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Abstract

Background

In 2017-2019, we conducted a large-scale, cluster-randomised trial (LLINEUP) to 

evaluate long-lasting insecticidal nets (LLINs) treated with a pyrethroid 

insecticide plus the synergist piperonyl butoxide (PBO LLINs), as compared to 

conventional, pyrethroid-only LLINs across 104 health sub-districts (HSDs) in 

Uganda. In LLINEUP, and similar trials in Tanzania, PBO LLINs were found to 

provide greater protection against malaria than conventional LLINs, reducing 

parasitaemia and vector density. In the LLINEUP trial, cross-sectional 

entomological surveys were carried out at baseline and then every 6 months for 

two years. In each survey, ten households per HSD were randomly selected for 

indoor household entomological collections.

Results

Overall, 5395 female Anopheles mosquitoes were collected from 5046 

households.  The proportion of mosquitoes infected with Plasmodium falciparum 

did not change significantly over time, while infection with non-falciparum 

malaria decreased in An. gambiae s.s, but not An. funestus. The frequency of 

genetic markers associated with pyrethroid resistance increased significantly 

over time, but the rate of change was not different between the two LLIN types. 

The knock-down resistance (kdr) mutation Vgsc-995S declined over time as 

Vgsc-995F, the alternative resistance mutation at this codon, increased. Vgsc-

995F appears to be spreading into Uganda.  
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Conclusions

Distribution of LLINs in Uganda was associated with reductions in parasite 

prevalence and vector density, but the proportion of infective mosquitoes 

remained stable, suggesting that the potential for transmission persisted. The 

increased frequency of markers of pyrethroid resistance indicates that LLIN 

distribution favoured the evolution of resistance within local vectors and 

highlights the potential benefits of resistance management strategies.  

Trial registration: This study is registered with ISRCTN, ISRCTN17516395. 

Registered 14 February 2017, http://www.isrctn.com/ISRCTN17516395 

Key words: malaria, long-lasting insecticidal nets (LLINs), 

piperonyl butoxide (PBO), Uganda, cluster-randomised trial, 

vector control, insecticide resistance

Background

Long-lasting insecticidal nets (LLINs) are the principal tool for malaria control in 

Africa and were the major driver of the decline in malaria mortality between 

2000-2015 (Bhatt et al. 2015; World Health Organization 2016). Growing 

concerns over the rapid spread of resistance to the pyrethroid insecticides with 

which the nets are treated (Hemingway et al. 2016; Glunt et al. 2018) have been 

partially assuaged by promising trials of new generation LLINs treated with the 

synergist piperonyl butoxide (PBO) (Protopopoff et al. 2018; Tiono et al. 2018; 

Staedke et al. 2020; Maiteki-Sebuguzi et al. 2022), which inhibits the activity of 

cytochrome P450s, one of the major causes of insecticide resistance in malaria 

vectors. The LLIN Evaluation in Uganda Project (LLINEUP), was a cluster 

randomised trial of conventional LLINs (PermaNet 2.0 and Olyset) and PBO-LLINs 
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(PermaNet 3.0 and Olyset Plus). The trial found that parasite prevalence, 

adjusted for baseline, was 20% lower in children from communities receiving 

PBO LLINs than in those receiving conventional LLINs, for up to 25 months post-

LLIN distribution (parasite prevalence ratio 0·80 [95% CI 0·69–0·93], p=0·0048) 

(Maiteki-Sebuguzi et al. 2022). Vector abundance, again adjusted for baseline, 

was 73% lower in PBO communities than in non-PBO communities (Vector 

density ratio 0·27 [95% CI 0·21–0·36], p<0·0001)(Maiteki-Sebuguzi et al. 2022) . 

In this paper we report on the frequency of molecular markers of insecticide 

resistance between the study arms, and over the course of the trial. Insecticide 

resistance is widespread in malaria vectors in Uganda (Mawejje et al. 2013; 

Abeku et al. 2017; Okia et al. 2018; Lynd et al. 2019; Njoroge et al. 2022), and 

has been implicated in the limited epidemiological impact of vector control 

campaigns (Kigozi et al. 2012; Katureebe et al. 2016; Epstein et al. 2022). The 

WHO has identified insecticide resistance management (IRM) as a key strategy 

to prolong the effective lifespan of insecticide-based interventions (World Health 

Organization 2012). A central tenet of IRM programmes is that use of insecticides

within the public health sector selects for resistance and therefore the rational 

deployment of resistance management tools through rotations, mixtures and 

mosaics etc. can delay the onset of resistance. However, it is unclear whether 

the application of insecticides for public health is the primary driver of insecticide

resistance, or whether use of insecticides for agriculture contributes. 

