24 hours a day for 7 days. All 

accelerometry data cleaning, processing and harmonisation was done at the 

University of Sydney. To ensure consistency in data cleaning and standardisation in 

processing of accelerometer data, we used a specialised and validated software 

(ActiPASS v1.32)28. ActiPASS auto-corrects for device orientation and uses standard 

procedures for device calibration and identification of non-wear time29 30. Physical 

activity and posture were classified in 2-second windows with a 50% overlap 

(resolution of 1 second windows) using a Decision Tree31. The Australian 

Longitudinal Study on Women’s Health, BCS70, Nijmegen Exercise Study and The 

Maastricht Study used ActivPAL monitors (sampling frequency= 20Hz); the Finnish 

Retirement and Aging Study used Axivity monitors (sampling frequency= 100Hz); 

and the Danish Physical Activity Cohort used ActiGraph monitors (sampling 

frequency= 30Hz).The Decision Tree model has been shown to have good to 

excellent accuracy (>90% for sitting, walking, and running) in activity type and 

posture predictions between different monitors13 14. A complete description of the 
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Decision Tree physical activity type and posture classifier and independent validation 

is provided in Supplemental Text 1. The signal standard deviation and tilt angle 

were used to classify fundamental activities and postures such as walking, stair 

climbing, running, sitting, and standing 31. Sleep was classified using a second 

decision tree32 

Cardiometabolic health 

During clinic or home visits, staff from each cohort recorded participants’ height, 

weight, and waist circumference using standard procedures. Participants from all 

cohorts, except for the DPhacto cohort provided blood samples for measurements of 

high density lipoprotein (HDL) cholesterol, total cholesterol, triglycerides, and 

glycated haemoglobin (HbA1C). Blood biomarker data assessment procedures and 

assay coefficients of variations by cohort are provided in Supplemental Table 1. 

Standardised values (z-scores based on composite sample distribution) for 

normalised cardiometabolic markers were calculated33. A composite cardiometabolic 

health score was calculated as the mean of the normally distributed six standardised 

scores. For HDL cholesterol, values were inverted since higher HDL cholesterol is 

protective for CVD34. Sex-specific waist circumference scores were generated to 

align with sex-specific guidelines35. A z-score of 1 indicates a score of 1 standard 

deviation above the mean of the sample, and lower composite scores represent 

better cardiometabolic health. 

Covariates 

For each participating cohort, covariates were measured during clinic or home visits, 

and chosen a priori based on previous literature indicating that they were likely 

confounders 27 36 37 These were: age (years), sex (male/female), smoking status 
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(non-smoker/current smoker), alcohol consumption (cohort-specific tertiles based on 

weekly consumption), self-rated health (five-point Likert scale), self-reported 

medication use (blood pressure, glucose, and lipid-lowering),self-reported history of 

CVD and cohort. Fasting status was included as a covariate for analyses that 

included blood biomarker outcomes. Accelerometer measured sleep duration 

(hours/day) was also included as a covariate. Daily duration of physical activity 

types, standing, and sitting time were mutually adjusted for each other using the 

residual method38, consistent with prior studies assessing physical activity over a 

fixed time interval. For example, in analyses with walking as the exposure, total 

duration of physical activity was regressed on walking time with the residuals of total 

physical activity duration used as covariates in our model. A subset of cohorts 

provided information for education (n=4 cohorts; high school, high school, further 

education, ≥university/college), occupational class (n=5 cohorts; not working, low 

occupational class, intermediate occupational class, high occupational class), and 

functional mobility (n=4 cohorts; 10-item questionnaire scores ranging from 0 [lowest] 

to 100 [highest]). Covariate harmonisation procedures are described in 

Supplemental Table 2.  

Analyses 

We conducted a one-stage individual participant data meta-analysis39 using 

generalised linear regression to estimate the association of the exposures with 

compositive cardiometabolic health, body mass index, waist circumference, HDL 

cholesterol, triglycerides, HbA1C, and total cholesterol. Data are presented as beta 

coefficients with 95% confidence intervals (95%CI). Assumptions for regression 

analyses were checked using residuals and leverage-versus-residual-squared plots. 

