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Abstract  
Retinal thickness is a marker of retinal health and more broadly, is seen as a promising biomarker for 
many systemic diseases. Retinal thickness measurements are procured from optical coherence 
tomography (OCT) as part of routine clinical eyecare. We processed the UK Biobank OCT images 
using a convolutional neural network to produce fine-scale retinal thickness measurements across 
>29,000 points in the macula, the part of the retina responsible for human central vision. The macula 
is disproportionately affected by high disease burden retinal disorders such as age-related macular 
degeneration and diabetic retinopathy, which both involve metabolic dysregulation. Analysis of 
common genomic variants, metabolomic, blood and immune biomarkers, ICD10 codes and polygenic 
risk scores across a fine-scale macular thickness grid, reveals multiple novel genetic loci- including 
four on the X chromosome; retinal thinning associated with many systemic disorders including 
multiple sclerosis; and multiple associations to correlated  metabolites that cluster spatially in the 
retina. We highlight parafoveal thickness to be particularly susceptible to systemic insults. These 
results demonstrate the gains in discovery power and resolution achievable with AI-leveraged 
analysis. Results are accessible using a bespoke web interface that gives full control to pursue 
findings.  
 

Main 
The retina comprises multiple anatomical layers of more than ten types of highly specialised cells that 
enable sight 1,2, and features clinically relevant zones such as the macula, fovea and optic nerve. Many 
hereditary and acquired human retinal conditions show a predilection for the macula, such as age-
related macular degeneration (AMD), diabetic retinopathy and macular telangiectasia Type 2 
(MacTel).  
 
Optical Coherence Tomography (OCT), is a widely used imaging method that extracts information 
about retinal morphology, including overall retinal thickness (RT). Retinal thickness is a composite 
measure across several sublayers, and is influenced by multiple determinants at any particular location 
in the macula, such as: amount of vascularisation, atrophy, ischemic damage, and presence or absence 
of particular cell types, such as rod and cone cells. RT is highest in the perifoveal region, dipping to a 
minimum at the foveal pit, located at the center of the macula, an area enriched for cone cells, yet 
depleted for rod cells. Such substantial morphological variation over such a small area suggests the 
presence of tightly spatially regulated biological processes.  
 
The retina is part of the central nervous system, empirically confirmed with transcriptomics clustering 
of retina with brain3. The field of ‘oculomics’ is growing rapidly, with AI-enabled retinal imaging 
based disease prediction models being developed for neuropsychiatric disorders such as 
schizophrenia4 and for non-neurological disease such as cardiovascular disease5, with promise for 
preventative health care. RT also has diagnostic potential for many diseases, particularly 
neurodegenerative disorders such as dementia and Parkinson’s disease6 and multiple sclerosis, where 
it was first proposed as a potential biomarker in 20117.  
 
Previous genome-wide association studies (GWAS) of retinal OCT data from UK Biobank (UKBB) 
made use of the imaging platform’s associated algorithm (TOPCON/TABS), with measures, 
summarized over the widely used Early Treatment of Diabetic Retinopathy Study (ETDRS) or macula 
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6 grids, for overall RT 8 and retinal sublayers 9,10. Here, we processed retinal OCT data from UKBB, 
with a deep learning based image segmentation method to produce a high resolution RT dataset, 
which we used to investigate the relationships between RT and genetic variation, in addition to 
metabolites, blood traits, immunological traits and disease (Figure 1).   
 
Results reveal why retinal imaging is ‘a window to the brain’, by detecting the connections to 
neurological and vascular disorders, and pinpointing specific regions of the macula driving these 
associations. We highlight the complex spatial anatomy of the macula, providing context for novel 
candidate genes and their biological mechanisms. Our rich multi-omics results are easily accessible in 
their entirety through a bespoke interactive browser (https://retinomics.org/), and set a new 
benchmark for complex, two dimensional image analyses in population samples. 
 

Results 

Retinal Thickness Imaging Data 
Retinal thickness is defined as the distance between, as well as including, the inner limiting membrane 
(ILM) and retinal pigment epithelium (RPE) layers (Figure 1, inset).  
OCT imaging data for at least one eye was available from 85,793 UKBB participants. All individuals 
with evidence of retinal diseases were excluded from analyses (Supplementary Table 1) but 
individuals with other non-retinal eye diseases or self-reported vision problems, in the absence of 
retinal disease, were retained.  
 
OCT images were filtered for overall quality and then processed using a deep convolutional neural 
network (DCNN), based on a method used in 11, to produce RT estimates over a grid of 128 
(superior/inferior axis) by 256 (temporal/nasal axis) pixels, followed by further QC (Supplementary 
Figures 1-6). Each pixel captured approximately 46.88 by 11.72 μm2 of the retina and the total area 
analyzed captured 6000 by 6000 μm2, with the fovea at the center. Images from the left side were 
reflected around the foveal midpoint to be anatomically aligned to the right side for further analysis 
(Supplementary Figure 7). RT measurements are expressed as pixels, where a pixel corresponds to 
approximately 3.5μm. 
 
Extensive quality control of the RT data removed individuals, scans, and pixels with poor data 
(Supplementary Figure 8). Missing pixel values were imputed using a generalized additive model to 
produce a complete dataset for RT for all individuals, over 29,041 pixels. Individuals with data 
available from both eyes had their RT values averaged such that each individual only had a single set 
of RT values for all subsequent analyses. The final dataset included 54,844 participants with OCT 
data, with 36,653 with images for both eyes and 18,191 with images for one eye only.  

Functional Principal Component analysis captures broad spatial patterns 
Functional principal component (fPC) analysis is a dimensionality reduction method, akin to principal 
component analysis, which estimates the primary modes of variation of functional data, such as 
curves or surfaces. We applied this approach using tensor product splines as base functions, using the 
MFPCA R package.12,13 Scree plots revealed that six fPCs captured ~95% of the RT variation 
(Supplementary Figure 9), each capturing striking spatial patterns: fPCs 1 and 2 capture variation in 
the perifovea, and outer retinal regions; fPC3 corresponds to thickening on the nasal side; fPC4 
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represents reduced parafoveal thickness; fPC5 captures the shape of the foveal pit; and fPC6 denotes 
thickening of the parafovea and nasal side (Extended Data 1). For each individual, fPC scores were 
extracted, representing the contribution of each fPC to that individual’s scan. 

Overview of analysis cohort 
For all analyses, the cohort was restricted to unrelated individuals, whose broad continental ancestries 
were European (EUR, n=43,148 individuals), Central and South Asian (CSA, n=1,179) or African 
(AFR, n=1,161), based on genetic similarity to individuals from the 1000 Genomes Project and 
Human Genome Diversity Panel. The outcome RT datasets used for analyses consisted of 29,041 
pixels (pixel-level analyses) and six fPC scores (fPC analyses), defined above. Summary RT 
measures, and basic characteristics for the analysed cohort are given in Supplementary Table 2 and 
Extended Data 2, stratified by ancestry.    
  
We examined RT (fPCs and pixel-level) for relationships with characteristics previously shown to be 
associated with RT. On the pixel-level, we recapitulated previously reported effects for age, sex and 
spherical equivalent (Supplementary Figure 10) 14.  Males had higher RT values than females, 
particularly in the fovea and parafovea. Age had a non-linear relationship with RT, with a maximum 
at 54 years, then thinning with age. Higher values of spherical equivalent (greater hyperopia) showed 
highly significant associations with thicker RT values in the para- and perifovea, and more modest 
associations with thinner RT values within the fovea. In addition, increased standing height, as a 
proxy for body size, was associated with thicker RT in the parafovea. FPCs were also associated with 
these factors, to differing degrees (Supplementary Table 3). 
 
For the subsequent multi-omics analyses, all associations with RT were investigated with adjustment 
for age, age-squared, sex, standing height, spherical equivalent and ancestry (10 ancestry Principal 
Components), with device and eye (left, right, both) as technical covariates. The multi-omics study 
data analysis plan is summarized in Figure 1, with sample sizes for each analysis in Supplementary 
Table 4.  
 