Demonstrating the role of the former is important for developing IRM strategies. 

The scale and diverse ecologies over which the LLINEUP trial was conducted 

afforded us the opportunity to test three hypotheses: 

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 5, 2023. ; https://doi.org/10.1101/2023.07.31.23293323doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.31.23293323
http://creativecommons.org/licenses/by/4.0/


H1- the use of pyrethroid insecticides on LLINs select  s   for an increase in   

frequency of molecular markers of pyrethroid resistance over the course of the 

intervention.

A key assumption of IRM strategies is that the use of insecticide synergists, such 

as PBO, should retard the evolution of resistance. We examine whether there 

was any evidence for differences in resistance marker frequency changes 

between intervention arms receiving conventional LLINs and those receiving 

PBO-LLINs.  A priori we proposed the following hypothesis:

H2. The rate of change in frequency in cytochrome P450 resistance markers will 

differ in   An. gambiae s.s.   populations from clusters which received PBO-LLINs vs   

conventional LLINs 

One of the resistance markers we genotype, the Cyp6aap-Dup1 haplotype, is 

more strongly associated with resistance to Class II pyrethroids (including 

deltamethrin and α-cypermethrin) than to Class I pyrethroids (permethrin) 

(Njoroge et al. 2022). We therefore propose:

H3. The rate of increase in the     Cyp6aap-Dup1; ZZB-TE, Cyp6p4-236M triple 

mutant haplotype will be greater in   An. gambiae s.s.   populations from clusters   
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which received conventional deltamethrin LLINs (PermaNet 2.0) relative to 

clusters which received conventional permethrin LLINs (Olyset). 

Methods

Household selection, mosquito collection and processing.

Full details of the sampling procedures are given in (Lynd et al. 2019; Staedke et 

al. 2019), Figure 1. In brief, in each round of surveys, 50 households were 

randomly selected from an enumeration list of households in each of the 104 

health sub-districts (HSDs) for the cross-sectional community surveys. Of those 

50 households, 10 were randomly selected to take part in the entomology 

surveys, giving a maximum of 1040 households for entomological surveillance. In

the final round of surveys (25 months post net distribution) it was only possible 

to survey 90 of the 104 HSDs due to restrictions resulting from the COVID-19 

pandemic. Mosquitoes were collected using Prokopack aspirators (Vazquez-

Prokopec et al. 2009) and DNA extractions were carried out on the head and 

thorax using Nexttec Biotechnologie DNA extraction plates (Nexttec 

Biotechnologie GmbH, Hilgertshausen, Germany). Anopheles gambiae s.l. and 

An. funestus s.l. mosquitoes were identified to species level by PCR (Koekemoer 

et al. 2002; Santolamazza et al. 2008). Malaria infections in An. gambiae s.l. and 

An. funestus s.l. were detected by a P. falciparum, P. vivax, P. ovale and P. 

malariae Taqman assay (Bass et al. 2008). An. gambiae s.s.  females were 

screened for pyrethroid resistance mutations; Vgsc- 995F, Vgsc-995S, Vgsc-

1570Y, Cyp6aap-Dup1 triple mutant haplotype (consisting of Cyp6aap-Dup1 

itself, Cyp6p4-236M and the transposable element insertion ZZB), Cyp4J5-43F 

and Coeae1d following standard protocols (Bass et al. 2007; Jones et al. 2012; 

Lynd et al. 2018; Weetman et al. 2018; Njoroge et al. 2022). The 2La 
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chromosome inversion karyotype of An. gambiae s.s. specimens was assessed 

by PCR (White et al. 2007). 

Data analysis was carried out in R statistical software version 4.1.3 (R Core Team

2015). Analysis of molecular marker frequency data used General Linear Models 

with logit link function for a binomial dependent variable, implemented in the R 

package glmmTMB (Brooks et al. 2017).  Spatiotemporal variation in marker 

frequencies was analysed by fitting a Bayesian geostatistical model to the 

frequencies of each marker observed in the mosquitoes collected from each 

household in rounds 1-5 (Hancock et al. 2022). The numbers of each allele 

present in each sample were assumed to follow a binomial distribution, with a 

mean probability modelled as a spatiotemporal random effect depending on 

latitude, longitude and round. Spatial autocorrelation was modelled using a 

Gaussian Markov random field and temporal autocorrelation was an 

autoregressive model of order 1. Models were fitted using the R-INLA package 

(Rue et al. 2009; Lindgren et al. 2011).