To account for potential non-linearity between physical activity types (walking, 
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running, stairs) and posture (sitting, standing) with each outcome, we used restricted 

cubic spline modelling with knots at the 10th, 50th, and 90th percentiles. Departure 

from linearity was assessed by a Wald test examining the null hypothesis that the 

coefficient of the second spline was equal to zero. 

 In sensitivity analyses of composite cardiometabolic health, for participants with 

available data (e.g. Australian Longitudinal Study on Women’s Health, BCS70, and 

The Maastricht Study), we included adjustments for socioeconomic status (education 

and occupational class) and functional mobility. We also repeated our analyses after 

excluding participants with prevalent CVD (n=1,162) or medication use (blood 

pressure, glucose, lipid-lowering medication; n=3,360). We tested for interactions 

(ANOVA) between each exposure and sex. If an interaction was significant, we 

performed additional analyses for effect modification. To account for associations 

that might be due to differences in the absolute time spent in different physical 

activity types and postures, we performed an analysis for composite cardiometabolic 

health with time standardised (z-score) for each exposure. 

We performed all analyses using R statistical software with the rms package. We 

report this study as per the Strengthening the Reporting of Observational Studies in 

Epidemiology (STROBE) guidelines (Supplemental STROBE Statement). 

Results 

Our analytic sample included 12,095 participants. Descriptions of the individual 

cardiometabolic markers and participant characteristics by cohort are provided in 

Table 1. Mean age was 54.5 years (SD 9.6), 54.8% were female, and 43.5% had 

very good to excellent self-rated health. Participants in the Nijmegen Exercise Study 

cohort had the highest observed stair climbing time (Median [IQR]= 9.5 [6.3, 14.9] 
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mins/day) and participants in DPhacto had the highest walking time (98.1 [79.8, 

121.8] mins/day). Collectively, participants from the FIREA, Nijmegen Exercise 

Study, and The Maastricht Study cohorts had the highest sitting time with a median 

>10 hours/day. Characteristics of excluded participants are shown in Supplemental 

Table 3. 

Multivariable adjusted dose-response associations of activity type and posture 

with composite cardiometabolic health score 

Running and stair climbing had the strongest relationship with cardiometabolic 

health, in terms of activity duration and association magnitude (Figure 1). For 

example, any duration of running and ~5 minutes/day of stair climbing was 

associated with more favourable cardiometabolic health (i.e. z-score <0; ~5 

minutes/day of stair climbing z-score [95%CI]= -0.14 [-0.24, -0.03]). When stair 

climbing exceeded 5.0 minutes/day, every additional minute up to 12 minutes/day 

was associated with an average z-score change of -0.09 [-0.08, -0.10]. For the same 

time interval, every additional minute of running was associated with a z-score 

change of -0.11 [-0.09, -0.13]. Walking 64 minutes/day was associated with more 

favourable cardiometabolic health and a z-score of -0.14 [-0.25, -0.02]. The dose-

response association gradient of walking and cardiometabolic health became less 

steep after 113 minutes/day (e.g., z-score change of <0.01 for every additional 

minute of walking). In comparison, a minimum of 2.6 hours/day (156 minutes/day) of 

standing (-0.14 [-0.25, -0.03]) was required to observe more favourable 

cardiometabolic health. For sitting time, the dose-response association became 

more pronounced at greater than 10 hours/day with more than 12.1 hours/day 

associated with an unfavourable cardiometabolic profile (i.e., z-score >0).  
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--insert figure 1 near here— 

Multivariable adjusted dose-response associations of activity type and posture 

with individual cardiometabolic health markers 

Adiposity markers 

We observed an inverse dose-response association of standing, walking, stair 

climbing, and running with BMI, although the magnitude of association differed 

across time in these physical activity types and posture (Figure 2A). For example, a 