Genetic association analyses   
GWAS were undertaken using genotypes imputed to the combined Haplotype Reference Consortium 
and UK10K panel 15. The primary discovery analyses were conducted on the EUR ancestry 
individuals, with secondary analyses on the CSA and AFR individuals, to assess ancestral 
heterogeneity. Associations with 11,239,006 SNPs from the 22 autosomes and the X chromosome, 
were examined using PLINK 2 (version 20221024). Consolidation of all GWAS results from across 
the 29,041 pixel-level and 6 fPCs was achieved using a post-hoc iterative procedure that incorporated 
genomic spatial correlation, via LD clumping, to allocate SNPs and RT pixels/fPCs to independent 
loci (Supplementary Figure 11). We report loci meeting Bonferroni corrected genome-wide 
significance thresholds for each approach: P<5E-8 / 29,021 = 1.72E-12 for the pixel-level analyses; P 
<5E-8 / 6 =  8.33E-9 for the FPC analyses.  
 

Number and distribution of loci identified through both fPC and pixel-level analysis 
We identify 224 unique RT-associated genetic loci that meet the pixel-level Bonferroni corrected 
threshold (Supplementary Table 5). The number of loci that achieve significance for each pixel has a 
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symmetric distribution with a mean of 22.8 loci (sd = 5.7, min = 4, max = 42) per pixel (Extended 
Data 3). The density of the number of loci forms concentric rings mainly concentrated in the foveal 
region, suggesting changing patterns of association. These rings may represent the echoes of retinal 
development 16. The fPC-based RT association analyses identified 120 loci (Supplementary Table 6), 
with 4, 11, 36, 45, 42, 23 loci meeting  P <  8.33E-9 for FPCs 1 to 6, respectively (Extended Data 4). 
A total of 294 RT genetic loci were identified collectively through either the pixel-level and fPC 
analyses, with 92 identified through both approaches. All loci were mapped to candidate genes via 
positional mapping, eQTL data, and chromatin interaction data (Supplementary Tables 7-10). 
Associations and candidate genes for each of the RT loci are depicted in Figure 2. 
  
A majority of the loci identified in the Gao et al 2018 8 analyses reached the Bonferroni corrected 
significance threshold in the pixel-level and/or fPC analyses (89/140, 64%), with an additional 31 loci 
meeting P<5E-8 (Supplementary Figure 12). The concordance with the Currant et al. 2021 10 and 
Currant et al. 2023 9 loci was lower with 25/47 and 52/111 identified through our approach, 
respectively.  
The top two loci from our pixel-level analyses were amongst  those identified previously: 
rs150408004 (pixel-wise minimum p = 3.94e-152, beta = 2.03; fPC2 p=6.54e-46), is a long distance 
enhancer SNP affecting LINC00461, a long non-coding RNA now known to be integral for early 
Müller glial cell and astrocyte development in the human retina 2,17 and which has been previously 
identified in multiple macula phenotype GWAS studies 18,19; and rs3138142, coding for a synonymous 
SNP in RDH5 (pixel-wise minimum p = 3.27e-125, beta = 0.82; fPC4 = 1.06e-58),  which codes for 
the visual cycle enzyme 11-cis retinol dehydrogenase 5, essential for night vision, with mutations in 
this gene causing a retinal phenotype called fundus albipunctatus (OMIM #136880).20 Clustering 
analysis of the sentinel SNP effects from the pixel-level analysis, revealed 10 clusters impacting 
retinal thickness in a similar manner (Supplementary Figure 13). Clustering of the pixels highlighted 
concentric regions of the macula similarly affected by genetic perturbations (Supplementary Figure 
14).  
 

Novel RT associations 
 
There was a significant gain in the number of loci beyond previously published work (Extended Data 
3), despite the substantial and strict Bonferroni testing correction. We identified 140 novel RT loci, 70 
uniquely from pixel-level analysis, 28 uniquely from the fPC analysis, with 42 found in both. Many of 
these have been previously implicated in GWAS for ocular traits, such as rs77877421 (FOXP1, pixel-
level minimum p = 8.42e-44, fPC3 p=4.21e-20), previously identified as a GWAS hit for intraocular 
pressure 21 and vertical cup-disc ratio 22,  both using UKBB. Foxp1 regulates the timing of early retinal 
cell production 23.  Similarly, the MACROD2 locus (pixel-level sentinel rs62202906, minimum p = 
1.93e-54, fPC4 sentinel rs62202889, p=5.78E-58) has been previously identified as a suggestive 
finding for thyroid-associated orbitopathy, an immune-mediated eye disorder. Interestingly our spatial 
analysis reveals that the signal mainly originates from the nasal perifoveal region, with thinning 
effects on the superior quadrant and thickening effects on the inferior quadrant (Figure 5A). 
rs61916712 (pixel-level minimum p=5.59e-56) showed a strikingly different association pattern, 
highly focused within the fovea (Figure 5B); this locus overlaps a retinal eQTL for TSPAN11, and a 
GWAS hit for optic disc morphology. 22,24 Another novel signal rs74614808 (pixel-wise min P=5.60E-
15) was detected in a region with a significant chromatin interaction with SOX2 in adult and fetal 
cortex. Variants in SOX2 cause microphthalmia, a birth defect in which one or both eyes fail to fully 
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develop, with optic nerve hypoplasia and abnormalities of the central nervous system.25 Sox2 KO mice 
have abnormal optic disc and retina blood vessel morphology. 26  
Amongst the novel findings were the first four X chromosome loci found to be associated with RT. 
Two of these have clear retinal roles: rs626840 (EFNB1, fPC4 p=3.28e-15), and rs554433 (pixel-level 
p=1.82e-24), an intronic variant in SHROOM2, a gene involved in pigmentation of the retinal pigment 
epithelium, and rs626840 in EFNB1. Mutations in EFNB1 cause craniofrontonasal syndrome, an X-
linked developmental malformation, which is reported to cause a number of ophthalmologic 
abnormalities, including strabismus, nystagmus and hypermetropia 27 and has been linked to 
glaucomatous optic neuropathy 28. The spatial signal indicates the strongest effect in the perifoveal 
superior/nasal quadrant, the closest region to the optic nerve, with the risk allele leading to retinal 
thickening.  
 

Cross-ancestry comparisons, and biological insight 
We assessed the effects of all loci identified in our EUR discovery analyses in the AFR and CSA 
ancestry individuals (Extended Data 5, Supplementary Table 11). In the pixel-level, and fPC analyses, 
the EUR and CSA effect estimates for the top pixel, or top fPC showed strong correlations (pixel-wise 
rho=0.618, p= 1.141e-24; fPC rho = 0.630, p = 2.00E-14), with weaker correlations for the EUR and 
AFR effects (pixel-wise rho = 0.305, p=4.54e-06; fPC rho = 0.249, p = 6.8e-03). For the pixel-level 
loci, we also compared whether the pattern of association across the entire scan was similar across 
ancestries. The median scan-wise correlation (i.e., the correlation of effects across all pixels), for EUR 
vs CSA individuals was rho = 0.306, with 28.0% of sentinel SNPs having rho >= 0.5. Again, 
concordance was lower in EUR vs AFR (Median correlation: rho = 0.195; 11.5% sentinels with rho 
>= 0.5). 
 