Anopheles household abundance data were reported previously in the main trial 

papers (Staedke et al. 2020; Maiteki-Sebuguzi et al. 2022) with molecular data 

from baseline collections published in the baseline entomology paper (Lynd et al.

2019). All data from the 6, 12, 18 and 25 month collection rounds and associated

analyses are novel to this manuscript. All collection data and analytical routines 

are available on GitHub (https://github.com/vigg-lstm/llineup-genotyping).

Results

Overall, 5395 female Anopheles mosquitoes were collected from 5046 

households in the five surveys (Table 1), including 1797 in round 1 (baseline 

survey), 423 in round 2 (6-months post-LLIN distribution), 755 in round 3 (12-

months), 1093 in round 4 (18-months) and 1327 in round 5 (25-months). At 

baseline, the prevalence of Plasmodium falciparum sporozoite infection in An. 
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gambiae s.s. was 5.6% (72/1284) and in An. funestus was 3.5% (15/432). Other 

plasmodium species (P. vivax, P. ovale, and P. malariae) were detected less 

commonly in both An. gambiae s.s. (1.2%, 16/1284) and An. funestus (1.4%, 

6/432) (Lynd et al. 2019). No Plasmodium infections were detected in An. 

arabiensis (Supplementary Table 1) and they were excluded from further 

analysis. The prevalence of P. falciparum infection in Anopheles mosquitoes did 

not change significantly over the course of the study. In contrast, the combined 

prevalence of other Plasmodium species decreased significantly in An. gambiae, 

but not An. funestus (Figure 2; Table 2). There was no evidence for a significant 

interaction between collection round and study arm (ie, a difference in the slope 

of infection prevalence over time between intervention arms) for either P. 

falciparum or other non-falciparum Plasmodia.

We screened for insecticide resistance markers only in An. gambiae s.s. as it is 

the primary malaria vector in Uganda, and the species for which the most 

resistance marker data are available. The resistance associated variant Vgsc-

1570Y was not found in any specimen and is not discussed further. There was no

significant association between any of the genotypic markers screened and 

infection with P. falciparum or the other non-falciparum Plasmodia 

(Supplementary Figure 1). 

Collections were conducted over 5 rounds, but mosquito numbers dropped 

sharply after the LLINs were distributed, as previously reported (Staedke et al. 

2020; Maiteki-Sebuguzi et al. 2022), with a notable increase by round 5 (Table 

1). Thus, few mosquito samples were available for evaluation in intermediate 

rounds, particularly in communities that received PBO LLINs. We therefore ran 

the analysis of genotype frequencies both using data from across all rounds, and 
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focusing on comparisons between baseline and Round 5 (Table 3 and Maiteki-

Sebuguzi et al. (2022)).

H1- the use of pyrethroid insecticides on LLINs select  s   for an increase in   

frequency of molecular markers of pyrethroid resistance over the course of the 

intervention.

Six pyrethroid resistance markers showed a significant change in frequency 

(Vgsc-995S; Vgsc-995F; Cyp4j5-43F; Cyp6aap-Dup1; ZZB-TE, Cyp6p4-236M) 

(Figure 3 and Table 3), either over the course of study follow-up (Table 3 Model 

1), or when comparing frequencies at baseline with those from the final 

collection round (Table 3 Model 2). Cyp6aap-Dup1; ZZB-TE, Cyp6p4-236M are in 

near full linkage disequilibrium on a triple-mutant haplotype (Njoroge et al. 

2022), so subsequent analyses focused on Cyp6p4-236M as representative of 

this haplotype.  No significant changes in frequency for 2La or Coeae1d 

resistance markers were observed.  In the 25 months following LLIN distribution, 

all resistance markers increased significantly in frequency, except for Vgsc-995S 

which decreased significantly, consistent with the hypothesis that LLINs treated 

with pyrethroids (a public health intervention) exert selective pressure and drive 

pyrethoid resistance. The Vgsc-995S  mutation is in negative linkage with Vgsc-

995F, with relatively few wild-type alleles in the population (Lynd et al. 2019). 