BMI of 27.0 kg/m2 (sample mean) was associated with 2.9 [2.7, 3.1] standing 

hours/day, 72.4 [67.8, 78.2] walking minutes/day, 6.1 [5.7, 6.6] stair climbing 

minutes/day, and 1.2 [0.8, 2.0] running minutes/day.  The dose-response association 

for standing, walking, and stair climbing began to level off at approximately 3.5 

hours/day, 90 minutes/day and 10 minutes/day, respectively. Higher sitting time was 

associated with higher BMI, with changes in the magnitude of association becoming 

pronounced between 9.5 to 10.5 hours/day. These association patterns were similar 

for waist circumference stratified by sex (Figures 2B and 2C). For both males and 

females, the dose-response association for standing, walking, and stair climbing 

levelled off at approximately 3.2 hours/day, 90 minutes/day and 10 minutes/day, 

respectively. 

--insert figure 2 near here-- 

Biomarkers 

We observed an inverse association for total cholesterol with time each activity type 

and standing (Figure 3A). At any given total cholesterol level, we observed a 

stronger magnitude of association with stair climbing and running. For example, a 

total cholesterol level of 3.9 mmol/L (indicative of low CVD risk40 41) was associated 
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with 3.5 [3.1, 3.9] standing hours/day, 105.4 [91.2, 121.6] walking minutes/day, 11.3 

[8.3, 14.9] stair climbing minutes/day, and 1.4 [0.6, 3.8] running minutes/day. The 

magnitude of associations for stair climbing and running were nearly parallel 

between 2 minutes/day and 12 minutes/day with about a 0.17 mmol/L difference (eg: 

4% difference). We observed a linear association between total cholesterol and 

sitting time up to 10.4 [10.1, 10.7] hours/day.  

For every additional minute of stair climbing or running, triglyceride levels were lower 

by an average of -0.04 [-0.03, -0.05] mmol/L between the two exposures, but with a 

stronger association magnitude for running at a given time duration (Figure 3B). In 

comparison, every additional 5 minutes of walking and 10 minutes of standing was 

associated with an average -0.03 [-0.02, -0.04] mmol/L lower triglyceride levels. This 

association pattern between standing, walking, stair climbing, and running was 

consistent for HDL cholesterol (Figure 3C). Throughout the sitting time duration, we 

did not observe significant variations in triglyceride levels, but there was an inverse-

linear association for HDL cholesterol.  

We observed an inverse near linear association between HbA1C and running 

(Figure 3D). For stair climbing and walking, the nadir of the dose-response curve 

was at approximately 10.3 minutes/day (associated with 35.6 [35.2, 35.9] mmol/mol) 

and 91.4 minutes/day (associated with 35.5 [35.2, 35.8] mmol/mol), after which there 

was diminishing protective association. A similar association pattern was observed 

for standing time with the nadir at 4.1 hours/day (associated with 35.9 [35.6, 36.3] 

mmol/mol). We observed a J-shaped association between HbA1C and sitting time, 

with incrementally higher levels when daily sitting time exceeded 10.7 hours/day.  

--insert figure 3 near here-- 
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Additional and sensitivity analyses 

We observed sex interactions for stair climbing, running, and sitting time with 

composite cardiometabolic health score (Supplemental Figures 2-4). There was a 

more apparent protective association at any given time duration for females after 

approximately 3.9 minutes/day stair climbing and 12 seconds/day running. For sitting 

time, we observed the interaction at 10 hours/day after which point there was lower 

composite cardiometabolic health (e.g., steeper z-score curve) for females from 

higher sitting time. Association patterns across activity types and posture with 

composite cardiometabolic health did not change after adjustment for: 1) 

socioeconomic status (occupation and highest attained education level) and 2) 

functional mobility (Supplemental Figure 5). Composite cardiometabolic health 

results were consistent after standardising the distributions for time spent in each 

activity type and posture (Supplemental Figure 6). Exclusion of participants with 

prevalent CVD or medication use showed an inverse linear associations between 

each activity type and standing with composite cardiometabolic health 

(Supplemental Figure 7), although associations for sitting time were fully 

attenuated. 