Of the loci identified through our discovery pixel-level analysis, four were significantly associated (P 
< 0.05 / 224) with RT in CSA individuals: rs3138142 (RDH5); rs10164933 (LINC01248); 
rs183659670 (NNAT); rs1109114 (ABLIM3), with the latter two being novel loci. Of note, 
rs183659670 is associated with NNAT expression in the retina (r2=1 with the top eQTL SNP); this 
gene encodes a proteolipid involved with brain and nervous system development. In the fPC analysis, 
2 SNPs met the Bonferroni corrected threshold (P < 0.05 / 120) for CSA individuals, both are most 
significantly associated with fPC5. rs1900003 near PBLD and ATOH; the latter gene encodes a 
member of the basic helix-loop-helix family of transcription factors, and is thought to play a role in 
retinal ganglion cell and optic nerve formation, with mutations in this gene causing nonsyndromic 
congenital retinal nonattachment.29  
 
We examined genetic correlations between our fPC genome-wide results, and a range of traits and 
diseases (Extended Data 6, Supplementary Table 12). The most statistically significant correlations 
were between fPC5 and urate levels, heart failure, reticulocytes, venous thromboembolism (VTE) and 
diabetes, and between fPC4 and receipt of disability allowance, a proxy for disability. The traits 
showing the largest magnitude correlations included ranitidine use (used to treat gastro-oesophageal 
reflux, fPCs 1 and 5), alcohol-related mental health problems (fPC6), cataract (fPC2), and having 
received psychiatric care (fPC4). Gene set over-representation analysis was performed mapped genes, 
implicated via the pixel-level and fPC analyses. Both analyses were enriched for genes involved in 
eye and visual system development, cell differentiation and kidney development (Supplementary 
Table 12, Supplementary Figure 15).  
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Metabolomic association analyses 
325 metabolic measures, from 10,668 participants were included in the association analyses. We 
examined associations at the single metabolite level and performed hierarchical clustering of both 
metabolites and pixels to investigate potential spatial effects (Methods). After correction for multiple 
testing, all metabolites were significantly associated with RT at least one pixel (Supplementary Table 
14, Extended Data 7A). A visual representation for the subset of non-derived metabolites is presented 
in Figure 3. Metabolites calculated as derived lipoprotein ratios were the most significantly associated 
class of metabolites. The ratio of linoleic acid to total fatty acids (“Linoleic Acid to Total Fatty Acids 
percentage”) had the strongest positive effect on retinal thickness, while “Phospholipids to Total 
Lipids in HDL percentage” had the strongest global negative effect.  
 
We identified 10 metabolic clusters, each associated with pixels co-located in specific retinal regions 
(Figure 3, Supplementary Table 14). Clusters 1 and 2 have the highest association with retinal 
thickness, and contain highly related metabolites, with enrichment for cholesterols (particularly in 
LDLs (Figure 5D) and VLDLs), apoB, as well as omega 6 fatty acids.  Clusters 5, 6 and 8 showed a 
negative association with RT and include triglycerides, glucose (Figure 5C), branched chain amino 
acids (BCAA), alanine and chylomicrons.  
  
Multiple metabolites associated with RT are linked to retinal disorders with alterations in systemic 
metabolites (AMD, MacTel and diabetes). Metabolite changes that are associated with increased 
AMD risk (lower levels of Cholesterol, LDL, VLDL and apoB, higher levels of triglycerides, BCAA 
and alanine) 30,31, were found to be associated with retinal thinning. Similarly, changes in glycine, 
sphingomyelin and alanine that are associated with increased risk of the retinal degenerative disorder, 
MacTel, were also found to be associated with retinal thinning.18,32 Many of the metabolites negatively 
associated with retinal thickness; triglycerides, glucose, BCAA and alanine, are elevated in metabolic 
syndromes and diabetes 33, which also correlates with retinal thinning through the often combined 
effects of retinal neuropathy, changes in vasculature and the occurrence of edema. Unexpectedly, 
DHA and omega 3 fatty acids, which are important for retinal function, are negatively associated with 
retinal thickness.31  
 
Specific retinal regions were identified as being consistently affected by metabolic disturbances 
(Figure 3). These matched, to some extent, with recognised retinal anatomical landmarks, as described 
with the ETDRS grid (Supplementary Figure 7), but also revealed clusters spanning multiple sectors 
of the grid. Pixel overrepresentation analysis (ORA) revealed that the parafovea, particularly its lower 
temporal side, was susceptible to metabolic influences (Figure 3C). This was confirmed by the many 
metabolites significantly affecting fPC4 (Extended Data 7B), which captured parafoveal thickness 
variation. The temporal perifoveal region was also specifically impacted by metabolic dysregulation.  
 
Age - metabolite interaction analyses, revealed a generalized increase in metabolic effect on retinal 
thickness with age (Supplementary Table 15). ORA revealed that pixels located to the parafoveal area 
were again the strongest contributors to the interaction effects on RT (Extended Data 7C). 
 
Metabolic polygenic risk scores (PRSs) have recently been endorsed as a tool for trait associations.34 
Associations with PRS for Phosphatidylcholines and their lyso-phosphatidylcholines were associated 
with retinal thickness, as well as certain amino acids such as lysine, glycine and threonine 
(Supplementary Table 16, Extended Data 8D). All three of these amino acids mainly affected the 
parafoveal areas.  
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ICD10 disease code and comorbidity class analysis 
Association with 1,496 ICD10 diagnoses were examined in 36,196 participants. 459 diseases (30%) 
were significantly associated with RT (Supplementary Table 17, Figure 4B), with the majority (80%) 
presented as a thinning effect as well as effects on multiple fPCs (Figure 4C). More generally, even 
among those non-significant, there was a negative relationship between disease status and retinal 
thickness.  
 
Multiple sclerosis (MS, G35, N = 133 cases reported in UKBB, mean effect size for RT for all 
significant log adjusted p-value values across all pixels = -2.46) had the largest significant global 
effect, with strongest effects observed in the nasal perifoveal region closest to the optic disc (Figure 5 
E). MS results in oligodendrocyte demyelination, with impacts on the optic nerve as previously 
reported.35 Our results suggest this leads to substantial retinal thinning in MS patients.  
 
Metabolic and cardiovascular disorders were among diseases most strongly associated with thickness. 
Primary hypertension (“Essential (primary) hypertension”, ICD10-I10) displayed the highest amount 
of global significance, likely due to the high prevalence of this disorder (N=10,766). Type 2 Diabetes 
(T2D) without complication (“Without complication”, E11.9, N= 2,128, Figure 5F), pure 
hypercholesterolemia (E780, N= 5,227), and fatty liver (K76.0, N= 395) were also among the top RT-
associated diagnoses. T2D and hypertension were also identified through our genetic correlation 
analyses, and are recognised comorbidities for multiple retinal disorders including AMD 36 and 
MacTel 37. T2D has a recognised retinal complication in diabetic retinopathy, affecting about one third 
of T2D patients, representing a major public health burden 38. These results complement our metabolic 
RT association results, where many of the metabolites most highly associated with RT have also been 
found to be associated with these disorders.  
 
Investigation of retinal disorders was limited, given the study design of depletion of individuals with 
overt retinal disease. Nevertheless, we detected associations between RT and Cataract (H26, “Other 
cataract”, median pixel -log10 p-value = 4.49), and H25 “senile cataracts”,-log10 p-value = 2.38) as 
well as the “presence of an intraocular lens” (Z96.1, -log10 p-value = 3.51).  
 
We also examined associations with broad comorbidity classes of ICD10 codes  (Supplementary 
Table 18, Figure 4A), with “diabetes without chronic complication”, “renal disease”, “chronic 
pulmonary disease”, “mild liver disease”, and “peripheral vascular disease” showing the strongest 
associations with RT. Hierarchical clustering analysis revealed ten clusters of ICD10 diagnoses that 
comprised disease codes homogeneously affecting the thickness across the retina (Extended Data 9).  
 
ORA revealed a pronounced susceptibility of the parafoveal ring to different diagnoses and diseases, 
confirming once again the sensitivity of this macular zone to disease (Figure 4C). Specifically, within 
this area of the retina, the effect is higher on the superior and temporal regions. Health insults on the 
parafoveal thickness were also highlighted by the Charlson comorbidity score (Supplementary Table 
18), which presented higher scores associated with thinning of RT in this area. 
 
We also examined associations with PRS for a number of diseases, as an alternative approach to ICD 
codes. This also allowed for investigation of associations between the disease risk rather than 
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confirmed presence and also allowed investigation of a number of retinal diseases, and related 
phenotypes. 
  