Thus, the decrease in Vgsc-995S is an expected consequence of the increase in 

Vgsc-995F. 
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Mapping the change in frequency of Vgsc-995F suggested that this mutation 

gradually spread from the North-West of the country over the 2-year study 

period (Figure 4). In contrast, the increase in frequency of Cyp4j5-43F occurred 

in all areas, and particularly in the Southern regions. At baseline, the Cyp6p4-

236M (triple-mutant haplotype) was already present at high frequency (>65%) 

across the study area, and the greatest increases in frequency of this allele were 

in the North-East, where the baseline frequencies were lowest. 

H2. The rate of change in frequency of cytochrome P450 resistance markers will 

differ in   An. gambiae s.s.   populations from clusters which received PBO-LLINs vs   

conventional LLINs

Cyp4j5-43F and Cyp6p4-236M (triple-mutant haplotype) showed contrasting 

trends in frequency (Fig. 3).  For Cyp4j5-43F, the interaction between collection 

round and LLIN arm was significant, both over the course of the study (Table 3 

Model 3) and when comparing pre-LLIN distribution frequencies with the final 

collection round (Table 3 Model 4). The direction of the interaction indicates that 

the rate of increase in this P450-mediated resistance mechanism is, perhaps 

counter-intuitively, higher in clusters which received PBO-LLINs. Conversely there

was no evidence for a significant interaction between round and intervention arm

for the triple haplotype marker, Cyp6p4-236M. 
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H3. The rate of increase in the triple mutant haplotype will be greater in   An.   

gambiae s.s.   populations from clusters which receive deltamethrin LLINs   

(PermaNet 2.0) relative to clusters which receive permethrin LLINs (Olyset). 

There was no evidence that rates of change in frequency of the triple-mutant 

haplotype were different between clusters receiving conventional LLINs treated 

with either permethrin or deltamethrin (Table 3 models 5 and 6). 

Discussion

To investigate the impact of LLINs on the emergence and spread of insecticide 

resistance in Uganda, we evaluated Anopheles mosquitoes collected from 48 

districts over the 2-year follow-up period of the LLINEUP trial. We found that 

although parasite prevalence and vector density decreased in both study arms 

following the distribution of LLINs (Maiteki-Sebuguzi et al. 2022), the rate of 

infection with Plasmodium falciparum in sampled mosquitoes did not change 

significantly over the study, while rates of infection with other Plasmodium 

species decreased significantly in An. gambiae, but not An. funestus. Since the 

number of mosquitoes collected following LLIN distribution was low, it is possible 

that the lack of significance is a result of low statistical power. However, in the 

case of An. funestus, there was no suggestion of an overall decrease in infection 

over time (the model coefficient was positive). The reduction in parasite 

prevalence (Maiteki-Sebuguzi et al. 2022) and mosquito numbers does not 

appear to have markedly reduced sporozoite rates in the Anopheles vectors 

analysed. In the LLINEUP trial, the reduction in parasite prevalence was observed

in children aged 2-10 years. It is possible that parasitaemia in older children and 

adults persisted, thus providing opportunities for mosquitoes to take infected 

blood meals from this reservoir of older residents. Increased mosquito mortality, 

inferred from reduced vector collections,  is expected to result in a younger 
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mosquito population, leading to a smaller proportion of mosquitoes living long 

enough to become infective. However, increased adult mortality does not 

necessarily result in a younger age distribution if it causes a population decline 

(Abrams 1993), and mosquito infection rate may therefore be unaffected. 

We found no evidence of association between resistance marker genotype and 

infection status. These results contrast to those from a previous study which 

detected an association between Vgsc-995S genotype and infection, consistent 

with the hypothesis that mosquitoes carrying resistant alleles had increased 

longevity and were therefore more likely to survive the parasite extrinsic 

incubation period(Kabula et al. 2016). One difference that could explain these 

results is that overall Vgsc-995 and Cyp6p4-236M mutant frequencies were high 

in our study, with very few wild-type alleles found in the population. There may 

therefore have been too few fully susceptible individuals to detect an effect of 

resistance on Plasmodium infection.

There was clear evidence of increases in genotypic markers of pyrethroid 

resistance over the study. Although it not possible to randomise resistance 

between trial arms, it is most likely that the increases in resistance variants were

associated with the distribution of LLINs as the mosquitoes were collected from 

HSDs representing ≈40% of the surface area of Uganda, encompassing marked 

differences in ecology, altitude, socio-economic status of communities etc 

(Maiteki-Sebuguzi et al. 2022). Previous work to correlate LLIN distributions with 

changes in resistance have yielded contrasting results, arguably due to their 

reliance upon inherently noisy resistance phenotyping approaches (Implications 

of Insecticide Resistance Consortium 2018). Our use of genotypic markers 

provides a metric that can be accurately quantified, reducing the noise in the 

statistical analysis. The significant increase in Vgsc-995F frequency at the 
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expense of the alternative Vgsc-995S allele suggests that the former mutation is 

gradually replacing the latter, and mapping of allele frequencies indicates that 

this replacement is centred in the North-West of the country. Vgsc-995F is a 

predominantly West- and Central-African allele, and thus its higher frequency in 

the North-Western part of Uganda is consistent with a gradual spread eastwards.