Discussion 

To our knowledge, this is the first large-scale analysis of type-specific physical 

activity and posture time, which utilises the first pooled harmonised resource of 

thigh-worn accelerometry. The thigh accelerometry placement allowed us to 

accurately derive a range of activity types and postures using novel classification 

methods to examine their association with cardiometabolic health markers. Time 
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spent in physical activity types, such as walking, stair climbing, and running were 

associated with composite and individual cardiometabolic health markers, following 

adjustment for sitting time and other relevant confounding factors. Accumulating at 

least 5 minutes/day of stair climbing, 64 minutes/day of walking, or any duration of 

running was associated with more favourable composite cardiometabolic health 

whereas 2.6 hours/day of standing showed associations of comparable magnitude. 

In contrast, the deleterious association of sitting time with adverse cardiometabolic 

health became pronounced when daily durations exceeded 10 hours/day, although 

the association was no longer significant after exclusion of participants with prevalent 

CVD and medication use. 

We found a similar association rate of change across various cardiometabolic health 

markers between stair climbing and running when daily durations were <12 minutes. 

The dose response associations we observed are plausible. Prior randomised 

control trials have found submaximal activities such as stair climbing that elicit low 

vigorous intensity (e.g., 6.0 to 8.8 METs42) led to significant improvements in 

postprandial insulin, high-density lipoprotein, and cardiorespiratory fitness 43-45. 

These changes are likely induced primarily by skeletal muscle responses that 

contribute to improved mitochondrial volume and capillarisation (higher density) that 

leads to improved perfusion and better peripheral oxygen extraction46. This promotes 

enhanced capacity for substrate oxidation, greater utilisation of lipid and reduced 

carbohydrate catabolism. In addition, the intensity range of stair climbing may also 

elicit improvements to the cardiovascular system. Specifically, a stair-climbing 

intervention47 among patients with coronary artery disease found approximately 7 

minute/sessions (1.5 to 3 sessions/week; equivalent to 10.5 to 21 minutes/week) 

improved VO2 peak by 1 MET, which has been reported to be associated with a 
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clinically-significant 15% reduction in mortality risk48. The associations and daily 

durations we observed provide evidence that is consistent with large-scale 

prospective studies examining hard clinical endpoints such as CVD mortality and 

incidence9 10 49. We also found between 60 to 115 minutes/day of walking had the 

strongest positive association with each cardiometabolic outcome. Notably, this time 

duration is broadly consistent with the accumulated time duration of a prior meta-

analysis of walking interventions and cardiometabolic health indicators50 51. Using 

device-based measures and pooled individual participant data meta-analysis, we 

were able to translate findings from controlled intervention settings to real-world 

environments. Collectively, our walking, stair climbing, and running findings are 

important from a public health and clinical perspective. Promotion of increasing 

activities that are typically done during daily living and do not require dedicated time 

commitments may enhance adherence, as has been previously reported in 

rehabilitation programs52-55. 

Our walking results showed an approximate 13:1 minute(s)/day ratio with stair 

climbing to observe an equivalent favourable composite cardiometabolic health 

association. Relative to the opportunities most people have, walking 64 minutes/day 

may be more feasible than 5 minutes/day of stair climbing. Five minutes of stair-

climbing would approximately equate to 350 steps, assuming an average climbing 

pace of 70 steps/min56. Walking may be more feasible and potentially safer for 

certain population sub-groups, such as older adults, and people who do not have 

regular access to multiple flights of stairs. Prior prospective studies using self-report 

data have reported the health-enhancing benefits of walking57 58. Our pooled 

individual participant meta-analysis, leveraging objective device-based 

measurements extends these studies to derive direct comparisons of walking to 
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other activities and provides more precise habitual-activity dose-response estimates. 