We examined 58 trait PRSs from 43,147 participants, and after correction for multiple testing, 48 
PRSs were found to significantly affect the RT of at least one pixel (Supplementary Table 19). The 
averaged macular thickness 8 PRS was the most significantly associated, followed by retinal vascular 
caliber, AMD 39, and MacTel 18  (Supplementary Table 19). The more recent Han et al 39 AMD PRS 
resulted in a more powerful association signal than that released by the UKBB PRS release, based on 
Fritsche et al. 40  
 
A higher burden of genomic risk of AMD, MacTel, T2D and celiac disease were all associated with 
parafoveal thinning. We found a significant negative association between RT and neuropsychiatric 
disorders such as Schizophrenia, Alzheimer’s and Parkinson's disease although patterns of association 
differed across diseases. PRS related to metabolic traits (e.g., HDL cholesterol, celiac disease, HbA1c, 
apolipoprotein A1) as well as cardiovascular disorders (e.g. cardiovascular disease, resting heart rate, 
ischemic stroke, and atrial fibrillation) also showed significant association with thickness in particular 
areas of the retina (Supplementary Table 19).  
 
We examined correlations of effects between the 25 diseases captured through both ICD codes and 
PRS in this study. We found the highest association agreement between ICD10 and PRS for type 1 
and type 2 diabetes, asthma, Parkinson’s disease, as well as many cardiovascular disorders such as 
hypertension, thrombosis and strokes, coronary artery disease and atrial fibrillation (Supplementary 
Table 20). 
 

Associations with blood cell traits and markers of inflammation 

After data pre-processing as detailed in Methods, data on 33 blood and inflammation biomarkers were 
able to be matched to RT data for 39,611 participants. Various reticulocyte traits were significantly 
associated with reduced retinal thickness, especially in the parafoveal area (Supplementary Table 21, 
Extended Data 10, Figure 5G), a finding consistent with our genetic correlation analyses. 
Interestingly, higher counts of immune system cell types such as leukocytes and neutrophils were 
associated with parafoveal and temporal perifoveal thinning. Inflammation markers confirmed the 
high sensitivity of the parafovea to inflammation (Supplementary Table 21, Figure 5H), which has 
been previously reported for diseases such as Covid-19 41.  
 
We did not identify  any association of RT with the 70 tested infectious disease antigens 
(Supplementary Table 22). This was likely due to the  small sample size available for this analysis 
(n=764). 
 
All association results at the pixel level are accessible through a user-friendly bespoke web browser 
(https://retinomics.org/). 

Discussion 
 
Using one of the largest, systematically-collected OCT datasets in the world (UKBB), and through the 
application of AI, we generated the highest-resolution spatial dataset of RT ever produced, and 
demonstrated that the retina provides a window for human health. Our analysis reveals retina 
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thickness to be exquisitely susceptible to a plethora of factors stemming from the genome, to 
metabolites, to blood traits, and diseases, with the parafoveal area most enriched for associations. 
Overall, we found reduced RT, or retinal thinning to be associated with poorer health, and increased 
burden of disease.   
 
We employed two novel approaches to conduct genetic analyses using this data, firstly using 
dimensionality reduction, in the form of functional principal components, and secondly through our 
pixel-level approach, which required bespoke methods to summarise the data from over 29,000 
GWAS. We note that a similar AI approach, applied to the UKBB whole body imaging data 
identifying genetic loci influencing skeletal proportions, some of which are risk factors for diseases of 
the skeleton, such as osteoarthritis 42. These complementary approaches, applied to AI-reprocessed 
data identified a greater number of loci, than previous GWAS conducted with RT derived directly 
from the TOPCON scanner, despite the heavy multiple testing burden. Moreover, these results give 
micron-level spatial resolution, whereas previous analyses were averaged across regions on the 
ETDRS, or Macula 6 grids. Many of our novel loci have previously been implicated in Mendelian 
retinal diseases, or ocular traits, and our GWAS findings overall were enriched for genes involved in 
eye development, cell differentiation and kidney development. 
 
In some of our most important findings, reduced RT is highly associated with MS. This result 
provides strong, independent confirmation of multiple reports of the utility of OCT as the source of 
biomarkers for MS and MS progression 43, summarized in Britze et al 44. Additionally, it indicates that 
future studies utilizing RT as a biomarker should focus on the nasal perifoveal region of the macula as 
this region contains the greatest signal. 
We additionally showed that a range of neurodegenerative and cardio-metabolic disorders were also 
highly associated with retinal thinning. We illustrate that the retina has unique metabolic sensitivities, 
with RT often affected in systemic metabolic diseases; indeed, metabolic disturbances that have 
already been identified in several retinal diseases 18,30,45,46. For several of these metabolites and 
diseases, we supported these findings, through associations with directly measured phenotypes or 
their genetically-predicted proxies. We also identify that disease PRS sometimes reveal association 
signals not shown by their clinical record counterparts (ICD codes). 
  
Further understanding of our genetic results will require single cell and spatial transcriptomics of the 
retina to investigate specific cell types being affected, as well as determining biological mechanisms.. 
Some of the genetic loci we describe here, and previously linked to disease, are already being 
investigated with these approaches.17,47 Our work provides compelling evidence and extensive 
additional localising information to allow better targeting of the retina with these expensive 
technologies, as an increase of sample size will be required to investigate the common genetic 
variation that underpins much of the variation. Future work will extend this approach to retinal sub-
layers which will further tease apart many of the associations since sub-layers are composed of 
particular cell types.  
 
Our investigations focused on RT in retinal-normal individuals. In excluding individuals with overt 
retinal diseases, who may have major and unusual variation in RT, our analyses were undertaken on a 
more homogeneous cohort, thereby maximising our power for discovery. While our analyses 
primarily intended to capture variation in “healthy” eyes, it is likely some participants with mild 
retinal disease will have been included. Investigation of RT in the context of overt disease will also be 
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of interest but will require a nuanced analysis approach which is beyond the scope of the current 
work. 
 
This work has some shortcomings. The UKBB is very European-centric with >90% of participants 
being of European ancestries. Our cross-ancestry genetic association analyses highlighted significant 
genetic heterogeneity in RT, so investigation in individuals with greater ancestral diversity is vital; 
emerging efforts to increase diversity in population cohorts will hopefully allow this. The UKBB is a 
uniquely massive resource and as such we were only able to perform limited traditional validation of 
our multi-omics findings. However, we strove to validate many of the main findings through 
complementary approaches, such as utilising PRS alongside directly measured phenotypes. We note 
that whilst the UKBB is was intended to be representative of the aging UK population, it is subject to 
a range of selection biases; all described associations must be interpreted in this context.48  
 
In summary, our work sets a new standard in multi-dimensional GWAS and ’Omics studies, 
supported by innovative statistical methods for imaging and GWAS at scale, but can only be fully 
appreciated through the bespoke web-browser that accompanies this work. This work validated and 
refined previous associations and will encourage others to reprocess high-dimensional data with AI. 
This work directs future biomarker studies and biological experiments. 
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Figures  
 
 
 
 