The Vgsc-995F was first observed in An. gambiae s.s. from the region in 2012 

(Ochomo et al. 2015). At this time the Vgsc-995S variant was near fixation 

(Mathias et al. 2011) and analyses suggested that the Vgsc-995S mutation was 

older (Lynd et al. 2010) and more strongly associated with DDT rather than 

pyrethroid resistance (Reimer et al. 2005; Donnelly et al. 2016). The increase in 

frequency of the Vgsc-995F mutation provides additional support to our 

contention that LLINs are a major driver of pyrethroid resistance.

PBO LLINs have been promoted as an intervention that can overcome, at least in 

part, cytochrome P450-mediated resistance. A priori we would have predicted 

that mosquito populations sampled from communities that received PBO LLINs 

would show a decrease in P450-resistance markers relative to conventional 

LLINs. However whilst there were contrasting patterns observed between 

different P450 marker systems, the only evidence of a significant change was a 

relative increase in frequency of the Cyp4j5-43F marker. It may be that 

incomplete suppression of cytochrome P450s does not remove the selective 

pressure to upregulate this form of resistance, but rather escalates an arms race 

in which mosquitoes further upregulate cytochrome P450-mediated resistance to

overcome the suppressive effects of PBO. 

Conclusions

The large-scale deployment of LLINs in Uganda in 2017-2019 was associated 

with an increase in the frequency of genotypic markers of pyrethroid resistance, 
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but not in the frequency of P. falciparum infection in mosquitoes. The reduction 

in malaria prevalence resulting from the LLIN distribution campaign was 

therefore likely the result of decreased mosquito numbers, rather than fewer 

infective mosquitoes. The increase in resistance allele frequency suggests that 

public health interventions, such as LLINs, can apply selective pressure which 

drives the evolution of insecticide resistance, supporting the need for resistance 

management strategies.
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Figure legends

Figure. 1: Map of mosquito collection locations within the LLINEUP cluster-

randomised control trial. Intervention arm is indicated by colour with the 14 

clusters which were omitted during final collection round (25 months post LLIN 

distribution) indicated with hatched shading. 
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Figure 2. Plasmodium infection prevalence in An. gambiae and An. funestus. Point prevalence estimate is shown with 

associated 95%CIs. Data were collected simultaneously but are plotted offset for ease of viewing. Round 1 was the baseline 

collection with follow up rounds at approximately six-monthly intervals (see text). 
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Figure. 3: Insecticide resistance marker prevalence in Anopheles gambiae s.s. across the baseline and four post LLIN 

distribution collection rounds. Markers in green external boxes show significant increases (see Table 3) over the course of the

trial, red boxes indicate significant decreases (Table 3). Dashed line indicates significant change observed only when GLMM 

included all five collection points. 
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Figure. 4: Mapping of mutant allele frequencies over collection rounds for Vgsc-995F, Cyp6p4-236M and Cyp4j5-43F. X and Y

axis tickmarks show longitude and latitude respectively. Note colour scales do not carry over across rows. 
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Table 1: Numbers of female mosquitoes collected from 104 health sub districts across all 5 collection rounds. 1 includes An. 

coluzzii, An. parensis, An. leesoni, An. rivulorum and An. mouchetti. 2Data from only 90 HSDs due to COVID-19 impacts. 

Round 1
(Baseline)

Round 2 Round 3 Round 4 Round 52

An. gambiae 

s.s. 

1284 191 441 256 815

An. arabiensis 80 36 61 117 74

An. funestus 432 194 250 719 435

Other 

Anophelines1

1 2 3 1 3
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Table 2: GLMM analysis of Plasmodium infection prevalence in the two main vector species. 1Model coefficient and 

significance value. Model 1- Glmm (P. falciparum ~ Round +  Arm+ (1|HSD)); Model 2- Glmm (P. OVM ~ Round + Arm+ (1|

HSD)). For both models a Round:Arm interaction term was also included but was not found to improve model fit. The “Arm” 

term distinguishes conventional LLINs and PBO-LLINs but not between deltamethrin and permethrin-treated nets.