At a population level, considering walking to be moderate intensity, our results are 

broadly consistent with smaller interventions comparing prolonged and continuous 

moderate-intensity exercise to short duration high-intensity exercise59-61. Prior 

interventions have found moderate-intensity continuous training has similar effects 

on cardiometabolic markers as high-intensity interval training at a 7-15 to 1 time ratio 

(e.g., 60 minutes of moderate-intensity to 4 minutes of high-intensity), possibly linked 

to the intermittent exposure to changes in metabolism and blood flow increases62. 

Although not directly measured in our current study, it is likely that the majority of 

stair climbing was in bouts lasting short durations, and the health-enhancing benefits 

we observed from walking were due to continuous walking that elicit 

cardiorespiratory adaptations.  

We observed more time spent standing was associated with favourable composite 

and individual cardiometabolic markers. These results are consistent with 

intervention trials that reported positive cardiometabolic effects from standing16 63 64. 

However, in our study, standing was also the least time efficient of all the activities. 

We observed an approximate 2.6 hours/day was required to be significantly 

associated with more favourable composite cardiometabolic health. While standing 

stimulates musculoskeletal responses that may elicit positive changes in 

cardiometabolic markers, a prior meta-analysis has shown standing 2-4 hours/day 

may also increase the risk of musculoskeletal disorders by 31%-34%65. We observed 

adverse composite cardiometabolic health when sitting time was higher than 12.1 

hours/day. In our study, it is probable that the deleterious association of high sitting 

time is an effect of lower cardiorespiratory fitness66-69. Analyses have shown 

cardiorespiratory fitness is a mediator of sitting (e.g., sedentary) time/physical activity 
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and explains about 78% of the relationship with cardiometabolic health70 71. Notably, 

after exclusion of participants with prevalent CVD or medication use, the deleterious 

associations of sitting time were no longer significant, although there was still a linear 

trend for worse cardiometabolic health. This suggests physical activity may have a 

more dominant role in the relationship with cardiometabolic health than sitting time. 

Strengths and limitations 

To our knowledge, this is the first large-scale pooled analysis that compares the 

health associations of time spent in type-specific physical activity and posture using 

device-based data. Device-based measurements are less susceptible to the inherent 

limitations of self-reported measures of physical activity such as recall and social 

desirability bias and are able to capture incidental physical activity across the day 

that cannot be measured with self-report data. This allowed us to examine the 

potential health value of short durations in different types of activities more 

accurately. This is also the first individual participant data meta-analysis using a 

device placement (thigh) that has more than a 95% accuracy in detecting sitting 

time. Prior studies using hip or wrist placement and only acceleration magnitude cut-

points have higher false positive rates due to an inability to differentiate sitting and 

standing 72. The harmonised individual participant data meta-analyses involve 

original data as a single study allowing us to maintain physical activity type and 

posture in their continuous form providing more robust estimates of the observed 

associations39 73 compared to traditional meta-analyses restricted to study level 

aggregated data. Our observational cross-sectional design limits inferences of 

causality. We did not adjust biomarker analyses for adiposity markers, to avoid the 

potential for overadjustment due to the causal link between the two markers74. Our 
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analyses included a range of confounding variables, however residual and 

unmeasured confounding is still possible which may introduce bias.  

Conclusion 

Using the largest individual participant data meta-analysis of thigh-worn 

accelerometry we found approximately 64 minutes/day of walking and 5 minutes/day 

of stair climbing were associated with more favourable composite cardiometabolic 

health. Every additional minute of stair climbing up to 12 minutes/day was associated 

with a similar rate of change as running for the same time interval. Our device-based 

findings provide real-world estimates of physical activity types and posture with 

cardiometabolic health that may inform future interventions to guide clinicians for 

personalised prescription options. 
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Table 1: Participant characteristics by cohort (n=12,095) 

 