 
Figure 1. Retinal thickness definition and analyses. Definition of retinal thickness used as the 
primary outcome measure, based on retinal thickness produced by a CNN. RT captures the thickness 
between the internal limiting membrane and the retinal pigment epithelium with schema of analyses 
performed. 
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Figure 2. Prioritized genes from GWAS. Summary results for loci identified through the pixel-level 
and fPC GWAS. For each locus, the upper seven rows summarize the strength and direction of the 
genetic association based on the beta value direction and the -log10 p-value (Bonferroni adjusted p-
values shown to allow comparison across pixel-level and fPC results). The bottom 9 rows summarize 
locus to gene mapping evidence, based on proximity (<5kB), presence of variants that are exonic; 
with CADD score > 20;  eQTLs; or in chromatin-interacting regions. Implicated genes with retina-
associated phenotypes in OMIM and/or in mouse models, are also indicated.  
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Figure 3. Clustering based on metabolic results. A) Pixel-wise metabolic overrepresentation 
analysis results B) Average (bar length) and standard devitation (error bars) effect on RT across pixels 
for the subset of non-derived metabolite. Color represent metabolic group of each metabolite. Cluster 
number are shown in brackets before each metabolite name. C) Pixel-wise average effect on RT 
across all metabolites within each detected cluster.  
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Figure 4. ICD10 diagnoses and comorbidity results. A) Heatmap showing significant association 
between comorbidity scores and thickness fPCs. B) Heatmap showing significant association between 
ICD10 diagnoses and thickness fPCs. C) 2D smoothed results from ORA analysis on main ICD10 
results. D) volcano plot showing average effect size across retinal thickness and median -log10(p-
value) for each ICD10 diagnosis. 
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Figure 5. RT spatial effects of selected ‘omics signals. A: rs62202906 (MACROD2) 
B: Rs61916712 (TSPAN11), C: Glucose, D: Clinical LDL Cholesterol,   
E =Type 2 Diabetes w/o complications, F = Multiple Sclerosis,  G: High light scatter reticulocyte 
count, H: platelet to lymphocyte ratio.  Blue indicates a positive effect of the marker on retinal 
thickness while red indicates a thinning effect. In panels A-B effect size is change for each copy of the 
effect allele. For Panels E-F effect size is for presence of disease vs absence. In all other panels effect 
size is represented as 1 SD unit increase.  
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Methods 
 
Data and Data Access sharing 

Data was sourced from the UK Biobank using project applications 28541. Research was approved by 

the Walter and Eliza Hall Institute of Medical Research Human Ethics Committee (HREC 17/09LR).  

 

OCT scans in UK Biobank 

A subset of 85,726 UK Biobank individuals had retinal OCT data available. Scans were performed 

with the TOPCON 3D OCT 1000 Mk2. An OCT scan consists of a volume of 128 B-scans, each 

composed of 512 A-scans.  

Scans were obtained on up to two occasions: “instance 0” (baseline); or ”instance 1” (first follow-up 

visit). The UK Biobank protocol states that one scan per eye should be recorded at each instance; 

however a subset of individuals had two scans for one or more eyes at a single instance, while some 

had only one eye measured at an instance. Initial assessment visits were conducted during 2006-2010, 

with a total of 68,530 participants. First repeat assessment visits were performed during 2012-2013, 

with a total of 19,579 participants. 2316 individuals had measures at both instances (Data-Fields 6070 

and 6072 in UK Biobank). 

At these visits, other relevant information collected included refractive error, intraocular pressure, 

visual acuity and eye checks with questions regarding any surgery that had been performed. In 

addition imaging device number was also recorded, which permitted technical error correction. 

 

Generation of macular retinal thickness data using machine learning 

First, we developed a ML pipeline to extract the area between the internal limiting membrane (ILM) 

and retinal pigment epithelium (RPE) from OCT B-scans and to detect the layer boundaries without 

need for human annotations.  The Topcon 1000 produces a 128 raster OCT volume over a 

6mm*6mm*2.275mm area around the macula. The pixel resolution of each OCT B-scan is 512*650, 

and we measured the ILM-RPE thickness at every other pixel, i.e. 256 locations. The ML pipeline 

consisted of two steps. In the first step, we used the A star (A*) algorithm 1 to obtain layer boundaries 

by following the bright bands of the ILM and the RPE on OCT B-scans. These bright bands were then 

turned into segmentation masks for the ILM and RPE. A total of 6409 OCT-segmentation pairs were 

collected in this manner. These pairs were split 80% for training and 20% for validation at the subject 

level, and used as training data for a deep learning model. The deep learning segmentation model used 

was the Pyramid Parsing Network2 with a ResNet-183 backbone. The model achieved a mean 

intersection over union (IOU) score = 0.97 on the validation set. After the model was trained, the 
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layer boundaries were extracted by taking the top most pixel boundary for the ILM and bottom most 

pixel for the RPE in each predicted segmentation mask. 

Next, we performed multiple rounds of quality control on the ML pipeline's predicted segmentation 

masks. Quality control was performed at the location level with the location thickness rejected, and 

removed, if it failed any of the following six criteria. First, the thickness measurements from B-scans 

that were too faint to contain any ILM-RPE layers were removed (Supplemental Figure 1a). Second, 

thickness measurements for OCT scan regions that were too faint were removed  (Supplemental 

Figure 1b). Third, locations where the location thickness was too thin (less than 30 pixels or 105μm) 

or too thick (more than 165 pixels or 577.5μm) were removed  (Supplemental Figure 2a and 2b); for 

reference the typical thickness range is 154-232μm for males and 173-252μm for females. Fourth, 

regions where the predicted ILM or RPE boundaries were directly adjacent to regions that are too 

faint were removed as this suggests the OCT scan was not centred properly and was cut off  

(Supplemental Figure 3). Fifth, locations where the location thickness was discontinuous, i.e. where 

either the predicted ILM or the predicted RPE coordinates were discontinuous (Supplemental Figure 

4). Sixth, the location thickness was rejected if the standard deviation of a rolling window of the 10 

locations enclosing the location was very high (20 pixels or 70μm), i.e. highly unusual disturbances in 

the ILM-RPE layer  (Supplemental Figure 5).  

After the quality control, each OCT volume, containing 128*256 locations, was aligned to the fovea 

point. The fovea point was determined to be the centre of the area with the thinnest retina for each 

OCT volume scan and its location given as a tuple of slice number (between 1-128) and B-scan x-

coordinate (between 1-256) giving a total of 32,768 measure locations for RT per eye. Moreover, the 

ILM-RPE thickness measurements for OCT scans from the left eye was reflected across the fovea 

point, so that it was aligned anatomically to the thickness measurements from OCT scans from right 

eyes.  

Hereafter, locations are referred to as pixels. 

 

Quality control filtering of data 

Additional filtering was conducted at the individual, OCT scan and pixel level for quality control. The 

overall filtering strategy is summarised in Supplementary Figure 8. 

Quality control filtering at individual participant or OCT scan level 

The focus of the analysis was on healthy retina so individuals with overt retinal disease, or likely 

retinal disease were discarded (see Supplementary Table 1). Individuals with self-reported or mild, or 

non-retinal vision problems were retained, striking a balance between loss of power due to the 

removal of many participants and exclusion of some potential eye disease participants still being 

retained. Individuals with mild or non-retinal vision problems that were retained included those with: 
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cataracts; reported as wearing glasses; myopia; astigmatism; presbyopia; hypermetropia. Additionally, 

participants were not excluded based on field 2227: "Do you have any other problems with your eyes 

or eyesight?”.  

OCT scans were also removed based on Machine Learning model learnings. Quality control 

experiments as part of the machine learning modelling of the RT (described above) revealed diseased 

retinas (see examples in Supplemental Figure 6) for several individuals with no self-reported retina 

pathologies.  

 

Filtering of pixels, based on missingness  

Scans were then trimmed to remove pixels with high levels of missingness or potentially spurious 

measurements. Firstly, pixels that were missing in >10% scans were removed. Then, entire rows or 

columns were removed if >50% of pixels had been removed based on the 10% missing threshold. 

Finally, pixel-level variance (across all scans) was estimated, and any pixel with variance > 55 was 

removed. This resulted in the removal of 3,727 pixels (11 %) and resulted in a trimmed grid of 29,041 

pixels. 

 

Selection of scans and generation of pixel-level retinal thickness phenotypes 

Using the trimmed grid, the best scan per eye, per instance, was selected for each individual. Firstly, 

scans were excluded if >10% of pixels in the trimmed scan were missing, or if refractive error for the 

corresponding eye and instance were unavailable. If there remained more than one scan available for 

an eye at an instance, the scan with the lowest missingness was retained, or in the case of a tie, one 

scan was randomly selected. 

If  an individual had scan data for both left and right eyes from the same instance, both eyes were 

selected. For the subset of individuals who had both eyes available at both instances, the instance with 

fewest missing data points (across both eyes) was identified, and the scans taken from that instance. 

For individuals who did not have a scan for both eyes measured at the same instance, the single eye 

with fewest missing data points was used (either eye/instance). In the case of ties, one eye was 

randomly selected. 