Variable tested An. gambiae s.s.1 An. funestus1 
Model 1
(Pfal)

Round 
Arm

-0.107; NS
0.259; NS

0.013; NS
-0.172; NS

Model 2 
(OVM)

Round
Arm

-0.336; p=0.016
-0.548; NS

-0.246; NS
-1.682; p=0.046
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Table 3: Summary of GLMM analyses of resistance allele frequency changes in Anopheles gambiae s.s.  1Model compares 

marker frequency data from baseline and data from 25 months. 2Model coefficient and significance value; 3Used as the sole 

marker for the triple mutant haplotype as this marker is in linkage disequilibrium with ZZB-TE and Cyp6aap-Dup1. In these 

collections.  *Coeae1d and Chr2La not included as not significant in models 1 and 2 (not relevant for other comparisons) 

Model 1- Glmm (Marker ~ Round+ Location+ Arm+ (1|HSD)); Model 2- Glmm (Marker ~ Round(1vs5)+ Location+ Arm+ (1|

HSD)); Model 3- Glmm (Marker ~ Round+ Location+ Arm+ Round:Arm+ (1|HSD)); Model 4- Glmm (Marker ~ Round(1vs5)+ 

Location+ Arm+ Round:Arm+ (1|HSD)); Model 5(Non-PBO-LLINs)- Glmm (Marker ~ Round+ Location+ Insecticide+ 

Round:Insecticide+ (1|HSD)); Model 6(Non-PBO-LLINs)- Glmm (Marker ~ Round(1vs5)+ Location+ Insecticide+ 

Round:Insecticide+ (1|HSD)).  The “Arm” term distinguishes conventional LLINs and PBO-LLINs but not between deltamethrin 

and permethrin-treated nets. The “Insecticide” term distinguishes between deltamethrin and permethrin-treated nets. 

Data 
included

Variable 
tested

Vgsc-995F2 Vgsc-995S2 Cyp4j5-43F2 Cyp6p4-
236M2,3 

Hypothesis
1

Model 1 All Round 0.20; 1x10-9 -0.19; 3x10-9 0.04; 0.03 0.12; 7x10-5

Model 2 All Round1 0.87; 3x10-9 -0.82; 1x10-8 0.12; NS 0.54;9x10-6

Hypothesis
2

Model 3 All Interaction 
between Arm 
and Round  

ND ND 0.09; 0.025 -0.07; NS

Model 4 All Interaction 
between Arm 
and Round1

ND ND 0.48;0.014 -0.29; NS

Hypothesis
3

Model 5 Only Non-
PBO LLIN

Interaction 
Insecticide and 
Round  

ND ND ND -0.05; NS 

Model 6 Only Non-
PBO LLIN

Interaction 
between 
Insecticide and 

ND ND ND -0.31; NS
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Round1

Supplementary table 1: Prevalence of Plasmodium positive mosquitoes collected from 104 health sub districts across all 5 

collection rounds. 1 Data for Plasmodium falciparum and for P. ovale, P. vivax and P. malariae combined. 2Data from only 90 

HSDs due to COVID-19 impacts. 

Plasmodiu
m1 species

Round 1
(Baseline)

Round 2 Round 3 Round 4 Round 52

An. 

gambiae 

s.s. 

P. falciparum 5.6%

(n=1284)

4.2%

(n=191)

1.4%

(n=441)

3.5%

(n=256)

4.0%

(n=815)

P. OVM 1.2%

(n=1284)

0.5%

(n=191)

0.4%

(n=441)

0.4%

(n=256)

0.5%

(n=815)

An. 

arabiensis  

P. falciparum 0% (n=80) 0% (n=36) 0% (n=61) 0% (n=117) 0% (n=74)

P. OVM 0% (n=80) 0% (n=36) 0% (n=61) 0% (n=117) 0% (n=74)

An. 

funestus 

P. falciparum 3.5%

(n=432)

2.6%

(n=194)

2.4%

(n=250)

2.1%

(n=719)

3.9%

(n=435)

P. OVM 1.4%

(n=432)

0.5%

(n=194)

1.6%

(n=250)

0.0%

(n=719)

0.7%

(n=435)
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Supplementary figure 1: Infection prevalence of P. falciparum and P.ovale + vivax + malariae (ovm) in An. gambiae 

stratified by resistance associated marker genotype. There was no significant association between infection with either 

parasite grouping and genotype.
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