Australian 
Longitudinal 

Study on 
Women’s 

Health 

British Birth 
Cohort Study 

Danish 
Physical 
Activity 
Cohort 

Finnish 
Retirement 
and Aging 

Study 

Nijmegen 
Exercise 

Study 

The 
Maastricht 

Study 
Overall 

Sample 870 3,782 290 221 121 6,811 12,095 

Age, years 44.6 (1.8) 46.8 (0.7) 47.5 (9.5) 62.9 (1.0) 65.6 (7.7) 59.9 (8.7) 54.5 (9.6) 

Females, n (%) 870 (100.0) 1,927 (51.0) 146 (50.3) 181 (81.9) 50 (41.3) 3,460 (50.8) 6,634 (54.8) 

Sedentary time, 
hours/day (median 
[IQR]) 

9.6 [8.4, 10.6] 9.0 [7.9, 10.2] 9.1 [7.8, 10.8] 10.1 [8.6, 11.1] 10.3 [9.5, 11.2] 10.2 [9.1, 11.3] 9.8 [8.5, 11.0] 

Standing time, 
hours/day (median 
[IQR])  

3.3 [2.6, 4.1] 2.8 [2.2, 3.5] 3.8 [3.0, 4.6] 3.2 [2.6, 4.1] 2.5 [2.0, 3.1] 3.0 [2.3, 3.7] 3.0 [2.3, 3.7] 

Walking time, 
minutes/day 
(median [IQR]) 

84.6 [68.2, 
102.7] 

71.3 [55.3, 
89.2] 

98.1 [79.8, 
121.8] 

82.8 [67.7, 
100.0] 

90.0 [71.1, 
110.7] 

79.2 [61.7, 
98.8] 

77.7 [60.4, 
97.2] 

Stair climbing time, 
minutes/day 
(median [IQR])  

4.9 [2.9, 7.7] 6.4 [4.2, 9.6] 5.9 [3.8, 9.2] 6.8 [4.0, 10.5] 9.5 [6.3, 14.9] 6.1 [3.9, 8.9] 6.1 [3.9, 9.1] 
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Running time, 
minutes/day 
(median [IQR])  

0.4 [0.2, 1.0] 0.3 [0.1, 0.7] 0.3 [0.1, 0.6] 0.2 [0.1, 0.6] 0.4 [0.1, 4.8] 0.2 [0.1, 0.5] 0.2 [0.1, 0.6] 

Sleep, hours/day 8.2 (1.1) 6.2 (1.0) 7.2 (1.2) 7.4 (1.0) 7.6 (0.9) 7.8 (1.2) 7.3 (1.3) 

Current smoker, n 
(%) 54 (6.2) 635 (16.8) 86 (29.7) 11 (5.0) 3 (2.5) 834 (12.2) 

1,623 (13.4) 

 

Self-rated health, n 
(%)        

Excellent 143 (16.4) 809 (21.4) 15 (5.2) 106 (48.0) 16 (13.2) 381 (5.6) 1,470 (12.2) 

Very good 403 (46.3) 1,482 (39.2) 169 (58.3) 79 (35.7) 91 (75.2) 1,561 (22.9) 3,785 (31.3) 

Good 255 (29.3) 1,023 (27.0) 98 (33.8) 31 (14.0) 12 (9.9) 3,982 (58.5) 5,401 (44.7) 

Fair 57 (6.6) 374 (9.9) 7 (2.4) 4 (1.8) 2 (1.7) 837 (12.3) 1,281 (10.6) 

Poor 12 (1.4) 94 (2.5) 1 (0.3) 1 (0.5) 0 (0.0) 50 (0.7) 158 (1.3) 

Alcohol 
consumption, n (%)        

Tertile 1 
(lowest) 262 (30.1) 1,368 (36.2) 87 (30.0) 73 (33.0) 43 (35.5) 2,258 (33.2) 4,091 (33.8) 
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Tertile 2 341 (39.2) 1,301 (34.4) 102 (35.2) 75 (33.9) 38 (31.4) 2,271 (33.3) 4,128 (34.1) 