 

Imputation of missing values per scan 

Imputation of scans was then carried out. For each scan, generalized additive model (GAM) was fitted 

using the “bam” function of mgcv R package (version 1.8-40) with the following model: 

𝑍! 	= 	𝛽" + 𝑓(𝑥!, 𝑦!) + 𝜖! 
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  where 𝑍! 	 is the depth measurement at position (𝑥!, 𝑦!) and 𝑓(𝑥!, 𝑦!) is a tensor product smooth 

function (k=12, 12). Where a pixel had missing data in an individual scan, the value was imputed 

using the predicted value from the GAM, assuming that missingness was at random. 

 

Final participant data generation 

Finally the pixel-level retinal thickness phenotypes were generated using the imputed scans. If an 

individual had both left and right eyes available, the mean value for each pixel was taken, otherwise, 

the single available eye was used. A final filtering step removed individuals where their final scan 

phenotype had any pixels where thickness measurements were <30 or  >150, or where the scan-wise 

standard deviation was > 15. 

 

Generation of fPC phenotypes 

Using the final pixel-level retinal thickness phenotypes, functional principal component analysis 

(FPCA) was undertaken using the MFPCA R package (version 1.3-10)4, and using penalised 2D 

tensor product splines, with k=(12,12) as the maximum degrees of freedom. 100 FPCs were 

estimated, with the top six fPCs explaining >95% of the variance selected for follow-up analysis. For 

each individual, fPC scores were extracted, representing the contribution of each fPC to that 

individual’s scan phenotype. 

 

Quality control based on genetic data 

The genotyping procedure, quality control and imputation of the UK Biobank cohort is described 

elsewhere.5 Imputed genotypes to the combined Haplotype Reference Consortium and UK10K panel 

(version 3; Category 100319) and genotype quality control metric files (Category 100313) were 

downloaded for the full UK Biobank cohort. Individuals were excluded if: they had been being 

excluded by UK Biobank, before imputation due to high heterozygosity or missingness (>5%); there 

was a mismatch  between their genetically predicted and recorded sex, or they had a sex chromosome 

aneuploidy; they had an apparent excess number of relatives in the UK Biobank cohort (≥ 10 

relatives); or they had withdrawn consent. Broad continental ancestries for all individuals were 

obtained from UK Biobank returned dataset 2442. Ancestry assignments were based on genetic 

similarity to individuals from the 1000 Genomes Project and Human Genome Diversity Panel, and 

were generated through the Pan-UK Biobank project (https://pan.ukbb.broadinstitute.org/). 

Individuals of European (EUR), Central and South Asian (CSA) and African (AFR) ancestries were 

identified for genetic analyses. The remaining individuals were excluded as their continental ancestry 

groups had <1000 individuals in each.  
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The full set of EUR, CSA and AFR individuals were then restricted to a maximally unrelated set. 

Pairwise relationships, up to 3rd degree were identified. Any individual with multiple (>1) relatives in 

the set were identified and removed. Remaining relative pairs were identified (each of whom were 

related to one individual in the set only). One of each pair was then randomly selected for exclusion.  

Variants with minor allele frequency (MAF) < 0.05%, or imputation INFO scores < 0.8 were 

excluded. QCTool v2 was used for sample and variant based filtering, then bgen files were converted 

to PLINK binary format, using PLINK 2 (version 20221024). 

 

Genome-wide Association Analyses 

Genome-wide associations were undertaken for the pixel-level retinal thickness phenotypes, and the 

fPC score phenotypes, using the glm command in PLINK 2 (version 20221024). Covariates included 

in the model were sex, age, age-squared, standing height, device ID, eye (left, right, or mean), 

spherical equivalent (for the corresponding eye, or the mean of left and right, if the mean of both eyes 

was used for the phenotype) and the first ten ancestry principal components as provided by the UK 

Biobank (field number 22009). Quantitative covariates  were standardised to have mean 0 and 

covariance 1, and the variance inflation factor upper bound flag was set to 500, to allow for the 

multicollinearity of age and age squared. Chromosome X was analysed by coding hemizygous males 

as homozygous.  

 

Identification of independent significant loci 

Identification of independent significant loci was carried out separately for the FPC analyses (6 

GWAS) and the pixel-level analyses (29,041 GWAS). 

Linkage disequilibrium (LD) clumping was undertaken for each set of GWAS results, using PLINK 

v1.90 to identify statistically independent signals, using strict criteria: index SNPs with p-value < 5E-

8 identified, with clump SNPs having p-value < 5E-5, and r2 >0.001 and <5000kb distance to the 

index SNP. SNPs were allowed to belong to more than one clump. LD clumps were collated to give a 

list comprising all genome-wide significant (p < 5E-8) index SNPs, and the corresponding clump 

SNPs. The results for all N SNPs in this list were then extracted from each GWAS (Npixel-levelSNPs x 

29,041 associations for the pixel-level analyses; NFPCSNPs x 6 associations for the FPC analyses).  

Identification of loci was then carried out, using the extracted associations, and the clumping results, 

here, described in the context of the pixel-level results: 

While at least one pixel-SNP association has p-value < 5E-8: 

1. Order all extracted associations by P-value. 
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2. Take the pixel-SNP combination with smallest association p-value.  

3. If this SNP is an index SNP in the clumping results for this pixel, then: 

a. Define a new locus with the index SNP as the sentinel SNP and the pixel as the top 

pixel for the locus. 

b. Find all corresponding clump SNPs (P < 5E-5) for that locus, from the clumping 

results; these SNPs are allocated to the locus as supporting SNPs. 

c. Find all pixels with P < 5E-5 for either the sentinel, or any of the supporting SNPs; 

these pixels are allocated to the locus. 

d. Remove all allocated SNP-pixel combinations from the list of extracted associations.  

4. Else, if this SNP is not an index SNP in the clumping results for this pixel, then: 

a. Find the clump where the SNP is included as a clump SNP. 

b. Extract the index SNP for this clump, and confirm this index SNP has already been 

assigned to a locus. 

c. Remove any remaining clump SNPs from the list of extracted associations. 

5. Repeat steps 1-4 until no pixel-SNP associations with p-value < 5E-8 remain. 

 

Loci were identified from the 6 FPC GWAS, using an equivalent approach. 

The above process resulted in two lists of loci: one for the pixel-level analyses, containing loci with at 

least one pixel-SNP association meeting P < 5E-8; one for the FPC analyses, containing loci with at 

least one FPC-SNP association meeting P < 5E-8. Finally, these lists were filtered, to remove loci 

with fewer than 5 SNPs assigned (ie fewer than 5 SNPs in the region with p < 5E-5), as these were 

deemed to be likely false positives.  

 

Reporting of GWAS loci 

The loci identification process utilised the conventional genome-wide significance level (P < 5E-8), 

however this does not account for the heavy multiple testing burden of our approaches. The final 

reporting, and subsequent follow-up of loci was therefore restricted to SNP associations, meeting 

conservative Bonferroni corrected thresholds: P<5E-8 / 29,041 = 1.72E-12 for the pixel-level 

analyses; P <5E-8 / 6 =  8.33E-9 for the FPC analyses.  

For completeness, we provide the unrestricted loci lists (P < 5E-8) in the supplementary results, with 

loci meeting the strict Bonferroni thresholds flagged (Supplementary Tables 5 and 6).  
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Sentinel SNPs were annotated using the variant effect predictor (VEP v.109, 6). Loci were also 

annotated to indicate whether they were identified through previous GWAS of retinal thickness 7–9. 

For these annotations, the sentinel SNP along with all other SNPs allocated to each locus were 

compared to previously reported SNPs. If no SNP allocated to a locus was included amongst 

previously reported SNPs, that locus was deemed novel. 

 

Follow-up of GWAS loci 

Follow-up was undertaken for loci meeting the strict Bonferroni corrected thresholds described above. 

Mapping of loci to candidate genes via positional mapping, eQTL data, and chromatin interaction 

data, was undertaken based on annotations obtained via FUMA (v1.5.3).10 For each set of loci (pixel-

level associated loci; fPC associated loci), the list of sentinel SNPs was uploaded as a predefined list 

of lead-SNPs, with mapping of SNPs to genes carried out using the uploaded sentinels, and all SNPs 

in LD with r2 > 0.5 with the sentinels (collectively referred to herein as candidate SNPs).  

Positional mapping identified genes overlapping with, or <=10kb from, candidate SNPs using 

ANNOVAR (2017-07-17). eQTL mapping identified genes (cis, up to 1Mb) whose expression are 

associated (FDR<0.05) with candidate SNPs, in retina (EyeGEx)11, blood (GTEx v8 tissues: EBV-

transformed lymphocytes; whole blood) or brain (GTEx v8 tissues: amygdala; anterior cingulate 

cortex BA24; caudate basal ganglia; cerebellar hemisphere; cerebellum; cortex; frontal cortex; 

hippocampus; brain hypothalamus; nucleus accumbens basal ganglia; putamen basal ganglia; Spinal 

cord cervical c-1; brain substantia nigra).12 Chromatin interaction mapping used HiC data from fetal 

and adult human brain, to link candidate SNPs to genes based on overlapping enhancer-promoter and 

promoter-promoter interaction regions (restricted to significant interactions with P < 2.31e-11).13  

The candidate genes identified through these mappings, were additionally annotated as to whether 

they were associated with eye or retina-related phenotypes in mice or humans. For mouse phenotypes, 

we utilised a set of genes from the International Mouse Phenotyping consortium 

(https://www.mousephenotype.org), causing “abnormal eye morphology” (MP:0002092), and with 

human orhologs.14 To identify relevant genes in humans, we queried the OMIM database for genes 

with “retina” or “retinal” included in the entry, and clinical synopsis including “Head & neck”.15   

For completeness, we report all genes implicated via the above mappings, or annotations 

(Supplementary table 10). For certain follow-up analyses, we further prioritised candidate genes, 

based on the number of lines of evidence for that gene (prioritisations specified with the relevant 

analyses). To this end, we created a score, which summed up whether the gene was: i) implicated via 

positional mapping; ii) implicated via mapping with an exonic candidate SNP; iii) implicated via 

mapping with a candidate SNP with a CADD score >= 20; iv) implicated via retina eQTL data; v) 

implicated via blood eQTL data; vi) implicated via brain eQTL data; vii) implicated via HiC data 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted August 2, 2023. ; https://doi.org/10.1101/2023.07.31.23293176doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.31.23293176


29 
from brain; viii) associated with eye abnormalities in mice; ix) associated with a retina OMIM 

phenotype. This score is reported in the “evidenceScore” column of Supplementary Table 10. 

 

Clustering of sentinel SNP effects 

We performed unsupervised hierarchical clustering analysis on both pixels and SNPs, based on the 

effect sizes for the sentinel SNPs, across all 29,041 pixels. The number of clusters was determined from 

visual inspection of the clustering dendogram. 

 

Associations in non-European ancestries. 

We undertook association analyses for all identified loci, in individuals from UK Biobank AFR and 

CSA ancestries. For each locus, we examined associations with the sentinel SNP at each identified 

locus with all 29,041 pixels (pixel-level analyses), or for the FPC(s) for which the SNP was 

significant. Association analyses was undertaken using PLINK 2 (version 20221024), similarly to the 

analyses of European individuals. For each locus we report the results for the pixel, or FPC, with the 

most significant association observed in European individuals. We examine concordance of direction 

of effect across ancestries. We deemed associations in AFR and CSA individuals to be statistically 

significant, if they met the Bonferroni corrected p-value threshold for the number of loci tested. We 

additionally compared whether the pattern of association across the entire scan was similar across 

ancestries. For each SNP, we calculated the scan-wise correlation (i.e., the correlation of effects 

across all pixels), using Spearman’s Rank Correlation. 

 

Genetic correlation analyses 

Genetic correlation analyses were carried out for fPCs 1-6, using LD-score regression16, implemented 

via the Complex Traits Genetics Virtual Lab.17 We examined correlations with 1309 traits in total 

(Supplementary Table 12). 

 

Gene set over-representation analysis 

Gene set over-representation analysis (ORA) for Gene Ontology Terms was performed using the R-

package ClusterProfiler (v. 4.2.2).18 ORA was carried out for genes implicated via the pixel-level and 

fPC results separately, using two sets of genes in each case: (i) all candidate genes (ii) the gene(s) 

with the most lines of evidence (i.e. highest “evidenceScore”) for each locus. Correction for multiple 

testing was performed using Benjamini-Hochberg ad-hoc correction, and we report all GO terms with 

corrected p-value < 0.05. 
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Other ‘omics analyses 

We next assessed the associations with metabolomics, blood and immune trait markers, and disease 
codes (ICD codes) on RT. For metabolite and disease codes, we examined associations with both 
direct measures, and using polygenic risk scores. These analyses were restricted to EUR individuals, 
due to limited sample sizes for other ancestries. We outline the cleaning of each data type, then the 
analyses undertaken, 
 

Polygenic risk scores preparation 

Polygenic Risk Scores (PRS) were used to investigate relationships of traits with RT. We used three 

types of PRS in this study. Type 1 PRS comprise trait PRS composed mainly of PRS describing 

disease susceptibility. Type 2 PRS comprise metabolic PRS measuring genetic predisposition to blood 

abundance of a set of metabolites. The trait PRS are further subdivided into three subclasses. Two of 

these, the Standard and Enhanced PRSs, were downloaded from the UK Biobank having been 

generated and deposited in the UKBiobank as described by Thompson and colleagues 19 (Categories 

301 and 302). These PRS had already undergone extensive QC and data processing, thus were used, 

as is, in the association analyses. The third subclass of the trait PRS are defined as Internal PRS (Type 

3 PRS). These were PRS of particular relevance to the RT phenotype and included two macular 

disorders and two measures related to the RT phenotype. This included PRS for: (i) Macular 

Telangiectasia type 2 20, (ii) Age-related macular degeneration 21, (iii) Retinal thickness 7,  and (iv) 

retinal venular and arteriolar calibre 22,23. To construct these PRS we extracted the top SNPs at each 

genome-wide significant locus associated with the trait as reported by the authors. We then used the 

R-package bigSNPR (version 1.12.2)24  to extract the selected SNPs from UK Biobank and create the 

polygenic risk scores. 

Metabolic PRSs were defined using metabolites measured with the Biocrates platform which was used 

previously to determine genetic associations 25. Similar to the Internal trait PRSs we selected the 

SNPs for each metabolite PRS as the top associated SNP for each locus. We then discarded all 

metabolites that had fewer than three top SNPs available to construct the PRS, as measured in the UK 

Biobank. We then used bigSNPR to combine the SNPs into a single PRS for each metabolite.  

  

Blood traits data preparation 

Blood trait data (Category 100081) was downloaded from UK Biobank. Blood trait data was collected 

using Beckman Coulter LH750 instruments for all 500,000 participants of the UK Biobank for the 

baseline visit. Cleaning of the blood traits was undertaken, based on the methods employed in 26. In 

brief, all blood traits were first log, or logit (in the case of ratios or proportions) transformed. Using a 
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restricted set of central measurements (measures <3.5 median absolute deviations from the median), a 

generalised additive model (GAM, using the mgcv version 1.8-40 R package) was fitted, to model the 

effects of several technical covariates (time of measurement, instrument, acquisition route, day of the 

week). In the full dataset, model residuals were calculated and used to generate traits adjusted for 

technical effects. Finally, outliers (>6 median absolute deviations from the median) were excluded. 

The log/logit transformed, adjusted traits were used for downstream analyses. 

Following the work from Nøst and colleagues 27 we used this data to calculate systemic inflammation 

markers. Specifically, we used peripheral lymphocyte, neutrophil, monocyte and  platelet counts to 

calculate neutrophil-to-lymphocyte ratio (NLR), platelet- to-lymphocyte ratio (PLR), lymphocyte-to-

monocyte ratio  (LMR) and the systemic immune-inflammation index (SII). These were analysed in 

the same manner as the directly measured blood traits. 