Tertile 3 
(highest) 267 (30.7) 1,113 (29.4) 101 (34.8) 73 (33.0) 40 (33.1) 2,282 (33.5) 3,876 (32.0) 

Medication use1, n 
(%) 50 (5.7) 369 (9.8) 92 (31.7) 9 (4.1) 73 (60.3) 3,167 (46.5) 3,760 (31.1) 

Prevalent CVD, n 
(%) 21 (2.4) 100 (2.6) 6 (2.1) 11 (5.0) 20 (16.5) 1,116 (16.4) 1,274 (10.5) 

Cardiometabolic 
markers        

Body mass index, 
kg/m2 27.8 (6.4) 27.0 (5.1) 28.1 (5.0) 26.5 (4.6) 25.5 (3.3) 26.8 (4.4) 27.0 (4.8) 

Waist 
circumference, cm        

Males - 99.3 (11.7) 98.8 (11.7) 101.0 (11.7) - 100.7 (11.8) 100.1 (11.8) 

Females 89.2 (14.9) 88.2 (13.0) 93.5 (13.4) 89.8 (12.3) - 89.1 (12.5) 88.9 (13.0) 

Total cholesterol, 
mmol/L 3.6 (0.9) 3.9 (1.1) - 3.9 (0.9) 3.5 (1.0) 3.6 (1.1) 5.3 (1.1) 

Triglycerides, 
mmol/L 1.3 (0.9) 1.8 (1.3) - 1.2 (0.5) 1.3 (1.1) 1.4 (0.9) 1.5 (1.0) 
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2HbA1C, mmol/mol 32.7 (4.1) 36.0 (6.4) - - - 39.0 (9.2) 37.9 (8.4) 

3HDL cholesterol, 
mmol/L 

1.6 (0.4) 1.6 (0.4) - 1.8 (0.5) 1.5 (0.4) 1.6 (0.5) 1.6 (0.5) 

Values represent mean (SD) unless noted otherwise; 1lipid-modifying, hypertensive, and glucose-lowering meidcations; 2Glycated haemoglobin; 3High density 
lipoprotein. 

 . 
C

C
-B

Y
-N

D
 4.0 International license

It is m
ade available under a 

 is the author/funder, w
ho has granted m

edR
xiv a license to display the preprint in perpetuity. 

(w
h

ich
 w

as n
o

t certified
 b

y p
eer review

)
T

he copyright holder for this preprint 
this version posted A

ugust 6, 2023. 
; 

https://doi.org/10.1101/2023.07.31.23293468
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2023.07.31.23293468
http://creativecommons.org/licenses/by-nd/4.0/


 

 

Figure titles and legends: 

Figure 1:  

Title: Association of physical activity types and posture with overall cardiometabolic health 

Legend: Adjusted for age, sex, smoking, alcohol consumption, sleep duration, self-rated health, medication use, prevalent CVD, and mutual 
adjustment for physical activity types and posture using the residual method. N=9,001. Horizontal dotted line indicates a z-score of 0. 

 

Figure 2:  

Title: Association of physical activity types and posture with body mass index and waist circumference 

Legend: Adjusted for age, sex, smoking, alcohol consumption, sleep duration, self-rated health, medication use, prevalent CVD, and mutual 
adjustment for physical activity types and posture using the residual method. N= 12,095 (body mass index); 11,897 (waist circumference) 

 

Figure 3:  

Title: Association of physical activity types and posture with total cholesterol, triglyceride, high density lipoprotein, and glycated hemoglobin 

Legend: Adjusted for age, sex, smoking, alcohol consumption, sleep duration, self-rated health, medication use, prevalent CVD, and mutual 
adjustment for physical activity types and posture using the residual method. N= 10,728 (total cholesterol); 9,417 (triglyceride); 10,729 (high 
density lipoprotein); 10,346 (glycated hemoglobin) 
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