 

Infectious disease antigens preparation 

Infectious disease antigen data (Category 1307) was downloaded from UK Biobank. Antigens were 

measured using the Luminex platform. Only samples whose antigens were measured were kept in the 

dataset. Antigen measurements were log transformed prior to use.  

 

Metabolomics data preparation 

Measurements of metabolic data from non-fasting venous blood  of around ~120,000 UK Biobank 

participants (Julkunen et al. 2021) were downloaded (Category 220). Metabolic quantifications 

included a total of 249 metabolic biomarkers. Of these, 168 were directly measured and quantified by 

NMR spectroscopy using the NIghtingale platform, while 81 biomarkers were ratios or derivative 

measurements. The metabolomics data was processed with the R package ukbnmr (version 1.5) 28. This 

procedure removed technical variation as well as normalising the metabolic values. Non-derived 

metabolites were then square-root transformed to achieve symmetry of the distribution. Assuming 

missingness at random, metabolic values were imputed using the Multiple Imputation Chain Equation 

by the R-package MICE (version 3.15.0) 29. Five different imputations of the entire data were generated 

and the average of these five imputation set values was retained as the final set of imputation values. 

Composite metabolites and ratios were then re-computed using ukbnmr. A total number of 325 

metabolites were included in this study.  

 

Disease ICD10 codes and Charlson comorbidity scores data preparation 

To extract ICD10 diagnoses for each individual we used the R-package ukbtool (version 0.11.3) 

(Hanscombe et al. 2019). This data was then transformed into binary format where each patient was 
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represented either by 0 or 1 for each ICD10 code depending on whether they were unaffected or 

affected. Additionally, using the R-package icd (version 4.0.9) (https://github.com/jackwasey/icd) we 

constructed 17 comorbidity scores as defined by Quan and colleagues (Quan et al. 2005). Using the 

same tool we additionally constructed a Charlson Comorbidity Index (CCI) for each individual which 

is calculated using the inpatient's disease category, obtained from the diagnosis made during hospital 

admission. Each of the 17 scores is weighted with a value of 1-6 and then all comorbidities are summed 

together. 

 

-Omics Data Analyses 

PRSs, metabolomics, ICD10 scores, CCI scores, blood traits and infection antigens were tested against 

retinal thickness using the same protocol. Firstly, all data from participants  from any of these omics 

where no imaging data was available was discarded. Secondly, to allow for comparison of effect sizes 

across biomarkers/phenomes, each of them was standardised to have mean equal to zero and standard 

deviation equal to one. Thirdly, association testing was performed by regressing each marker against 

all retinal pixels thicknesses correcting for the following covariates: (i) genetically derived sex at birth, 

(ii) age, (iii) imaging device number, (iv) standing height, (v) mean refractive error measured by 

spherical equivalent, (vi) eye and (vii) the first ten genetic principal components. Participant data 

presenting with missing information for any of these covariates was discarded. Regression analysis was 

performed using the package limma (version 3.50.3) 30 which applies an empirical Bayes framework to 

model relationships between outcome variables (here RT pixels). Fourthly, multiple testing correction 

on p-values was performed using the ad-hoc R-function p.adjust. All p-values within each omic type 

were corrected jointly using the Benjamini-Hochberg correction for false discovery rate.  

The same strategy as described above was used to test each association of each omics with the first six 

fPCs. Given that the fPCs capture specific grid-wide patterns, a more lenient FDR threshold of 1% was 

used to define significance of this analysis. 

Interaction effects between metabolic levels and age on retinal thickness were evaluated following the 

same approach as that described above, but by adding an interaction term for metabolic level and age, 

in addition to the main effects, in the limma linear regression model. To test whether the effect of the 

metabolites on thickness varied with age, we counted the proportion of significant interaction terms 

where the sign is equal to the sign of the main effect of the metabolite on retinal thickness.  

Correlation between PRS and ICD10 pixel-level effects was performed by simply calculating the 

Pearson’s correlation coefficient across all pixels by matching PRS disease effect with the available 

ICD10 codes. For each pair, three analysis were performed, one using every pixel, one using only those 

pixels where the PRS had a significant effect, and one using only those pixels where both the PRS and 

ICD10 had significant effects. 
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For plotting and interpretation purposes, we summarised each biomarker’s effect on global retinal 

thickness using a suite of measures. These were: (i) number of pixels significantly affected by each 

biomarker, (ii) the average beta of the biomarker across all pixels, (iii) the median -log10(p-value) of 

the marker association with pixels, (iv) Values for all of these measures are available as columns in 

each of the associated result tables, which are specific for the eight types of variables being tested  

(Supplementary Tables 14-22). Each results table also has biomarker specific descriptors in the columns 

preceding these measures.  

We performed hierarchical clustering analysis on both pixels and biomarkers within the snps, 

metabolomics and blood traits analyses. These omics were selected for this analysis due to their large 

number of biomarkers and prior knowledge of the existence of  structured correlation patterns. 

Clustering of biomarkers was performed to capture shared (spatial) effect patterns on pixel-level RT. 

Clustering was performed using unsupervised hierarchical clustering. The number of clusters was 

determined visually based on the hierarchical clustering tree produced by the analysis. 

Pixel-level over-representation analysis (ORA) was performed by using the R-package ClusterProfiler 

(version 4.2.2) 18. Each pixel i was defined as a set and each test pixel i-marker was defined as an entry 

of the set. Over-representation of significant pixel-marker association between pixels was then 

evaluated. ORA was only performed for the metabolomics biomarker main effect results, the 

metabolite-age interaction results and the ICD10 diagnosis given. For ICD10 codes ORA was 

performed on a random grid of pixels due to the computational burden. Plotting of ORA results was 

performed by smoothing log10(p-values) over the 2D grid using the loess function. 

 

Display of association results with RT (pixel level) 

All association results are displayed using the same orientation for results as per Supplementary 

Figure 1. 

Top = superior, towards top of head 

Bottom = inferior, towards bottom of head 

Left hand side = temporal, towards the ears 

Right hand side = nasal, towards the nose 

Results are displayed either as p-values (adjusted or unadjusted), which may be transformed with a 

log10 transform, or as betas (effect of the biomarker/phenotype), or a transform of beta. 

The Early Treatment Diabetic Retinopathy (ETDRS) grid,32 which segments the macula into nine 

sectors and is widely used, is overlaid on most images to provide further spatial context for the 

interpretation. This grid was added by drawing the grid coordinates onto the each plot and thus 

represents an approximate mapping. (Supplementary Figure 1) 
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Web Browser 

An interactive website, https://retinomics.org, was developed to help visualize the GWAS and 

metabolomics results in the paper. The website has interactive pages for each type of biomarker of 

interest, such as GWAS, metabolites, hematology, infections, polygenic risk scores and ICD10 codes. 

For each type of biomarker, there are two views. First, there are heatmap plots to show the effect and 

pvalue of selected biomarker of interest. Second, there are macula location plots that shows the link 

between all significant biomarkers for that macula location. The location plots are manhattan/region 

plots for the GWAS and volcano and bar plots for the other types of biomarkers. Users can interact 

with the plots by clicking or selecting a biomarker of interest to trigger the loading of its heatmaps or 

click a macula location in the heatmaps to load its corresponding location plots. The website was 

implemented in HTML, native Javascript, and d3js. 

All results are displayed with the same orientation on the pixel grid as described in Supplementary 

Figure 1.  
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Data Availability 
All data used in this study can be accessed from the UK Biobank upon request, via an application 
process (https://www.ukbiobank.ac.uk/). 
RT pixel-level and the six 2D fPC data will be returned to the UK Biobank. 
GWAS summary statistics for the six 2D fPCs will be submitted to the GWAS catalogue. Other 
‘Omics summary statistics will be available for download at https://retinomics.org/. 
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Code Availability 

We used publicly available open-source software for these analyses. Scripts for the genetic analyses 
can be found at https://github.com/bahlolab/retinalThicknessGWAS  
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